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Abstract

Recent genome-wide association studies (GWAS) have identified several novel single nucleotide polymorphisms (SNPs)
associated with type 2 diabetes (T2D). Various models using clinical and/or genetic risk factors have been developed for T2D
risk prediction. However, analysis considering algorithms for genetic risk factor detection and regression methods for model
construction in combination with interactions of risk factors has not been investigated. Here, using genotype data of 7,360
Japanese individuals, we investigated risk prediction models, considering the algorithms, regression methods and
interactions. The best model identified was based on a Bayes factor approach and the lasso method. Using nine SNPs and
clinical factors, this method achieved an area under a receiver operating characteristic curve (AUC) of 0.8057 on an
independent test set. With the addition of a pair of interaction factors, the model was further improved (p-value 0.0011,
AUC 0.8085). Application of our model to prospective cohort data showed significantly better outcome in disease-free
survival, according to the log-rank trend test comparing Kaplan-Meier survival curves (p{value2:09|10{11). While the
major contribution was from clinical factors rather than the genetic factors, consideration of genetic risk factors contributed
to an observable, though small, increase in predictive ability. This is the first report to apply risk prediction models
constructed from GWAS data to a T2D prospective cohort. Our study shows our model to be effective in prospective
prediction and has the potential to contribute to practical clinical use in T2D.
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Introduction

The prevalence of diabetes mellitus is increasing and it has

become one of the major global diseases, the most common form

worldwide being type 2 diabetes (T2D) [1]. The incidence of T2D

has been increasing rapidly in many countries, including Japan,

over the past few decades [2–4] and it is estimated that 500 million

individuals will be affected by some form of diabetes by 2030 if no

preventive strategies are implemented [5]. The prompt establish-

ment of a reliable risk prediction model is required as there is

evidence the progression of T2D can be largely prevented by diet

control and exercise if the risk (the probability of T2D) can be

estimated beforehand [6].

Multiple genetic and clinical risk factors are expected to

contribute to the pathogenesis of T2D. Previous studies have

shown that clinical risk factors such as age, gender, body mass

index (BMI), family history of T2D, systolic blood pressure, high-

density lipoprotein cholesterol level, triglycerides level, insulin

secretion and fasting plasma glucose are risk predictors for T2D

[7], although their predictive ability may have been influenced by

study design and population [8]. More recently, genome-wide

association studies (GWAS) have identified and validated single

nucleotide polymorphisms (SNPs) associated with T2D. TCF7L2,

KCNJ11, PPARG, CDKAL1, IGF2BP2, CDKN2A/2B, FTO and

HHEX are well known genetic risk factors for T2D [9–12].

KCNQ1, C2CD4A/4B, UBE2E2 and ANK1 have recently been

reported as common susceptibility loci for T2D in the Japanese

population [13–15].

There have been numerous studies developing risk prediction

models using genetic risk factors [16–19]. However, risk prediction

models using only genetic risk factors have shown a relatively low

ability to predict the development of T2D compared to models

composed of clinical risk factors. This is due to the low effect size

of each genetic risk factor for common diseases, with per allele
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odds ratios ranging from 1.05 to 1.35 [20]. Even when risk

prediction models were constructed using a combination of both

genetic and clinical risk factors, marginal or no increase in the

predictive ability was observed [8]. However, most studies have

only focused on the genetic factors associated with T2D that

reached GWAS significance and have not investigated if

additional genetic risk factors and regression methods are useful

for model construction. In this study, we examine the best risk

prediction approach by applying not only algorithms for the

genetic risk factor detection but also multiple regression methods

for model construction.

One way to improve predictive power is to construct a risk

model using more SNPs. Penalized regression methods such as

ridge regression [21], elastic net [22] and lasso [23] are

increasingly used in high-dimensional settings. The advantage of

these approaches is they simultaneously carry out variable

selection in regression models, and provide estimates of the

coefficients of the selected variables. Kooperburg et al. and Wei et

al. reported that using a larger number of SNPs than those which

reached GWAS significance with penalized regression methods

contributed to an improvement in risk model construction for

Crohn’s disease [24] and inflammatory bowel disease [25].

