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administration of opioid
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Opioid receptors and enkephalinergic nerve
terminals are widely distributed throughout
respiratory-related regions of the brainstem
and in the phrenic motor nucleus of the
spinal cord (Xia & Haddad, 1991; Laferrière
et al. 1999; Wang et al. 2002; Haji et al.
2003a; Lonergan et al. 2003a,b; Strornetta
et al. 2003). Since opiate drugs given
systemically will act on opioid receptors
with conjoint selectivity in all respiratory
regions, respiratory depression is unlikely
to be dependent on actions at a single site.

Therapeutic doses of opioids given to most
mammalian species depress respiratory rate,
minute ventilation, alveolar–arterial gas
exchange and respiratory responsiveness
to hypoxia and hypercapnia (Jaffe &
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Martin, 1990). Opioid-mediated depression
of respiration is due at least in part to
direct effects on the brainstem respiratory
network, which includes several sites of
action in medullary and pontine regions
(reviewed by Pattison, 2008; Lalley, 2008).
The degree of opioid-mediated respiratory
depression depends on agonist dose, opioid
receptor density and the subtypes of opioid
receptor in various respiratory regions.
Species variability and stage of development
are also factors (Santiago & Edelman, 1985).

In the paragraphs to follow, we review
results of studies that indicate that the
pre-Bötzinger complex (preBötC) is not
essential for respiratory depression by
systemically administered opioid analgesics.

Medullary neurons distributed
throughout the bulbar respiratory
network are depressed by local or
systemic administration of opioids

Immunolabelling and intracellular
recording have shown that ventral
respiratory column (VRC) bulbospinal
neurons, propriobulbar neurons and
laryngeal motoneurons express μ- and
�-opioid receptors (Fig. 1, and Haji et al.
2003a). Functional studies in cats reveal an
even wider bulbar distribution of opioid
receptors. For example, opioids given I.V.
or juxtacellularly by microiontophoresis
depress respiratory neuron discharges
in the dorsolateral pons, nucleus tractus
solitarii and VRC through pre- and post-
synaptic actions (Denavit-Saubié et al.
1978; Tabatabai et al. 1989). Juxtacellular
microiontophoresis of morphine evokes

postsynaptic depression, whereas I.V.
morphine in analgesic doses evokes both
pre- and postsynaptic depression (Haji
et al. 2003b, Fig. 8). Fentanyl given I.V. also
has dose-dependent, pre- and postsynaptic
depressant actions that slow respiratory
rhythm in lowest doses and depress motor
output in higher doses (Lalley, 2003, Fig. 4).
Juxtacellular picolitre pressure ejection of
DAMGO or morphine on canine bulbo-
spinal inspiratory and expiratory VRC
neurons depresses their activity, which
can be reversed by picoejected naloxone.
However, depression produced by clinical
I.V. doses of remifentanil cannot be reversed
by picoejected naloxone, suggesting that
the I.V. effects are presynaptically exerted
(Stucke et al. 2008).

Intravenous opioids produce
dose-dependent rhythm slowing at
numerous brainstem sites of action

In anaesthetized adult rats with intact
nervous systems, I.V. injections of
μ-opioid-receptor-selective agonists
have dose-dependent depressant effects
on respiration. Lowest doses produce
bradypnoea by prolonging the inspiratory
phase and decreasing peak inspiratory flow
rate. These effects are accompanied by
prolongation of discharges in inspiratory
VRC neurons and prolongation of
diaphragmatic EMG activity. The
prolongation of inspiration is linked
to effects on respiratory phase-terminating
neurons (Fone & Wilson, 1986), which are
widely distributed in the bulbar respiratory
network (Ezure, 1990).
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The rostrolateral pons is an
important site for opioid-mediated
slowing of respiratory rhythm

In unanaesthetized midcollicular
decerebrate dogs, slowing of phrenic
nerve (PN) respiratory rhythm is not
affected by opioid actions in preBötC,
rather the more likely site of action is in the
parabrachial/Kölliker–Fuse complex of the
pons. Opioids applied locally in preBötC
or administered systemically have opposite
effects on respiratory phase duration.
Whereas I.V. infusion of remifentanil
in clinical doses reduces PN burst rate,
nanolitre microinjection of DAMGO
(100 μM) in preBötC increases burst rate
and decreases peak PN. Furthermore,

Figure 1. Presynaptic δ-opioid receptors (DORs) modulate rhythm and pattern
generation in the ventral respiratory column of the adult rat in vivo
A, membrane potential and discharge trajectories of a decrementing expiratory (E-Dec) neuron
in the VRC (upper trace) with corresponding phrenic nerve activity (lower trace). B and
C, merged single slice confocal scans (1.8 μm thick) showing close appositions between
DOR-immuno-reactive presynaptic terminal boutons and the dendrites (arrowhead) and labelled
boutons (arrow) of the E-Dec neuron shown in A. Scale bars, 10 μm. Figure adapted with
permission from Lonergan et al. 2003b, Fig. 2, panels O–Q.

naloxone given I.V. reverses remifentanil
depression of PN burst rate but has
no effect when injected into preBötC
(Mustapic et al. 2010). The rostrolateral
pons seems the more likely site of slowing,
because microinjection of DAMGO into
the parabrachial/Kölliker–Fuse complex
slows PN burst rate, which is antagonized
by naloxone microinjection. Naloxone
microinjection also reverses slowing of
PN burst rate by I.V. clinical doses of
remifentanil (Prkic et al. 2012). These
findings are consistent with the study of
Hurlé et al. 1985 in cats, which found
that opioid application to the dorsolateral
surface of the pons in decerebrate cats
depresses breathing frequency but not tidal
volume.

