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What Are Mycobacteriophages?

Mycobacteriophages are viruses that infect mycobacterial hosts,

such as Mycobacterium tuberculosis and Mycobacterium smegmatis [1].

Because the discovery and genomic characterization of mycobac-

teriophages has been the focus of integrated research and

education programs, including the Phage Hunters Integrating

Research and Education (PHIRE) and the Howard Hughes

Medical Institute Science Education Alliance Phage Hunters

Advancing Genomics and Evolutionary Science (HHMI SEA-

PHAGES), thousands of phages have been isolated using a single

host strain, M. smegmatis mc2155, over 500 of which have been

completely sequenced [2–5]. These are mostly from environmen-

tal samples, but mycobacteriophages have also been isolated from

stool samples of tuberculosis patients [6], although these have yet

to be genomically analyzed. Clearly, these mycobacteriophages

represent only a tiny piece of the overall phage population, which

is predicted to include 1031 particles, making them the majority of

all life-forms in the biosphere [7].

Mycobacteriophages display a remarkable genetic diversity

(Figure 1). About 30 distinct types (called clusters, or singletons if

they have no relatives) that share little or no nucleotide sequence

similarity have been identified. Many of the clusters span sufficient

diversity that the genomes warrant division into subclusters

(Figure 1). However, the genomes are characteristically mosaic

in their architecture [8], which is readily evident from the shared

genes revealed by amino acid sequence comparisons [9]. There is

also considerable range in overall guanine plus cytosine content

(GC%), from 50.3% to 70%, with an average of 64% (M. smegmatis

is 67.3%). Thus, phage GC% does not necessarily match that of its

host, and the consequent mismatch of codon usage profiles does

not appear to be detrimental. Because new mycobacteriophages

lacking extensive DNA similarity with the extant collection are still

being discovered, and as there are at least seven singletons for

which no relatives have been isolated, we clearly have yet to

saturate the diversity of this particular population. The pace of

discovery is rapid, so the profile of diversity is constantly changing.

The collection of .50,000 genes can be sorted into .3,900

groups (phamilies) according to their shared amino acid sequences.

Most of these phamilies (,75%) do not have homologues outside

of the mycobacteriophages and are of unknown function.

Extrapolation to the broader population suggests that phages

have the largest repertoire of unexplored sequences in nature.

Genetic studies with mycobacteriophage Giles show that 45% of

the genes are nonessential for lytic growth, raising questions as to

how and why they were acquired [10].

What Is the Basis of Viral Diversity?

If the diversity of phages of M. smegmatis mc2155 is this great,

then the diversity of the phage population as a whole must be

massive, as indicated from metagenomic studies [11]. Host range

analysis shows that not all of these mycobacteriophages infect

other strains of M. smegmatis, and only phages in Cluster K and in

certain subclusters of Cluster A efficiently infect M. tuberculosis

(Figure 1) [12]. However, mutants can be readily isolated from

some phages that expand their host range to infect these other

strains [12]. Thus, the observed phage diversity can be explained

by assuming that wherever broad and diverse ranges of hosts are

present, the phages can rapidly dance across the microbial

landscape, using the hosts as ‘‘stepping-stones.’’ Migration across

this landscape requires that the ‘‘stepping-stones’’ be spaced

sufficiently close (genetically) to enable a host-range transition

jump with either very few mutations or a gene acquisition event.

The diversity of the mycobacteriophages therefore reflects the

specific evolutionary pathways that they have pursued, sometimes

occupying portions of the landscape dominated by strains other

than M. smegmatis and probably outside of the genus Mycobacterium.

For example, the lower GC% phages may have predominantly

infected the lower GC% Corynebacteria and represent merely

accidental tourists in the Mycobacterium locale. In this model, genes

that were acquired because they were needed to grow in some

recently visited host may not be needed in a current host but have

yet to be selected against. Some of the nonessential Giles genes

may thus correspond to these ‘‘legacy’’ genes. The host preference

of the phages is presumably determined in part by the use of

specific surface receptors, although few have been identified or

characterized.

How Can Mycobacteriophages Facilitate
Tuberculosis Genetics?

M. tuberculosis is challenging to grow because of its slow growth

rate (24-hour doubling time) and its pathogenicity. It was

intractable to genetic manipulation until breakthroughs in the

late 1980s that took advantage of mycobacteriophages to bootstrap

methods for transfection and transformation, electroporation,

plasmid vectors, and selectable markers [13–15]. Furthermore,

phages have continued to be key players in developing a more

facile genetic system. For example, several applications rely

specifically on the ability of phages to inject their DNA into

essentially every cell within a mycobacterial population, making

phages ideal for transposon delivery and preparation of complex

transposon libraries [16], gene replacement using specialized

transduction [17], and tuberculosis (TB) diagnosis by inclusion of a

reporter gene [18,19]. But the component parts of the phages also
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have tremendous utility and often work in M. tuberculosis even if the

phage doesn’t actually infect it. Examples include integration-

proficient plasmid vectors and recombineering strategies, although

there are numerous other potential applications that have yet to be

exploited. The overall diversity of the phages massively fuels these

approaches, providing a toolkit of over 50,000 genes that can be

exploited.

Do Mycobacteriophages Influence Mycobacterial
Physiology?

