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Abstract

Asthma is increasingly being considered as a collection of different
phenotypes that present with intermittent wheezing. Unbiased
approaches to classifying asthma have led to the identification of
distinct phenotypes based on age of onset of disease, atopic state,
disease severity or activity, degree of chronic airflow obstruction,
and sputum eosinophilia. Linking phenotypes to known disease
mechanism is likely to be more fruitful in determining the potential
targets necessary for successful therapies of specific endotypes.
A “Th2-high expression” signature from the epithelium of patients
with asthma identifies a subset of patients with high eosinophilia and

good therapeutic responsiveness to corticosteroids. Other
characteristic traits of asthma include noneosinophilic asthma,
corticosteroid insensitivity, obesity-associated, and exacerbation-
prone. Further progress into asthma mechanisms will be driven
by unbiased data integration of multiscale data sets from omics
technologies with those phenotypic characteristics and by using
mathematical modeling. This will lead to the discovery of new
pathways and their integration into endotypes and also set up
further hypothesis-driven research. Continued iteration through
experimentation ormodeling will be needed to refine the phenotypes
that relate to outcomes and also delineate specific treatments for
specific phenotypes.
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At the beginning of the last century, the
concept that asthma represented a disease of
intermittent airway narrowing that could
explain the difficulty in breathing, wheeze,
and chest tightness gained general
acceptance. The discovery that adrenaline
could relieve asthma symptoms, with the
later development of b2-adrenergic agonists
as potent bronchodilators, further
unified the concept of asthma as
a bronchoconstrictor disease. With the
description of the atopic state, asthma was
divided into extrinsic or atopic asthma,
which usually started in childhood and
often improved through adolescence, and
intrinsic or nonatopic asthma, which had
an adult onset of symptoms that were
often more persistent and severe (1). In
the 1950s, the beneficial effects of
corticosteroids (CSs) in the form of
cortisone were recognized (2), and in the

1960s, with the introduction of inhaled CS
(ICS) therapy, the importance of airway
inflammation, later recognized as
eosinophilic in nature, came to the fore,
and asthma was defined as a disease of the
airways characterized by intermittent
bronchoconstrictor episodes associated
with airway inflammation, with the
airway inflammation considered to
contribute to the bronchoconstrictor
response. On the basis of this definition,
the pharmacological approach to the
treatment of asthma has since been based
on a combination of bronchodilator and
antiinflammatory treatments (3). The
concept of treatment failure, particularly
to CSs, was recognized with the description
of CS-resistant asthma (4). More recently,
the levels of asthma control and severity
and the exacerbation state have been
categorized, further dividing asthma

into levels of severity (5). Patients with
severe asthma were defined according
to their lack of response to asthma
therapies (6, 7).

Therefore, over the last 100 years,
a disease that was considered to be one of
intermittent airflow obstruction has now
been subcategorized in terms of its clinical
presentation, severity, and response to
treatments. There is even the notion
that asthma is an umbrella term that
encompasses many different diseases (8).
In severe asthma, many more disease
characteristics are obvious (9), and the need
to find new effective therapies in this
condition (10) has focused efforts into
phenotyping asthma. With the necessity for
new therapies, it is clear that one of the
objectives of phenotyping will be to link the
clinical phenotype to mechanisms of
disease, thus defining groups of patients
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who may be responsive or unresponsive to
specifically targeted treatments.

This review addresses the ways in which
we can phenotype asthma, how we can link
these phenotypes with pathophysiological
mechanisms, and how the revolution in
“-omics” technology can be harnessed to
define more precise phenotypes.

Definition of
Clinical Phenotypes

The definition of phenotype according to
Wikipedia is as follows: “A phenotype (from
Greek phainein, “to show” 1 typos, “type”)
is the composite of an organism’s
observable characteristics or traits, such as
its morphology, development, biochemical
or physiological properties, phenology,
behavior, and products of behavior.
Phenotypes result from the expression of an
organism’s genes as well as the influence of
environmental factors and the interactions
between the two.” For the definition of
asthma phenotypes, this term has been used
in different ways. In asthma, many features,
such as wheeze or measures of lung
function, could be considered as traits.
These characteristic traits may be used to
determine which genes determine them,
or a particular combined subset of these
characteristics may be determined by
specific genes. Phenotypes are artificial
constructs, and in the case of asthma, it
is useful for clinicians to characterize
a particular subgroup of patients with
asthma who define a particular risk factor,
who respond to a particular treatment, or
who have a particular good or bad
prognosis. This would define phenotypes
based mainly on clinical and physiological
measures. Other ways of phenotyping
asthma would be to include a disease
pathogenic mechanism that may be
distinct, such as virus-induced asthma or
occupational asthma. Indeed, it has been
suggested that the asthma syndrome be
divided into distinct disease entities with
specific mechanisms, which have been
termed “endotypes” (11, 12). This is
clearly very helpful in defining potential
therapeutic targets, but not all mechanisms
have been discovered yet.