PreBötC is not solely responsible for
depression of eupnoeic ventilation
and responsiveness to hypoxia and
hypercapnia

Intravenous administration of opioids to
unanaesthetized goats decreases breathing
rate and increases PaCO2 (Meyer et al. 2006).
The sites of opioid-mediated respiratory
depression are at present unknown.
Eupnoeic ventilation is not depressed by
opioid actions in preBötC of awake goats
(Krause et al. 2009), but the ventilatory
responses to hypercapnia and hypoxia are
attenuated by DAMGO microinjection into
the preBötC. However, opioids depress
chemosensitivity in other areas of the
respiratory controller (Hurlé et al. 1985;
Kirby & McQueen, 1986; Zhang et al. 2011,
2012; Dias et al. 2012).

Recently, Montandon and colleagues
(2011) reported that they identified in rats
‘the critical site of the medulla, the preBötC,
that mediates opioid-induced respiratory
depression in vivo’. They also claim that
neurokinin-1-receptor-expressing preBötC
neurons are critical for respiratory rate
depression. This conclusion is based on (1)
similar depressant effects of opioids given
I.V. and applied with microdialysis perfusion
probes (200 μm diameter) dorsal to, but not
directly in the pre-BötC, and (2) antagonism
of I.V. opioid-mediated depression by micro-
dialysis of naloxone dorsal to preBötC.
The probe concentrations of fentanyl
and naloxone were markedly higher
(>2000 nM) than plasma concentrations
(<100 nM) that depress (Yassen et al.
2006) and reverse (Yeadon & Kitchen,
1990) ventilation, respectively. To block
I.V. fentanyl-induced depression, 300 μM

naloxone was perfused for �45 min prior
to I.V. fentanyl injection, which would have
allowed it to diffuse and block μ-opioid
receptors at great distances from the
probe. Analysis of the method using the
relationship between probe distances and
response latencies does not provide a unique
solution, rather it implicates multiple sites
with similar high correlation values outside
the preBötC region. Thus our concern is
that the microdialysis probably affected
respiratory neurons in the vicinity of
preBötC and possibly well beyond. Indeed,
other groups have failed to reverse opioid
respiratory depression by I.V. injection
when naloxone is microinjected into
pre-BötC (e.g. Mustapic et al. 2010; Zhang
et al. 2012). Moreover, Lonergan et al.
(2003a) showed that microinjection of the
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μ-opioid receptor agonist endomorphin-1
in preBötC of the adult rat at sites where
inspiratory and expiratory discharges were
recorded increased PN discharge frequency.

Conclusions

Respiratory depression by opioids involves
an array of dose-dependent responses:
bradypnoea, reduced tidal volume,
impaired pulmonary gas exchange and
blunting of respiratory responsiveness to
hypoxia and hypercapnia. The studies cited
above show that all of these symptoms
of depression can be elicited by local
opioid actions at various locations in
the bulbar respiratory network. Opioids
postsynaptically depress bulbospinal
neurons downstream from the preBötC
and in the dorsolateral pons where neurons
projecting to the spinal cord are located. In
addition, the presence of enkephalinergic
nerve terminals in the phrenic motor
nucleus indicates that opioid depressant
effects can bypass the preBötC. We do
not dispute an indirect role of preBötC in
opioid-mediated respiratory depression,
but we believe that preBötC μ-opioid
receptors are not essential for respiratory
depression by systemic administration of
opioid analgesics.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief comment. Comments
may be posted up to 6 weeks after publication
of the article, at which point the discussion
will close and authors will be invited to submit
a ‘final word’. To submit a comment, go to
http://jp.physoc.org/letters/submit/jphysiol;
592/6/1163
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Zieglgänsberger W (1978). Effects of opiates
and methionine-enkephalin on pontine and
bulbar respiratory neurones of the cat. Brain
Res 155, 55–67.

Dias MB, Nucci TB, Branco LG & Gargaglioni
LH (2012). Opioid μ-receptors in the rostral
medullary raphe modulate hypoxia-induced
hyperpnea in unanesthetized rats. Acta Physiol
(Oxf) 204, 435–442.

Ezure K (1990). Synaptic connections
between medullary respiratory neurons and
considerations on the genesis of respiratory
rhythm. Prog Neurobiol 35, 429–450.

Fone KC & Wilson H (1986). The effects of
alfentanil and selected narcotic analgesics on
the rate of action potential discharge of
medullary respiratory neurones in
anaesthetized rats. Br J Pharmacol 89,
67–76.

Haji A, Okazaki M, Ohi Y, Yamazaki H & Takeda
R (2003b). Biphasic effects of morphine on
bulbar respiratory neuronal activities in
decerebrate cats. Neuropharmacology 45,
368–379.

Haji A, Yamazaki H, Ohi Y & Takeda R (2003a).
Distribution of μ receptors in the ventral
respiratory group neurons;
immunohistochemical and pharmacological
studies in decerebrate cats. Neurosci Lett 351,
37–40.
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