In addition to regression methods for the model construction,

several algorithms for risk factor detection have been recently

proposed, such as asymptotic Bayes factors (ABF) [26] and sure

independence screening (SIS) [27]. ABF can consider various

choices of the prior on the effect size, including those that allow

effect size to vary with the MAF of the marker. SIS can select more

informative SNPs by maximization of marginal likelihood

estimates using regression model. However, to our knowledge,

analysis considering either these algorithms or interactions

between risk factors has yet to be reported.

In this study, we applied 10-fold cross-validation to a training set

of 6,624 Japanese individuals, separated from a test set of 736

Japanese individuals. We first ranked successfully genotyped SNPs

using three algorithms for risk factor detection: the Cochran-

Armitage for trend, ABF and SIS with an additive association

model. Using risk factors composed of a combination of the top-

ranked SNPs (genetic risk factors) with each set of the cross-

validation and clinical risk factors (age, gender and BMI), we then

constructed risk prediction models based on three penalized

regression methods; the ridge regression [21], the elastic net [22]

and the lasso [23]. After we constructed the model based on the

entire training set, we evaluated our risk prediction model with an

independent test set by the area under the receiver operating

characteristic curve (AUC). Furthermore, we considered interac-

tions between the risk factors. Finally, we evaluated the predictive

ability of our model using a prospective cohort.

Results

Association studies in Japanese individuals
We separated 7,360 Japanese individuals (4,449 type 2 diabetes

cases, 2,911 controls) into a training set of 6,624 individuals (4,004

T2D cases, 2,620 controls) and a test set of 736 individuals (445

T2D cases, 291 controls) (see Materials and Methods, Figure 1).

The quantile-quantile (QQ) plots of the p-values from the

Cochran-Armitage test for trend showed the genomic inflation

factor lGC to be 1.06 (Figure S1) [28]. Only one locus, KCNQ1,

which has been previously reported to be associated with T2D in

Japanese and European populations [13], reached a genome-wide

significance level (rs2237892; p{valuev5:0|10{8, Figure 2).

Construction of risk prediction models
Selection of risk prediction models was performed using 10-fold

cross-validation on the training set (Figure 1). In addition to the

detection of the most significant SNPs using the three algorithms

described above, we considered cases with and without taking into

consideration the linkage disequilibrium (LD) between two SNPs

(see Materials and Methods).

All approaches that we considered were carried out on data sets

of the p most significant SNPs in a stepwise manner (pƒ2,000).

Nine-tenths of entire training set of 6,624 individuals was used to

determine the most significant SNPs (top-ranked SNPs) using the

Cochran-Armitage test for trend, ABF and SIS with an additive

association model and to fit the model for each cross-validation

step. The adjusted model was evaluated using the remaining one-

tenth of the training set. For model construction, we applied

penalized regression methods: the ridge regression, elastic net and

lasso methods. This process was repeated 10 times (10-fold cross

validation). On the basis of the average AUC, we determined the

optimal number of SNPs for model construction for each

combination of algorithms and methods. For both the Cochran-

Armitage test for trend and SIS, the highest AUC was observed

when the top 5 SNPs were selected for model construction

(Figure 3). In the case of ABF, the highest AUC was observed

using the top 10 SNPs (Figure 3). Final models were constructed

using the complete training set and the determined top-ranked

SNP count (Figure 1). The adjusted models were then evaluated

on the test set, which was completely independent from the

training set. When top-ranked SNPs were detected with ABF

considering the information of linkage disequilibrium between

SNPs, and the risk models were constructed based on the lasso

method, the highest AUC of 0.8057 was achieved, which was

greater than that of the model constructed using only clinical risk

factors (Table 1). A maximum average sensitivity and specificity of

the ROC curve was achieved at a sensitivity of 0.858 and

specificity of 0.623 (Figure 4). In order to show the range of effect

sizes for this model, we further randomly separated the entire data

into a training set and a test set, in a nine to one ratio, 200 times.

We constructed the model based on the top 10 SNPs determined

above and the lasso method using the training set. We evaluated

the model on the independent test set with respect to each split.