One objective for phenotyping asthma
could be to provide long-term prediction of
outcomes and to find out which specific
treatments may benefit selected phenotypes.
Han and colleagues have argued for defining

phenotypes of chronic obstructive
pulmonary disease that have real predictive
value, such that phenotypes could be “a
single or combination of disease attributes
that describe differences between
individuals with chronic obstructive
pulmonary disease as they relate to
clinically meaningful outcomes” (13).
Therefore, a phenotype should be
prospectively validated and refined for each
of the outcomes to which it relates.

A list of clinical phenotypes of asthma
as would probably be agreed on by most
asthma clinicians is provided in Table 1, but
most still need “validation.” Clinically, the
use for these particular clinical phenotypes
has been to describe particular types of
patients with asthma that is recognized
as difficult to treat. Phenotypes may be
grouped together because of a common
underlying mechanism. Table 2 lists some
characteristic traits particularly associated
with severe asthma in terms of the extremes
of these traits. The pathophysiological basis
for these characteristics remains to be
determined, but these could be part of
phenotypes of asthma. It will also transpire
that a phenotype or endotype is not a fixed
entity but may vary over time or with
treatment, and that phenotypes of asthma
are defined by the available characteristics of
the disease documented and on the degree of
understanding we have of the disease.

Defining Phenotypes of
Asthma by Cluster Analysis

Recent use of unbiased approaches to
phenotyping has been of great benefit in the
analysis of phenotypes of asthma. Cluster
analysis groups data objects based only on
information found in the data that describes
the objects and their relationships, with the
objective of finding how objects within
a group are similar or related to one another.
The greater the similarity or homogeneity
within a group, or the greater the difference
between the groups, the better or more
distinct the clustering. Using this specific
analysis, the term “cluster” has been used
interchangeably with the more commonly
used term “phenotype,” as defined above.

The Severe Asthma Research
Program (SARP) adult and pediatric
cohorts (14, 15) and the UK Leicester
cohort (16) have used hierarchical cluster
analysis, whereas for the European cohorts
of European Community Respiratory

Health Survey (ECHRS) Epidemiological
Study on the Genetics and Environment of
Asthma (EGEA) (17), a model-based
clustering analysis was used to study
a range of asthma severities. Despite
differences in size and clinical variables
chosen for analysis, these studies came up
with similarities in the phenotypes
identified (Table 3). The analyses
identified patients with preserved lung
function and little activity of disease,
patients with early-onset disease with atopic
background, and a more severe group
associated with adult-onset disease and
active disease. Thus, age of onset of disease,
lung function, and atopic state featured
highly in these clusters or phenotypes.
Similarly, such clusters were also identified
in patients from Korea and Japan (18, 19).
A separate cluster analysis of a population
of subjects with asthma in New York resulted
in clusters that were qualitatively similar to
those described for SARP, giving support to
the robustness of the clinical phenotypes
defined by the SARP cluster analysis (20).
Further application of these analyses to other
cohorts will be the best way forward to
validate the robustness of these analyses.

Such analyses have also led to the
definition of new clinical groups such as
those associated with obesity, defined in the
SARP and Leicester cohorts. This has now
been confirmed in other analyses that
have specifically examined the contribution
of obesity (21, 22). Two clusters of obese
individuals were described: obese
uncontrolled and obese well-controlled,
and these asthma clusters differed from one

Table 1. Potential “phenotypes”
of asthma

1. Clinically defined and responsiveness
to therapy
Defined by severity: mild, moderate,
severe

Characterized by exacerbations
Early-onset extrinsic asthma
Late-onset intrinsic asthma
Corticosteroid-resistant asthma

2. Defined by triggers and inducers
and by association
Exercise induced
Aspirin or nonsteroidal induced
Allergen induced
Occupational asthma
Obesity associated
Cigarette-smoking asthmatic
Viral induced

3. Inflammatory phenotype
Eosinophilic
Neutrophilic
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another regarding age of asthma onset,
measures of asthma symptoms and control,
exhaled nitric oxide concentration, and
airway hyperresponsiveness but were similar
with regard to measures of lung function,
airway eosinophilia, and serum IgE (21).

