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Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and
significant health problem in the United States and worldwide. The mechanisms contributing to
brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily
emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes
of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this
premise have mostly been disappointing, implicating some other pathophysiological factors,
independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm
is no longer the only culprit. In this review, we summarize recent data from both experimental and
clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH
that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH,
the terms “early brain injury” and “delayed brain injury” are used according to the temporal
progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-
glia triad model for SAH study is highlighted and presents the challenges and opportunities of this
model for future SAH applications.
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1.Introduction: It is Time to Reawaken Interest in the Mechanisms of
Subarachnoid Hemorrhage Pathophysiology

Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with complex
mechanisms that threaten brain perfusion and function. The definition of a SAH has recently
been updated to mean bleeding into the subarachnoid space, i.e., the area between the
arachnoid membrane and the pia mater of the brain or spinal cord (Sacco et al., 2013).
Despite recent improvements our knowledge of SAH pathophysiology and the management
of ruptured aneurysms, which can include surgical clipping or endovascular treatment, SAH
remains a serious and significant health problem in the United States and throughout the
world (Sehba et al., 2012). Although it accounts for only 5% of all strokes, its burden to
society is significant, given the young age at which it occurs, its high rates of mortality and
disability, and poor clinical outcomes (Venti, 2012). Approximately one in six patients die
during the sudden onset of bleeding. The mean age at which SAH occurs is 50 years old, and
the onset of SAH in this younger population renders members of an otherwise productive
age group unable to return to work. Additionally, it necessitates long-term care. Those who
survive initially may succumb to early rebleeding or a delayed ischemic neurological deficit
(DIND) that occurs with or without cerebral vasospasm.

Hippocrates demonstrated the presentation of spontaneous SAH followed by subsequent
delayed neurological deficient nearly 2,400 years ago. Delayed cerebral vasospasm, a
syndrome first reported in 1951 (Ecker and Riemenschneider, 1951) was regarded as the
single most crucial and treatable cause of mortality and morbidity after SAH in subsequent
decades. The Fisher Grade was applied in predicting the onset of vasospasms (Fisher et al.,
1980). Arterial vasospasm after SAH can be visualized and evaluated by digital subtraction
angiography or magnetic resonance angiography in clinical research and by India ink
angiography, synchrotron radiation angiography or H&E staining in basic research
(Bederson et al., 1998; Cai et al., 2012; Suzuki et al., 2010a).

Historically, considerable efforts have been made to investigate vasospasm as the primary
mechanism underlying SAH injury that leads to tissue ischemia, and ultimately to
infarctions and poor neurological outcome. However, in recent years, that theory is being
questioned increasingly. First, the peak incidence of angiographic vasospasm during the
second week post-SAH is approximately 70% (Dorsch and King, 1994), but the incidence of
clinically delayed cerebral ischemia (DCI) is only around 30% (Dorsch, 2011). Secondly,
the relationship between vessel constriction and cerebral infarction is somewhat poor
(Minhas et al., 2003). It is unlikely that all cases of cerebral infarction are due to a SAH-
induced vasospasm, because in some instances infarction can occur immediately after a
SAH, and a vasospasm in the territorial artery is not always detected by angiography
(Naidech et al., 2006). Furthermore, the presence of angiographic or Transcranial Doppler
(TCD) vasospasm had only 67% positive predictive value, but 72% negative predictive
value for the occurrence of cerebral infarction, respectively (Rabinstein et al., 2005).
Cerebral infarction can develop even in an unaffected vascular distribution without
vasoconstriction after SAH (Brown et al., 2013; Naidech et al., 2006). Cerebral infarction
contributed to poor outcome by both vasospasm-dependent and -independent effects in the
majority of 194 patients with moderate to severe vasospasm (Naidech et al., 2006).
Therefore, poor outcome seems to be directly dependent on infarction, but independent of
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vasospasm (Vergouwen et al., 2011). Thirdly, a wide range of cerebral perfusion
disturbances has been observed among patients who developed delayed neurological deficits
after SAH (Minhas et al., 2003). Cerebral blood flow (CBF) measured via CT perfusion in
areas supplied by vessels with vasospasm ranged from 26.4 to 41.5 ml/100 g/min (Dankbaar
et al., 2009; Sviri et al., 2006; Wintermark et al., 2006), which is higher than the assumed
threshold for ischemic injury (25 ml/100 g/min) (Murphy et al., 2006). This raises a critical
question for future studies: Are the effects of vasospasm on CBF sufficient to cause cerebral
ischemia and brain infarct?