The range of effect sizes was obtained from the minimum and

maximum of the 200 AUC differences between the model with

and without the genetic factors in the test set. The observed effect

sizes were between 0.00129 and 0.0265 in AUC (AUC-clinical-

only: 0.7562 to 0.8289, AUC-combined: 0.7601–0.8372). This

result was also reflected in the analysis of a prospective cohort

study (see Materials and Methods). Our model was superior to that

constructed using only clinical risk factors (1.5% increase in AUC).

Furthermore, we also applied support vector machines with RBF

kernels to our data, which were performed using the package

kernlab in R. The parameter sigma in SVM with RBF kernel was

then optimized by 10-fold cross-validation. However, the model

based on RBF kernels did not contribute to an increase in the

predictive ability even when more genetic factors were used (AUC-

clinical-only 0.8535, AUC-combined 0.8507) although the AUC

scores were high. However, when this result was reflected in the

analysis of a prospective cohort study (larger sample size collected

from entirely different cohort), the AUC score was much lower

than that of our regression model (AUCs 0.6072 in SVM and

0.6545 in L1-regression). The models based on RBF kernels may

be overfit to the training data compared to the regression models.

This result suggests that validation of risk models should be applied

to at least two independent data sets, including that collected from

entirely different cohort. Ideally, at least one prospective cohort
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study should be used to check any potential selection bias in

GWAS. Similar results were observed when the dataset was

randomly split into a different training and test set (data not

shown).

The lasso method carried out effective selection of SNPs

(Table 1). Of the 10 top-ranked SNPs, the lasso method used 9 for

our risk prediction model (Table S1). The one excluded SNP,

rs12922855, located on intron region of a gene A2BP1, was not

included in the HapMap linkage disequilibrium data for the

Japanese population. However, we found this SNP to be in high

LD with another top-ranked SNP rs11865230 (r-squared 0.99) and

thus should have been previously excluded.

Effective SNPs used in risk prediction model construction
The nine SNPs used in our risk prediction model were located

near or within 7 genes: KCNQ1 (rs163171), DGKB (rs11514706),

TCF7L2 (rs7901695), CDKAL1 (rs2328531, rs2206734), C2CD4A/

B (rs1436953), A2BP1 (rs11865230), and PAK7 (rs4813894).

KCNQ1, DGKB, TCF7L2, CDKAL1 and C2CD4A/B have been

previously reported in association with T2D [9] [11] [13] [14] [29]

[30]. A2BP1, also known as FOX-1, was reported as a susceptibility

Figure 1. Outline of the risk prediction model construction and validation.
doi:10.1371/journal.pone.0092549.g001
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locus for obesity [31] and PAK7 was reported to play important

roles in the pleiotropic effects on lipid metabolism and metabolic

syndrome [32]. All SNPs used for our risk model construction

were located in close proximity of genes with possible roles in the

development of T2D.

Improvement of risk prediction model by interaction
factors

To further improve our risk prediction model, we considered

interactions of not only genetic-genetic risk factors (GF-GF) but

also genetic-clinical risk factors (GF-CF) and clinical-clinical risk

factors (CF-CF). We investigated all 66 pairwise combinations

(interactions) composed of 9 GFs (SNPs) and 3 CFs (age, gender

and BMI) in our risk prediction model by comparing our risk

prediction model with and without including each interaction (i.e.,

Figure 2. Results of whole genome association scan for a training set.
doi:10.1371/journal.pone.0092549.g002

Figure 3. Risk prediction models using 10-fold cross-validation on the training set.
doi:10.1371/journal.pone.0092549.g003
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deviation from a multiplicative model). As a result, marginally

significant p-values were observed for two interactions, age with

gender (0.0020) and rs1436953 C2CD4A/B with rs11865230

A2BP1 (0.0425) (Table 2). To show whether the combination of

these two interactions is significant, we compared the risk

prediction model with and without including these two interac-

tions (likelihood ratio test, p-value 0.0011), and inclusion of these

two interactions further contributed to an increase of AUC

(0.8084).