Clusters of severe asthma were
described as clusters 4 and 5 of the adult
SARP cohort who were on high treatment
and associated with severe airflow
obstruction. In a small cluster analysis of
refractory asthma in Korean patients (23),
four clusters were described, with three of
the four resembling closely clusters 4 and
5 of SARP. One cluster that was new was
the Korean cluster 4, which consisted
predominantly of men and cigarette smokers,
which was a group that was recruited in
SARP. In childhood asthma, this was
exemplified by two clusters of severe asthma,
one of asthma with severe exacerbations and
multiple allergies and the other with severe
asthma with bronchial obstruction (24).

Phenotyping and Endotyping
of Asthma

In the SARP adult cohort analysis, the
clusters fell in line with the treatment-
progressive approach of the Global Initiative
for Asthma (GINA) with the patients with
severe asthma in clusters 4 and 5 having
treatments at GINA steps 4 and 5.
Approaches that include measurements of
inflammatory markers are more likely to
provide information about potential

pathophysiological mechanisms and
ultimately specificity of response to
therapies. Our current understanding
of the pathophysiology of asthma has
increased to a large extent in the last
couple of decades thanks to the ability
to measure and localize mediators, cells,
and cytokines in asthmatic tissues and
to performing experimental studies in
asthmatic cells and in asthmatic animal
models. Eosinophils and immune and
inflammatory pathways initiated through
Th2 CD41 T-cell activation with the
production of IL-4, IL-5, and IL-13 are
considered to play an important role in
the pathophysiology of asthma (10, 25, 26).
The inflammatory process of asthma is
likely to be more complex, such as the
potential for innate immune responses to
interact with the well-established acquired
immune response mechanisms (25).
Newly described cytokines, such as
thymic stromal lymphopoietin (TSLP),
IL-17, and IL-23, have now been
implicated in asthma (25, 27, 28). The
inclusion of pathophysiological
mechanisms into phenotyping of asthma,
referred to as endotyping, will be an
important element of the process of
understanding asthma and finding new
treatments. Endotyping of asthma has
been limited so far but will become an
increasingly important feature of
phenotyping. This section reviews the
importance of phenotyping and
endotyping in relation to the extreme
characteristic traits listed in Table 2.

Eosinophilic and Neutrophilic Asthma
Sputum eosinophil counts were added to
their cluster analyses in the Leicester cohort
of patients with refractory asthma: one of
the earliest findings was the discordance
between symptoms and eosinophilic airway
inflammation (16). One cluster was that
of an early-onset, symptom-predominant
group with minimal eosinophilic disease,
with a high prevalence of obesity and
female sex, whereas the other cluster
consisted of an eosinophilic inflammation–
predominant group with few symptoms,
late-onset disease, and a greater proportion
of men, with a high prevalence of
rhinosinusitis, aspirin sensitivity, and
exacerbations. The Leicester group had also
previously shown that sputum eosinophils
can be used as a guide to adjust asthma
treatments with improved control of
asthma with fewer exacerbations than the
conventional use of symptoms or peak flow
measurements (29, 30). The refractory
patients with high sputum eosinophilia and
recurrent exacerbations responded to
specific anti-IL5 monoclonal antibody
treatment with a reduced number of
exacerbations (31). Thus, a subphenotype
of asthma characterized by high-dose
treatment with ICS and sometimes with
oral CSs with recurrent exacerbations and
increased sputum eosinophils would benefit
from anti-IL5 therapies (30, 31).