It is well established that phage-encoded toxins contribute to the

virulence of a variety of bacterial pathogens, including Escherichia

coli, Salmonella sp., Coynebacterium diphtheria, and Vibrio cholera. M.

tuberculosis, however, clearly differs from these in its pathogenesis,

and there is no evidence for phage-encoded toxins. Most M.

tuberculosis strains carry one or both of two small (,10 kbp)

prophage-like elements wRv1 and wRv2, but it seems unlikely they

contribute to virulence. Some mycobacteriophages (in Cluster D) do

encode a vegetative insecticidal protein (VIP2)-like insect toxin

genes that could confer virulence to a bacterial host, although it is

unclear what that host might be, or what it might infect; they do not

infect M. tuberculosis. We note that several mycobacterial strains,

such as M. cannetti, M. marinum, M. abscessus, and M. ulcerans, carry

seemingly intact prophages, which could influence their biology.

Expression of phage-encoded proteins is only one way that

phages can influence their hosts. An alternative route is by

integration of the phage genome into a host gene that is required

for some physiological process. Phage integration is typically

site-specific—involving integrase-mediated recombination be-

tween phage and bacterial attachment sites (attP and attB,

respectively)—and two distinct types of enzymes are used.

Tyrosine-integrases are the most common and typically mediate

integration into a host tRNA gene (the well-studied phage lambda

integrase is a notable exception). Because such phages carry the 39

half of the tRNA gene at attP, tRNA functionality is maintained

following prophage establishment. In contrast, phages using a

serine-integrase typically use an attB site located within a host’s

protein-coding genes, which is interrupted by the integration

event. These attB loci are small and cannot be readily predicted

bioinformatically, and relatively few have been identified exper-

imentally. We predict there are six to 12 different attB sites within

M. smegmatis and M. tuberculosis, and integration into those that are

mediated by a serine-integrase could potentially alter host

physiology.

For mycobacteriophage Bxb1, the consequences of integration

for host physiology are well established [20]. Bxb1 uses a serine-

integrase to integrate into an attB site located within the groEL1

gene of M. smegmatis [21]. GroEL1 serves as a dedicated chaperone

for regulation of mycolic acid biosynthesis and is required for the

formation of mature biofilms. Thus, lysogens of Bxb1 are defective

in forming biofilms, perhaps providing a selective advantage as

cheaters within a broader population of non-lysogenic biofilms

[22]. This phenotype would be easy to miss unless searching for it

specifically, and we predict that many other phages that use serine-

integrases also influence host physiology.

Figure 1. Diversity of mycobacteriophages. Sequenced genomes for 471 mycobacteriophages were compared according to their shared gene
contents, and the relationships are displayed using Splitstree [24]. The genomes are clustered according to overall nucleotide sequence similarity, and
the clusters (A, B, C…) correlate closely with their gene content. Colored circles encompass Clusters A–T as indicated, and grey circles represent
singleton genomes that have no close relatives. Ten of the clusters are divided into subclusters (e.g., A1, A2, A3….) and are shown as circles within
each cluster. Micrographs show the two morphotypes observed, typified by the myoviral Cluster C phages and the siphoviruses (all others) that
primarily differ in tail length (scale bars, 100 nm). With the exception of one singleton (DS6A), all of the phages infect M. smegmatis mc2155. DS6A,
the Cluster K phages and a subset of Cluster A phages also infect M. tuberculosis.
doi:10.1371/journal.ppat.1003953.g001
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Do Mycobacteriophages Have Therapeutic
Potential?

The increased prevalence of antibiotic resistance in bacterial

pathogens has spurred renewed interest in the therapeutic use of

bacteriophages. Although phages have been extensively used

therapeutically in former Soviet Union countries, they have yet to

find widespread use in either the United States or in Europe.

Phage preparations have been approved for use against E. coli and

Listeria meat contamination, and trials are in progress for control of

several human infections. Skin afflictions and burns seem to be

especially attractive targets.

What about phage therapy for tuberculosis? Antibiotic resis-

tance is certainly a growing and worrisome development,

particularly with the emergence of extensively drug-resistant

(XDR) and totally drug-resistant (TDR) strains, both of which

are especially difficult to control. Delivery of phages to the lungs

should be relatively simple, although there is considerable doubt as

to whether they would effectively reach their bacterial hosts, which

may be intracellular and within granulomas. An intriguing

suggestion for addressing the access question is to use infected

surrogate mycobacterial cells for the delivery [23]. Unfortunately,

relatively few efficient phage killers of M. tuberculosis are available,

and because phage resistance is to be expected, a suite of three to

six phages that efficiently kill M. tuberculosis and elicit different

resistance mechanisms in the host are needed. Because only a

subset of those phages isolated on M. smegmatis also infect M.

tuberculosis, isolation of additional phages known to infect M.

tuberculosis is desirable.

In spite of these concerns, there is considerable potential to use

phages prophylactically by interfering specifically with TB

transmission. For example, if a patient was diagnosed with

tuberculosis, family members and coworkers could aspirate

phages into the upper respiratory tract, where the phages could

infect and kill M. tuberculosis cells as they are breathed in and

before they establish an infection. As transmission typically

involves small numbers of cells, it ought to be possible to deliver a

sufficient amount of phage particles while minimizing phage-

resistance. Safety is not expected to be a concern, and there

should be few impediments to evaluating mycobacteriophages

prophylaxis.
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