Validation in a prospective cohort
We applied our risk prediction model to prospective cohort

study data (see Materials and Methods). Risk scores assigned to

each subject were calculated by applying 9 SNP genotypes and 3

clinical risk factors to our risk prediction model

(Risk score~-7:232z0:192|rs1436953z0:024|rs163171

-0:134|rs2206734z0:188|rs2237892-0:119

|rs2328531-0:191|rs4813894z0:442

|rs7901695z0:200|rs11514706-0:8114

|rs11865230z0:0952|age-0:314|gender

z0:156|BMI,

where the regression coefficients were determined by GWAS).

According to the scores, we divided the set into three equally sized

risk assessment categories: high, intermediate and low. Survival

probabilities were calculated using the Kaplan-Meier method. We

used the KM curve because we divided prospective cohort into

three equally sized risk assessment categories based on risk scores

Figure 4. The ROC curve for our risk prediction model.
Sensitivity and specificity was maximized at a sensitivity of 0.858 and
specificity of 0.623.
doi:10.1371/journal.pone.0092549.g004

Table 1. The top AUCs observed in regression methods and the number of SNPs used in risk prediction model construction.

algorithm method #SNPs used AUC:clinical (95%CIs) AUC:combined (95%CIs)

GWAS ridge regression 5 0.7986 (0.7646–0.8326) 0.8019 (0.7682–0.8356)

elastic net 5 0.7984 (0.7644–0.8323) 0.8025 (0.7689–0.8361)

lasso 5 0.7984 (0.7645–0.8324) 0.8027 (0.7691–0.8363)

with r-square ridge regression 5 0.7986 (0.7646–0.8326) 0.8019 (0.7682–0.8356)

elastic net 5 0.7984 (0.7644–0.8323) 0.8025 (0.7689–0.8361)

lasso 5 0.7984 (0.7645–0.8324) 0.8027 (0.7691–0.8363)

SIS ridge regression 5 0.7986 (0.7646–0.8326) 0.7989 (0.7651–0.8328)

elastic net 5 0.7984 (0.7644–0.8323) 0.7994 (0.7656–0.8332)

lasso 5 0.7984 (0.7645–0.8324) 0.7995 (0.7657–0.8333)

with r-square ridge regression 5 0.7986 (0.7646–0.8326) 0.7989 (0.7651–0.8328)

elastic net 5 0.7984 (0.7644–0.8323) 0.7994 (0.7656–0.8332)

lasso 5 0.7984 (0.7645–0.8324) 0.7995 (0.7657–0.8333)

ABF ridge regression 10 0.7986 (0.7646–0.8326) 0.8050 (0.7715–0.8386)

elastic net 10 0.7986 (0.7646–0.8326) 0.8054 (0.7719–0.8388)

lasso 10 0.7984 (0.7645–0.8324) 0.8054 (0.772–0.8389)

with r-square ridge regression 10 0.7986 (0.7646–0.8326) 0.8051 (0.7717–0.8385)

elastic net 10 0.7984 (0.7644–0.8323) 0.8056 (0.7723–0.8389)

lasso 9 0.7984 (0.7645–0.8324) 0.8057 (0.7724–0.839)

For the elastic net alpha is set to 0.5. Alphas of 0.1 to 0.9 at 0.1 intervals were tested and the complete results are in Table S2. Many coefficients of the lasso and the
elastic net methods are set to 0 due to variable selection in regression models.
doi:10.1371/journal.pone.0092549.t001

Table 2. A list of significant interaction factors.

interaction (chromosome #, gene) factor
p-value
(ANOVA)

age gender CF-CF 0.0020

rs1436953 (15, C2CD4A/B*) rs11865230 (16, A2BP1) GF-GF 0.0425

*gene associated with T2D.
doi:10.1371/journal.pone.0092549.t002

The Construction of Risk Prediction Models

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e92549



from GWAS data and the effects of the predictor variables upon

survival are not constant over time (crossing hazards). We

analyzed the data both considering only clinical risk factors

(Figure 5A) and genetic risk factors in combination with clinical

risk factors (Figure 5B). The risk prediction model that used both

clinical and genetic risk factors significantly classified the three

categories. The Kaplan-Meier curves showed better outcome in

disease-free survival (Figure 5B, log rank trend test,

P~2:09|10{11) than those from only clinical risk factors

(Figure 5A, log rank trend test, P~4:64|10{11). The probability

of a Type II error is generally increased for log-rank and weighted

log-rank tests, but we improved the performance by using survfit

(R). While p-values for both models were extremely small, the

model including genetic risk factors categorized the prospective

data better than that not including genetic risk factors.