The eosinophilic asthma subphenotype
is likely to only constitute a minor
proportion of asthma. A recent study
of mild-to-moderately severe asthma
indicated that sputum eosinophilia,
defined as eosinophils present at 2% or
more, was found in 36% of subjects with
asthma not taking an ICS and in 17% of
ICS–treated subjects with asthma (32).
Antiinflammatory therapy caused
significant improvements in airflow
obstruction in eosinophilic asthma but not
in persistently noneosinophilic asthma.
Noneosinophilic asthma was more
predominant in mild-to-moderate asthma,
just as neutrophilic asthma is also
predominant in severe refractory asthma
(33, 34). One study of severe asthma
indicated that there was no relationship
between sputum eosinophilia and
submucosal eosinophilia measured in
bronchial biopsies and that sputum
eosinophilia, but not submucosal
eosinophilia, tracked with exacerbation
rates (35). Periostin, which is stimulated

Table 2. Characteristics of asthma listed as traits at extreme ends
and associated biomarkers

Characteristics Potential Biomarkers

1. Early onset/childhood vs. late
onset/adult

Age of onset of asthma , 40 yr vs. . 40 yr

2. Obese vs. nonobese Body mass index . 95th percentile for age
3. Chronic airflow obstruction vs.

no airflow obstruction
Post-bronchodilator FEV1/FVC ratio of , 0.7 vs.
. 0.7

4. Recurrent frequent exacerbations vs.
occasional few exacerbations

Severe/moderate exacerbation frequency >2 vs.
, 1 per yr

5. Atopic/extrinsic vs. nonatopic/
intrinsic

Skin prick tests or specific IgE positive vs.
negative for more than one aeroallergen

6. Eosinophilic vs. noneosinophilic Sputum eosinophil count . 3% vs. , 2%
7. Th2 cytokine high vs. Th2 cytokine

low
High vs. low expression of Th2 cytokines in
epithelial cell brushings

8. Corticosteroid insensitive vs.
corticosteroid sensitive

Failure to control vs. well-controlled asthma while
on maximal asthma therapy including regular
oral corticosteroids

9. b-adrenergic bronchodilator
response vs. no b-adrenergic
bronchodilator response

Post-b-adrenergic bronchodilator FEV1 response
of . 15% vs. , 15%
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by the Th2 cytokine IL-13, has been
proposed as a serum biomarker of
airway eosinophilia and high-Th2
asthma (36). Serum periostin was shown
to be a good marker of the bronchodilator
responses of patients with moderately
severe asthma treated with an antibody
to IL-13 (37). The phenotyping of
eosinophilic asthma will certainly evolve
further with the discovery of other
associated biomarkers, improving the
granularity of the phenotype.

Eosinophil and neutrophil sputum
numbers show wide variability in severe
asthma, with patients demonstrating none
to very high levels of either cell (33, 34).
Baines and colleagues investigated asthma
phenotypes using gene expression profiling
of induced sputum and unsupervised
hierarchical clustering of these expression
profiles (38). They described three
phenotypes as (1) chronic airflow
obstruction and less well–controlled
asthma, increased exhaled nitric oxide, and
sputum eosinophils; (2) airflow obstruction
and higher sputum neutrophils; (3) higher
sputum macrophages and lower eosinophils
and neutrophils, and lung function in
normal range (38). They also found that
genes in the IL-1 and tumor necrosis factor-
a/nuclear factor-kB pathways were
overexpressed and correlated with clinical
parameters and neutrophilic airway
inflammation. Patients with severe asthma
with mixed neutrophilia and eosinophilia
have lower lung function and higher
frequency of daily wheeze and health-care
use (39). The mechanisms behind these
diverse inflammatory profiles are likely to
be complex, but a neutrophilic response
may signify a non-Th2–driven mechanism
and, most likely, non–steroid-responsive
asthma. Bacterial colonization in the airways
of patients with severe asthma could
contribute to neutrophilic asthma (40, 41)
and be associated with the defective
phagocytosis of bacteria and apoptotic cells by
macrophages (42, 43). The mechanisms for
airway neutrophilia are less clear. Treatment
with corticosteroids (CSs) themselves can
contribute to the neutrophilia to some degree,
and even Th1 factors may play a role. Th17
immunity has been implicated as a cause for
neutrophilia, with some supporting data from
severe asthma (44).