The treatment of SAH has not improved despite nearly four decades experimental studies
targeting vasospasms. Additionally, the calcium channel antagonist nimodipine, which is the
only proven drug treatment to improve outcomes after SAH, seems to provide beneficial
effects without angiographic evidence of cerebral vasodilation (Petruk et al., 1988). Finally,
treating vasospasm does not always lead to improvement in functional outcomes
(Macdonald et al., 2008; Polin et al., 2000). Disappointing results were observed in the two
randomized, double-blind, placebo-controlled, phase III trials using endothelin A receptor
antagonist, clazosentan (CONSCIOUS-2 and CONSCIOUS-3) (Macdonald et al., 2011;
Macdonald et al., 2012). Clazosentan reduced vasospasm in patients after SAH, but failed to
reduce mortality and to ameliorate neurological deficits. In recent years, increasing evidence
has revealed that some new mechanisms, such as early brain injury (EBI), cortical spreading
depolarization (CSD) and impaired microcirculatory function, may closely dictate patients’
prognosis following SAH. Hence, a new review is necessary to appraise those research
advances of SAH.

SAH, as an untreatable CNS disease, promotes collaborative efforts from neurosciences,
neurosurgery, neurology, neuro-ICU and other interrelated fields. Recent advances in SAH
research suggest that we need to look beyond vasospasm after SAH and target other
coexisting factors that might be involved in the pathogenesis of delayed cerebral ischemia,
which should improve outcomes in patients after SAH (Vergouwen et al., 2011). This
review aims to summarize the evolving new pathophysiological mechanisms that are
implicated in brain injury after SAH and to improve our understanding of these mechanisms
in order to explore potential novel therapeutic options for patients with SAH.

2. SAH Background
“When persons in good health are suddenly seized with pains in the head, and straightway
are laid down speechless, and breathe with stertor, they die in seven days,”(Clarke, 1963).
His description is similar to the classic and dramatic presentation of patients with SAH, such
as a middle-aged person who collapses at restroom, reports a sudden onset of the “worst
headache of my life,” subsequently projectile vomits, briefly loses consciousness, and
presents with subhyaloid ocular hemorrhages and a stiff-neck. A brief history of SAH is
summarized in Figure 1.

2.1 Etiology of spontaneous SAH
A SAH can be caused by trauma; however, only spontaneous, nontraumatic SAH is included
under the definition of stroke (Sacco et al., 2013). Approximately 85% of cases of
spontaneous SAH are due to the rupture of an intracranial aneurysm and bleeds into the
subarachnoid space. Cerebral aneurysms may be present in 2–3% of the population with the
annual risk of rupture being relatively low, about 0.7–4% (Rinkel et al., 1998). Spontaneous
SAH also can occur in the absence of an aneurysmal rupture. Indeed, perimesencephalic
non-aneurysmal conditions account for 10% of SAH (Inagawa, 2010). The normal
angiographic findings in these instances are consistent with a venous origin of the bleeding,
which can occur due to the rupture of a prepontine or interpeduncular vein (Hashimoto et al.,
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2000). Approximately 5% of SAH are associated with other medical conditions such as
arteriovenous malformation, intracranial artery dissections, mycotic aneurysms, bleeding
disorders, reversible cerebral vasoconstriction syndrome, vasculitis, moyamoya disease,
cerebral amyloid angiopathy, or drug abuse (Cabral et al., 2013; Cuvinciuc et al., 2010;
Rinkel et al., 1993; Santos Carvalho et al., 2013; Venti, 2012; Viswanathan et al., 2012).
This review focuses only on current neurobiological knowledge of aneurysmal SAH.

2.2 Epidemiology: incidence, mortality and racial differences
A large multinational World Health Organization epidemiological investigation reported that
the annual incidence of aneurysmal SAH ranges from 2.0 cases in China to 22.5 cases in
Finland per 100,000 in age-adjusted adults (Ingall et al., 2000). In the United States, the
annual prevalence of aneurysmal SAH is approximately 30,000 persons (Bederson et al.,
2009; Loftspring, 2010). The incidence of SAH has been reported to be age-related with a
higher incidence among individuals aged 40 to 60 years, peaking at age 55. It also appears to
be gender-dependent, with women having an incidence rate that is approximately 1.6 times
higher than that of men (Rinkel et al., 1998). Previous studies suggest the risk of SAH
further varies based on a female’s hormonal status. Premenopausal women (Longstreth et
al., 1994), women of older age at the birth of their first child, and those of older age at the
onset of menarche have lower risk for SAH (Okamoto et al., 2001).