Discussion

Owing to the success of GWAS, numerous studies have

investigated the predictive ability of risk prediction models using

genetic risk factors at a genome-wide significance level for T2D

[16–19]. However, genetic risk factors have been shown to have

only a small effect on a risk prediction model’s ability to predict the

future development of T2D as compared to those composed of

only clinical risk factors [20]. One way recently proposed to

improve the predictive power is to construct a risk model that uses

more SNPs with smaller effect sizes associated with a phenotype.

Kooperberg et al. and Wei et al. have demonstrated the usefulness

of this method for Crohn’s disease [24] and inflammatory bowel

disease [25]. In Wei et al., the final predictive models achieved

AUCs of 0.86 and 0.83 for Crohn’s disease (CD) and ulcerative

colitis (UC), respectively. Likewise, in this study, we also suggest

the usefulness of including additional SNPs for risk prediction

model construction.

We constructed our risk prediction model by treating different

SNPs located within the same gene as separate genetic risk factors

(i.e. KCNQ1 and CDKAL1), as opposed to treating such SNPs as a

vector for the count of haplotypes [33]. We were interested in how

this decision affected the predictive ability of our model. We

estimated haplotype frequencies with the program SNPHAP [34]

and constructed haplotypes for frequencies .1%. Although the

predictive ability was slightly less than that of our risk prediction

model (AUC 0.8054), we expect that this approach would be more

effective in studies where many genetic risk factors located within

or near the same genes are used for the construction of the risk

model. This is because haplotypes, which are specific combina-

tions of nucleotides on the same chromosome, can provide more

information on the complex relationship between DNA variation

and phenotypes than any single SNP.

We added known, previously reported SNPs associated with

T2D along with our 9 identified SNPs for model construction, and

conducted a risk model reconstruction using lasso method. Since

we observed that the lasso method carried out effective selection of

SNPs, if our 9 SNPs are essential factors for risk model

construction, they should also be reselected during this model

reconstruction. We used 10 previously known SNPs, that were

included in our genotype data (rs1470579, rs2383208, rs1111875,

rs7923837, rs5015480, rs13266634, rs8050136, rs10946403,

rs6780569, rs7172432) [9] [10] [12] [14] and passed linkage

disequilibrium consideration between two SNPs. In total, 19 SNPs

were used for model reconstruction. The model with the ridge

regression method achieved an AUC score of 0.8090. Of them, 17

were chosen by the lasso method for use in the risk model

reconstruction, achieving an AUC score of 0.8095. As expected,

all 9 of our SNPs were selected as essential factors for risk model

construction. Although only one SNP reached a genome-wide

significance level in this study, all 9 SNPs used for our risk model

construction were located in close proximity of genes with possible

roles in the development of T2D. This result implies our approach

has the potential to identify genetic risk factors associated with

disease even when the sample size of the case-control study design

is relatively small. Furthermore, as a relatively small number of

SNPs was sufficient for T2D risk prediction model construction,

our model could contribute to an increase in cost-effectiveness of

clinical genetic testing.

Interactions among genetic and/or clinical factors, which may

have stronger effects in combination, are expected to increase the

power of risk prediction models [35] and advance our under-

standing of the underlying biology [36]. We experimented with the

inclusion of these interaction factors in our risk prediction models

Figure 5. Cumulative disease-free survival in a prospective
cohort. Models using (A) only clinical risk factors and (B) both of clinical
and genetic risk factors.
doi:10.1371/journal.pone.0092549.g005
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and, as a result, found two interactions that contributed to an

increased AUC. In particular, the GF-GF interaction between

A2BP1 and C2CD4A/B is interesting as A2BP1 has not been

previously reported to be associated with T2D. In this study, we

found interaction factors contributed to an increased AUC from

genetic and clinical factors used for our model construction.