High Th2 Expression
Woodruff and colleagues divided a group of
patients with mild-to-moderate asthma

Table 3. Phenotypes or clusters of asthma as determined by cluster analysis

Leicester: primary care cohort (16)
Cluster 1 Early-onset atopic asthma, with airway

dysfunction and eosinophilic inflammation;
increased number of hospitalizations

Cluster 2 Noneosinophilic inflammation; obese,
female predominant

Cluster 3 Benign asthma with little evidence of active
disease; no significant airway
hyperresponsiveness in 58%

Leicester: secondary care (16)
Cluster 1 Early-onset atopic asthma, with airway

dysfunction and eosinophilic inflammation;
increased number of hospitalizations

Cluster 2 Noneosinophilic inflammation; obese,
female predominant

Cluster 3 Early onset, symptom predominant with
minimal eosinophilic disease

Cluster 4 Eosinophilic inflammation predominant with
few symptoms, late-onset disease

ECRHS II (17)
Phenotype A Active treated allergic childhood-onset

asthma; atopic asthma, active disease,
greater bronchial hyperresponsiveness

Phenotype B Active treated adult-onset asthma; older
subjects with adult-onset asthma;
female, active disease; asthma
attack in previous 12 mo

Phenotype C Inactive/mild untreated allergic asthma
Phenotype D Inactive/mild untreated nonallergic asthma

EGEA 2
Phenotype E Active treated allergic childhood-onset

disease
Phenotype F Active treated adult-onset asthma
Phenotype G Inactive/mild untreated allergic

childhood-onset asthma
Phenotype H Inactive/mild untreated allergic

adult-onset asthma
Trousseau Asthma Program childhood

asthma (6–12 yr) (24)
Cluster 1 Asthma with severe exacerbations and

multiple allergies
Cluster 2 Severe asthma with bronchial obstruction
Cluster 3 Mild asthma

Trousseau Asthma Program childhood
asthma (,3 yr) (83)

Cluster 1 Mild episodic viral wheeze, mild disease,
and normal chest X-ray results

Cluster 2 Nonatopic uncontrolled wheeze with
moderate to severe disease, uncontrolled
wheezing despite high doses of inhaled
corticosteroids, parents with asthma

Cluster 3 Atopic multiple-trigger wheeze with eczema
and a positive result from the Phadiatop
Infant test, increased levels of IgE, IgA,
and IgG, and abnormal chest X-ray

SARP pediatric cohort (15)
Cluster 1 Late-onset symptomatic asthma
Cluster 2 Early-onset atopic asthma with normal

lung function
Cluster 3 Early-onset atopic asthma with mild

airflow obstruction and comorbidities
Cluster 4 Early-onset atopic asthma with

advanced airflow limitation
Korean asthma cluster: COREA (18)

Cluster 1 Smoking asthma
Cluster 2 Severe and obstructive asthma
Cluster 3 Early-onset atopic asthma
Cluster 4 Late-onset atopic asthma
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into Th2-high and Th2-low groups,
based on the mRNA expression in
airway epithelial cell brushings of the
IL-13–inducible genes, periostin, chloride
channel regulator 1, and serpin peptidase
inhibitor by examining the gene
signature of airway epithelial brushings
(45). The patients with Th2-high asthma
had greater degree of bronchial
hyperresponsiveness, serum IgE levels,
blood and airway eosinophilia, subepithelial
fibrosis, and airway mucin gene
expression (46). Furthermore, the patients
with high Th2 asthma responded well
to inhaled CS therapy in terms of
improvement in FEV1, whereas those with
a low Th2 signature did not respond at
all to inhaled steroid therapy. Although this
analysis of phenotypes in terms of high
Th2 versus low Th2 has started to
contribute to our understanding of asthma,
further analysis is necessary to understand
its relationship to eosinophilia, to innate
immune responses, and to steroid resistance
in the Th2-low group. Such an approach will
necessitate mathematical modeling.

Chronic Airflow Obstruction
In the SARP cohort, airflow obstruction was
partitioned into air trapping and airflow
limitation (47). One characteristic of severe
asthma was the prominence of air trapping,
confirmed by the increase in residual
volume to total lung capacity (TLC) ratio
and by increases in TLC and FRC. Air
trapping in severe asthma has been
characterized by high-resolution computed
tomography scanning and is highly
suggestive of being secondary to an
obstructive process in the small airways (48,
49). The degree of airflow obstruction has
been linked to the degree of air trapping
and also to the degree of airway wall
remodelling and inflammation (50, 51).
Using high-resolution computed
tomographic assessment, increased airway
wall thickness has been shown to be
increased in severe asthma, and this thicker
airway wall correlated with the pathologic
measure of airway wall remodelling on
biopsy and to the degree of airflow
obstruction (52). However, another group,
while finding that chronic persistent airflow
obstruction was associated with longer
disease duration, more inflammatory cells
in sputum, and greater smooth muscle area,
found no differences between groups for
any cytokine biomarkers (53). In addition,
no differences in airway wall thickness were

observed between the chronic obstructed
patients and the nonobstructed patients.
These conflicting results probably reflect
the small numbers of patients usually
reported in these studies.

CS Insensitivity
CS insensitivity in patients with severe
asthma is an issue, because severe asthma is
usually defined as inadequate control of
asthma despite the patient being established
on high doses of ICS with or without the
need for oral CSs (54). One defined group of
CS-insensitive asthma could be represented
by the oral CS–dependent asthma, with
these patients deteriorating on reduction or
cessation of oral CS therapy. There is no
biomarker for CS insensitivity, and one of
the ways of determining CS insensitivity
is to observe the patient’s response to
an increased dose of CS above their
maintenance dose. There is some evidence
that an increase in neutrophils in sputum
may indicate CS insensitivity. There are
now several putative mechanisms for CS
insensitivity. Activation of p38 mitogen-
activated protein kinases (55, 56), inability
to recruit HDAC2 to the glucocorticoid
receptor (GR) transcriptional complex (57),
and reduced effectiveness of the ligand for
GR binding (58) have been proposed; in
addition, certain groups of patients with
asthma are more likely to develop CS
insensitivity, such as smokers with asthma
and obese patients with asthma (59, 60). To
understand further the interactions of
kinases in CS insensitivity, in silico
mathematical modeling can be applied. In
this case, the hypothesis is that a set of
signaling kinases with specific cross-talk
pathways in response to inflammatory and
oxidative stresses results in a relative CS
insensitivity in severe asthma through
effects on GR and/or on GR-associated
protein phosphorylation. In preliminary
studies, we have used a Monte Carlo
parameter estimation of the GR activation
pathway and integrated this with the p38
mitogen-activated protein kinase pathway
including feedback circuits. After several
rounds of iteration using wet laboratory
experiments and mathematical predictions
to check the biological validity, we have
delineated key nodal interaction points
between these pathways (61). These were
stimulus independent and may provide
novel approaches to reversing CS
insensitivity.

“-omics” Technologies
and Approaches

Although we have an understanding of the
role of eosinophils and Th2 cytokines in
the pathogenesis of asthma, these may not
be the sole drivers of the disease. Indeed, the
primary causes of disease development
in asthma remain largely unknown, and
this will be a stumbling block toward
endotyping. There have been advances in
the understanding of biological regulatory
networks made of proteins, RNA, and
metabolites, thanks to the availability of
high-throughput biological data. Asthma
is likely to involve a large number of
different types of molecular and cellular
components interacting through complex
networks in nonlinear dynamic modes.
These impact in specific ways on biologic
processes involved in processes as diverse
as inflammation, immunity, cell cycle,
apoptosis, or metabolism. These biologic
networks are likely to be closely linked to the
clinical and phenotypic expression of
asthma. In addition, there is further
complexity in that the developmental and
disease processes occurring at various levels
of the lungs and airways and the rapid
subcellular molecular events can influence
each other through upward and downward
causation networks that operate across
several levels of biologic organization. For
example, molecular and signal transduction
pathways can be activated or turned off
according to the physical location within the
cell or organ and the time point examined.

Applying unbiased -omics methods
combined with disease-focused and
hypothesis-driven approaches is one way
to push forward our understanding of
asthma phenotypes. The omics technologies
make no assumption about what is
important in a particular disease, and
therefore are ideal tools for discovery of new
disease pathways and processes. Use of
transcriptomics alone or of proteomics
alone may provide some information,
but the combination of transcriptomics
as a measure of gene regulation and
of proteomics as a measure of post-
translational modifications and
biochemical activity will be powerful in
understanding endotypes. Addition of
metabolic readouts (metabolonomics) may
also be important, because these may
represent environmental influences or
nutritional influences. Changes in the
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airway microbiome of asthma, which have
also been reported, may also influence
certain phenotypic traits (62, 63).