However, we could not consider all interactions between genetic

and clinical risk factors as that number would be 2,005,003

(2,003|2,002|
1

2
) interactions. For each additional interaction

considered, the number of the combinations will increase

exponentially. After correction for multiple testing, the cut-off p-

value for significance becomes even so small that we would likely

not find any significant interactions. Therefore, we attempted to

look for significant interactions after feature selection. By

comparing our risk prediction model with and without the

inclusion of each interaction, the contribution to an increase in

predictive ability for both interactions was found to be statistically

significant. Furthermore, by comparing the risk prediction model

including the two AUC increasing interactions with those

including two interactions randomly selected from the genetic

and clinical risk factors, we verified the combination of these two

interactions is statistically significant. These results suggest that

interactions of genetic/clinical risk factors can contribute to an

improvement of risk prediction model and are worth considering

when constructing a risk prediction model.

It has been reported that case-control study designs and

population characteristics may affect the observed predictive

ability of risk models. In particular, AUC values of risk models

using only clinical risk factors are different even though the same

clinical risk factors are used [8]. This difference was observed in

both Van Hoek et al. [18] and Sparso el al. [19], as well as our

study (AUCs; 0.68, 0.93 and 0.80) and is suspected to be caused by

mismatches in age and BMI between the case and control sets

(mean age, case/control: 68.2/69.0 (Van Hoek et al.), 60.0/47.0

(Sparso el al.), and 65.5/51.6 (our study); mean BMI, case/control:

28.0/26.0, 30.6/25.6 and 23.8/23.2, respectively). Therefore, we

further applied our risk prediction model to a prospective cohort in

order to verify its predictive ability. The Kaplan-Meier curves

showed a much better outcome in disease-free survival than those

from only clinical risk factors. Our model considering genetic risk

factors contributed to a small increase in predictive ability

compared with that from only clinical risk factors. This result

suggests that the genetic risk factors also play a key role in the

clarification of risk group category, in particular, the classification

between intermediate risk and high risk (Figure 5). This clear

classification of individuals will be helpful for future practical use

in healthcare.

We constructed our risk prediction model by considering

algorithms for genetic risk factor detection and regression methods

for model construction. However, the major contribution was

from clinical factors rather than the genetic factors. Given the

current sample size, the contribution from genetic risk factors to

the risk prediction of T2D may be limited even though we

considered several algorithms and regressions. However, although

small, considerations of genetic risk factors contributed to a

measurable increase in predictive ability. In future work, we will

perform further replication of this analysis, and investigations with

larger sample sizes may lead to a greater improvement in the

performance of risk prediction models.

While we propose a methodology that finds the best model for

this study rather than a general model that could be applied to any

data set, further refinement of this methodology will be required

before its practical use in healthcare. One way may be to consider

rare variants for T2D. The recent development of next generation

sequencing technology has facilitated comprehensive analysis of

low frequency variants. There is no doubt that additional loci

would contribute to further improvement of risk prediction

models.

Materials and Methods

Ethics Statement
This study was approved by the ethics committee of the Institute

of Physical and Chemical Research (RIKEN). The design and

performance of current study involving human subjects were

clearly described in a research protocol. All participants were

voluntary and would complete the informed consent in written

before taking part in this research.

Genotype Samples
We selected case-control samples from the subjects enrolled in

the BioBank Japan. The subjects were recruited from several

medical institutes in Japan, including Fukujuji Hospital, Iizuka

Hospital, Iwate Medical University School of Medicine, National

Hospital Organization Osaka National Hospital, Nihon Univer-

sity, Nippon Medical School, Osaka Medical Center for Cancer

and Cardiovascular Diseases, The Center Institute Hospital of

Japanese Foundation for Cancer Research, Tokushukai Hospitals

and Tokyo Metropolitan Geriatric Hospital. The case group was

composed of individuals registered as having T2D, while the

control group was composed of those registered as not having T2D

but with diseases other than T2D or being disease free.