Transcriptomic Approaches
Transcriptomic analysis of peripheral blood
CD41 T cells in children with frequent
and infrequent wheeze due to virus
exacerbations have led to the discovery of
different immunological pathways
involving STAT-1 and inflammatory genes
such as the PGE2 receptor (64). In severe
asthma, distinct differential microRNA
(miRNA) profiles from blood CD81 T cells
and not from CD41 T cells were seen as
compared with nonsevere asthma, with
reduced regulation of miRNA146a/b and
miRNA28-5p (65). miRNA profiling of
airway epithelial cells from patients with
asthma revealed 66 miRNAs whose
expression was significantly different from
those without asthma (66). Using network
analysis, the top-ranked predicted target of
the extremely down-regulated miRNA-203
was aquaporin 4, the expression of which
was up-regulated in asthmatic epithelial
cells. In another study, a different subset of
miRNA was differentially expressed in
epithelial cells from mild asthma (67),
whereas these differences were also
observed in bronchoalveolar lavage fluid
exosomes from subjects with mild asthma
(68). Microarray analysis of sputum cells
between patients with asthma with
a neutrophilic inflammation with evidence
of raised serum levels of C-reactive protein
and IL-6 and those without showed
alteration of 449 genes related to the
innate immune and neutrophilic
responses, indicating the need to target
systemic inflammatory factors (69).

Proteomic Approach
Proteomics has been performed on sputum
samples. A combination of two-dimensional
gel analysis and GeLC-MS/MS allowed
assignment of 191 proteins, representing the
proteome of induced sputum from a normal
female smoker (70). Using a shotgun
proteomic approach, Gharib and colleagues
found 17 proteins to be different in sputum
samples from subjects with asthma
compared with healthy individuals, among
them calcium-binding proteins, S100A9,
S100A8, a1-antitrypsin, SMR3B, and Clara
cell 10kd protein (71). The proteomes of
bronchial biopsy samples from healthy
subjects and subjects with asthma have
been compared using the iTRAQ

methodology coupled with nano-LC-LTQ-
Orbitrap mass spectrometer (72). By
contrast to the results obtained from
a proteomic analysis of sputum samples,
they found up to 1,800 proteins that were
differentially regulated in the asthmatic
samples, with pathway analysis revealing
acute phase response signaling, cell-to-cell
signaling, and tissue development proteins.
Similar transcriptomic and proteomic
analysis of nasal fluids, nasal fluid cells, and
nasal mucosa demonstrated both known
and unknown genes, proteins, and
pathways modulated by CS therapy (73).

Systems Biology Approach
to Asthma

Systems biology is recognized as a strategy
to obtain information from complex
quantitative biological data (74). It is
the quantitative analysis of dynamic
interactions among many components of
a biochemical system, leading to an
understanding of the behavior of the
whole system. A major approach is to
collect and analyze clinical, physiologic, and
high-throughput data from genomic,
transcriptomic, lipidomic, and proteomic
data using complex statistical and
computational methods (75). Although
often regarded as being hypothesis-free,
this is not the case. This approach has
been used to demonstrate that different
combinations of genomic and proteomic
signatures can phenotype breast cancer and
chronic lymphocytic leukemia and can
link these phenotypes to the development
or progression of disease or indicate
responsiveness to a particular specific
intervention (76, 77), which are the same
objectives set out for phenotyping asthma.

Systems biology approaches will
therefore depend on the types of questions
that are being asked (75). These questions
are: (1) Can integrated -omics markers
define phenotypes of asthma? (2) Does
a disease biomarker identified from a cell or
biopsy from the disease site of a single
patient or a small number of clearly defined
and clinically phenotyped patients track out
to peripheral tissues or blood? And (3)
Can this map to bigger populations? It is
predicted that the integration of -omics
data will provide the answer to the causes of
specific diseases or disease subphenotypes
and also, possibly more importantly,
provide estimations of risk in currently

healthy subjects or patients with subclinical
manifestations of disease. As such, a set
of different -omics data lists will not solve
the problem, but analysis of networks or
pathways associated with each -omics
platform, which alone are not indicative
of disease drivers, may point to distinct
pathways or networks that in toto may
provide this information. The ultimate
aim is to obtain multilayer modules that
include information about all layers
and regulatory elements.

Link to Personalized Medicine
A recognition that the -omics parameters
measured are dynamic rather than static is
critical in understanding the potential for
systems biology in disease. Lipidomic,
transcriptomic, proteomic, and epigenetic
readouts are variable and will change with
health and disease and with environmental
exposures. However, changes in DNA
sequence can occur over time with some
diseases (77). This has led to the concept
that a systems approach will lead to truly
personalized medicine. In the first example
of its kind, a complete integrative personal
omics profile was measured 20 times
over a 14-month period by merging the
genomic sequence with RNA, protein,
metabolic, and autoantibody profiles in
a single “healthy” individual. This analysis
of more than 3 billion molecular signals led
to the discovery of the changes in -omics
readouts resulting from the effects of two
bouts of viral infection in that individual
(75). After the second viral infection, the
subject developed raised glucose levels and
was successfully treated for type 2 diabetes,
which has been subsequently controlled
by lifestyle changes. Importantly, the
combined -omics approach revealed
changes in distinct inflammatory
pathways linked to infection. In addition,
the combination of transcriptomic and
proteomic biomarkers together, but
neither alone, indicated novel risk pathways
for the development of type 2 diabetes in
a subject with no other risk factors and
family history of disease. These networks
controlling the response to infection and
the onset of diabetes would have been
detected by the use of transcriptome or
proteome analysis alone. This integrated
approach on an n = 1 basis shows the
potential for systems biology in defining
patient risk, which led to the focusing of
clinical outputs toward measurement of
biomarkers for specific disease risks. The
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challenge is to apply these types of
approaches to larger numbers of patients,
where the question being addressed is
distinct from that of the n = 1 study: Will
this provide a set of biomarkers to clearly
define a disease phenotype or endotype that
can be used to subsequently screen larger
cohorts for potential drug responders or
nonresponders?

Benson and colleagues as part of the
MultiMod EU consortium (http://www.
multimod-project.eu/project.html) have
identified modules of highly interconnected
genes in disease-specific networks derived
from integrating gene expression, DNA
sequence, and protein interaction data from
13 different complex diseases (78). These
modules tended to overlap in a hub with
disease-specific components protruding like
petals from a flower and were enriched for
pathways related to oncological, metabolic,
and inflammatory diseases. This suggested
that this network hub would be associated
with a general increase in susceptibility for
complex diseases. The authors went on to
demonstrate that these pathways were
enriched in 145 other complex diseases by
using genome-wide association studies.

Challenges of Systems Biology
In the implementation of systems biology
approaches, there are a number of
challenges to bear in mind: (1) the very
complex biological regulatory networks; (2)
the multiscale nature of the various systems
of biological organization at molecular,
protein, cellular, organ, and whole
organism levels; (3) the large number
of data points generated by -omics
technology; (4) the need to centralize and

relate to heterogeneous knowledge.
Therefore, the approach has been to
combine mathematical and computational
methods (79) for modeling the
pathophysiological and biochemical
processes underlying a disease to dissect out
the function and regulation of biological
networks (80). Mathematical modeling
offers the opportunity to relate the genetic
or epigenetic causes of a disease such as
asthma to their phenotypic effects at the
organ/whole organism level. An example of
a multiscale mathematical model is the
one set up to dissect out airway
hyperresponsiveness (81), which integrates
experimental data related to the
bronchoconstriction of asthma at the
intracellular (actin–myosin interaction), at
the cellular (calcium signaling), at the tissue
(mechanical forces), and at the whole organ
(airway smooth muscle contraction) level.

An Example: UBIOPRED
In the Unbiased Biomarkers for the
Prediction of Respiratory Disease Outcome
(UBIOPRED) project funded by the
Innovative Medicines initiative (82),
a systems biology approach has been taken
to phenotype severe asthma. A large part
of the effort has been to set up the tools
needed for application of systems biology to
asthma. Data processing and preliminary
analysis of -omics data sets has been
organized with specific bioinformatics
tools. Analysis of biological networks to
identify key proteins or genes and
application of principal component
analysis, clustering, classification, or
probabilistic causal networks using
Bayesian networks will be the techniques

used. The transMART platform first
developed by Janssen pharmaceutical
company has been adopted by UBIOPRED
to enable large research teams to use this
as a platform for translational research
collaboration, with the ability of each team
to analyze results of -omics and patient
parameters. This will allow for testing
hypotheses and formulating experimental
design. Continued iteration through
experimentation or modeling will be
needed to refine the phenotypes that relates
to outcomes and also delineating specific
treatments for specific phenotypes.

Conclusions

Phenotyping asthma using mechanisms
is the way forward to finding specific
treatments for specific phenotypes of
asthma. Taking advantage of the -omics
technologies and application of
mathematical modeling are essential steps
in delineating the known and unknown
biological networks involved in asthma that
may underline the characteristic traits of
asthma. The outcome will be very much
dependent on perfecting the tools of systems
biology that will lead to phenotyping into
pathophysiological mechanisms. n
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