For the GWAS, we included 7,360 Japanese individuals (4,449

T2D cases and 2,911 controls), for which we eliminated closely

related subjects based on identity-by-descent (IBD), 180 individ-

uals (21 T2D cases, 159 controls) without clinical risk factors (age,

gender, Body-Mass Index; BMI) and two outliers by principal-

component analysis (one T2D case, one control) (Figure S2) [37].

The subjects were genotyped using Illumina Human610-Quad

and Illimina HumanHap550v3 BeadChips. The most popular and

significant three clinical risk factors for which we could obtain

information (age, gender and BMI) were used.

We excluded all SNPs with a genotype call rate ,0.99, a

Hardy-Weinberg equilibrium p{valuev1:0|10{5or a MAF

,0.05. In total, 429,627 SNPs passed these stringent quality

control criteria. To create a Manhattan plot of p-values from the

GWAS, we used the Haploview 4.2 (http://www.broadinstitute.

org/haploview). A QQ plot of p-values from the GWAS was

created using the statistical software R [38].

Cohort data for further validation
A population-based prospective study of cardiovascular disease

and its risk factors has been underway since 1961 in the town of

Hisayama, a suburb of the Fukuoka metropolitan area on the

island of Kyushu, Japan. From national census and nutrition

survey data, the age, occupational distributions, and nutritional

intake of the population were almost identical to those of Japanese

as a whole [39]. A validation cohort survey was conducted in the

same town and in a similar fashion in 2002. The study design of

the survey has been reported previously [40] [41]. Of the 3,896

residents aged 40–79 years, 3,000 consented to participate in a

comprehensive assessment. Of them, 178 participants were not

administered the oral glucose tolerance test: 100 subjects refused

the test, 46 had already taken breakfast and the remaining 32 were

receiving insulin therapy for diabetes. Consequently, 2,822

subjects completed the oral glucose tolerance test. A further 706

of the 2,822 subjects were excluded: 485 subjects were diagnosed
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with diabetes, 165 subjects had never participated in the

comprehensive assessment for diabetes, 32 subjects refused gene

tests and 24 subjects were not obtained genotype data. The

remaining 2,116 subjects were determined to constitute the

validation cohort.

Algorithms for risk factor detection
Top-ranked SNPs were detected using three algorithms, the

Cochran-Armitage test for trend, asymptotic Bayes factor (ABF) [26]

and sure independence screening (SIS) [27], and with an additive

association model for training set. We describe the details below.

The phenotype ci of subject i~1,:::,n was set as the dependent

variables (case = 1, control = 0) and the genotype Xi,j of each SNP

j~1,:::,m for a subject i as the independent variables with an

additive association model (homozygous AA = 0, heterozygous

AB = 1, homozygous BB = 2). Let Xj~ Xi,j ,:::,Xn,j

� �
be all

genotypes for a SNP j.

Sure Independence Screening (SIS)
For each a set of genotypes Xj for a SNP j, we calculated the

marginal utility

Lj~ min
b0,b1

1

n

Xn

i~1

L ci,b0zb1Xi,j

� �
,

where L :,:ð Þ is a generic loss function for a logistic regression

method defined by

L ci,b0zb1Xi,j

� �
~
Xn

i~1

log 1ze
b0zb1Xi,j

� �
{ci b0zb1Xi,j

� �h i
:

All SNPs were ranked according to the marginal utilities. The

SNPs with the smaller Lj were indicated as more significant ones.

Asymptotic Bayes Factor (ABF)
For each a set of genotypes Xj for a SNP j, the asymptotic Bayes

factor (ABF) was calculated based on the output from a logistic

regression method:

logit P ci~1DXj

� �� �
~b0z

Xn

i~1

bjXi,j ,

where bj is the regression coefficient for the jth genetic variable. Let

h
^

and
ffiffiffiffi
V
p

represent the maximum likelihood estimate (MLE) and

standard error from the logistic regression method for a SNP j.

The MLE h
^

~log Odds Ratioð Þð Þ has then the normal dis-

tributionN 0,Vð Þ asymptotically when the sample size n is sufficiently

large. Combining this likelihood with a normal prior N 0,Wð Þ on the

h
^
, the asymptotic Bayes factor was calculated as below:

ABF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VzW

V

r
exp {

z2

2

W

VzW

� �
,

where z2~
h
^

V
is the Wald statistic and W was set into 0.212

corresponding to a 95% belief that the odds ratio is less than 1.5.

This calculation was conducted using R code (http://faculty.

washington.edu/jonno/BFDP.R). The SNPs with the smaller ABF

were considered more significant.

We detected top-ranked SNPs using three algorithms as

described above. In addition, we also considered cases with and

without the r-square between SNPs. In the case of considering the

r-square, we excluded any SNPs with r-square .0.8 from the

predictors. The information of all r-squares between SNPs was

obtained from the HapMap Japanese JPT population [42].

Regression methods for risk model construction
We applied the ridge regression, the elastic net and the lasso

method known as penalized regression methods. Let

Xi~ Xi,1,:::,Xi,p

� �
be the values of pre-selected top-ranked p SNPs

for a subject i and let l(b; ci,Xi) be the logistic log-likelihood:

l(b; ci,Xi){lPa bð Þ,

Where Pa bð Þ~ 1{að Þ 1
2

b2za bj j [43] and a was set to 1 (the

lasso), 0 (the ridge regression) and 0.1 to 0.9 at 0.1 intervals (the

elastic net) and optimal penalty parameterl are selected using 10-

fold cross-validation. Many coefficients bj of the lasso and the

elastic net methods are then set to 0. All penalty regression

methods in this study were conducted using the glmnet package in

the statistical software R [38].

Evaluation of risk prediction models
All data were strictly separated into the training set and test set.

For the training set, the top-ranked p SNPs were detected and

selected stepwise using three algorithms and the r-square between

SNPs information. Using a combination of p genetic risk factors

(p~0, 5, 10,20,:::,100,200,:::,2000) and clinical risk factors, risk

prediction models were constructed based on three penalized

regression methods. The selection of the risk prediction models

was conducted based on 10-fold cross-validation against the training

set; nine-tenths for top-ranked SNPs determination and model fitting

and one-tenth for the validation. This process was repeated 10 times

(10-fold cross validation). On the basis of the average AUC, we

determined the optimal number of SNPs for model construction for

each combination of algorithms and methods. Final models were

constructed using the complete training set and the adjusted models

were evaluated on the independent test set. The receiver operator

characteristic (ROC) curves [44] on the test set and the area under

the curve (AUC) were indicated as the discriminative accuracy of the

risk prediction models.

Detection of significant interaction factors
The significance of interaction factors was tested by comparing a

logistic regression method including only the main effects to second

method including the main effects as well as interaction factors that

were composed of any combinations of genetic or clinical risk factors

using a likelihood ratio test (i.e., deviation from a multiplicative

model). The odds ratios (ORs), corresponding 95% confidence

intervals (CIs) and p-values were calculated using statistical software

R in order to determine the significance of the interaction factors

[38]. We included interactions with p-values ,0.05. By comparing

the risk prediction model with and without including the interac-

tions, we evaluated the significance of the interactions.

Supporting Information

Figure S1 A quantile-quantile (QQ) plot for association
results for training set.

(TIF)

Figure S2 Relatedness among Japanese, Han Chinese,
European and African individuals. The two-dimensional

plots with the first and the second components showed that 45
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East Asian (HapMap populations of Japanese in Tokyo: jpt), 45

Han Chinese in Beijing: chb), 90 African (HapMap population of

Yoruba in Ibadan, Nigeria: yri), 90 European (HapMap

population of Utah, USA residents with ancestry from northern

and western Europe: ceu) populations. Two outliers (case 1,

control 1) were excluded from 4,450 cases and 2,912 controls.

(PDF)

Table S1 Top-ranked 10 SNPs defined in ABF.
(DOCX)

Table S2 The top AUCs observed in elastic net method
and the number of SNPs used in risk prediction model
construction.
(DOCX)
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