Most studies report mortality rates ranging from 25% to 35% in high-income countries and
up to 48% in low-income countries (Feigin et al., 2009). The median mortality rate of SAH
in the United States alone is as high as 32% (Connolly et al., 2012). However, because these
data do not include pre-hospital deaths, the actual rate of mortality for SAH is likely to be
much higher than that that reported (Inagawa, 1997). Indeed, approximately 12% of patients
die before receiving medical attention or are misdiagnosed (Fridriksson et al., 2001; Huang
and van Gelder, 2002). Nevertheless, the rates of morbidity and mortality due to SAH have
slowly decreased, with nearly a 1% reduction in the mortality rate per year since 1974
(Johnston et al., 1998).

There also appear to be racial differences in the risk of SAH (Brinjikji et al., 2012). Black
Americans are at higher risk than are white Americans (Broderick et al., 1992). Mortality
rates for SAH also seem to vary by race. White Americans have a lower mortality rate than
do African Americans, Hispanics, American Indians/Alaskan Natives, and Asian/Pacific
Islanders residing in the United States (Connolly et al., 2012).

2.3 Perspectives on the Current Status of SAH Animal Models
There is a clear need for rigorous translational research using animal models so that we can
make further progress in the management of patients with SAH (Figure 2). Indeed, although
the human cerebral artery may be considered an ideal tool for studying the pathogenesis and
treatment options of SAH, using live human brain vessels in vivo is not a viable option.
Moreover, postmortem evaluation of arteries taken from humans who died from SAH
provide only minimal information (Crompton, 1964).

Various animal species, including mice, rats, rabbits, dogs, primates, cats, pigs, and goats
have been used to produce SAH models to closely mimic the physiological situation in
humans (Marbacher et al., 2010a). Non-human primates are very similar in their genome,
anatomy, and physiology to humans, and thus the models of non-human primates’ SAH are
believed to be the best candidates for replicating clinical SAH. The puncture monkey model
through a small anterior craniotomy was first reported in 1968 (Simeone et al., 1968). Non-
human primates are usually time-consuming and demand complex surgical manipulation,
such as anesthesia, angiography, craniotomy, etc, and are also not cost effective. Therefore,

Chen et al. Page 4

Prog Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the puncture technique was also adapted to small animals with the advancement of
microsurgical technology. For example, the rat is an excellent species, because it is
relatively lower cost and that easy to manipulate in a laboratory setting. The endovascular
puncture SAH model has also been produced in the mouse, though it is technically more
challenging (Kamii et al., 1999). Recently, the therapeutic effect of potential drug candidates
against EBI has been examined on the mouse endovascular puncture model (Altay et al.,
2012a). The advantage of a mouse SAH model would be the option to use transgenic mice,
which is becoming the preferred research tool for gene-specific silencing in vivo. Using
transgenic mice with spontaneous aneurysmal SAH would better mimic the natural history
seen in patients with SAH.

Because there are no spontaneously occurring animal models of SAH, a number of animal
models of SAH have been developed in various species to simulate SAH. SAH researchers
can choose from a number of SAH animal models to suit their research objectives. The SAH
models that mainly utilize two techniques: 1) endovascular punctures, in which puncture of
an intracranial artery allows blood to quickly spread in the subarachnoid space, and 2) blood
injection into the subarachnoid space after blood is obtained by the surgical exposure of a
distant artery or vein.

Each animal model has its own advantages and disadvantages. It is generally accepted that
the endovascular perforation model of SAH better mimics EBI, whereas the blood injection
model better mimics the vasospasm that can occur after SAH (Lee et al., 2009b). In recent
years, as the concept of EBI gains more popularity over delayed vasospasm, the blood
injection model has been less favored as compared to the monofilament puncture model,
since researchers are beginning to explore changes not only in the large cerebral arteries but
also in the brain parenchyma (Bederson et al., 1995; Titova et al., 2009).

The endovascular puncture model was independently described in 1995 by Bederson et al.
and Veelken et al. (Bederson et al., 1995; Veelken et al., 1995). The surgical procedure
involves perforation of the internal carotid bifurcation by a sharpened suture, which is
inserted through the external carotid artery without craniotomy. Because this method does
not entail craniotomy, it best represents a clinical scenario, as it mimics the acute
pathophysiological changes of an aneurysmal rupture in humans (Schwartz et al., 2000a;
Schwartz et al., 2000b). It results in with considerably high rate of mortality, which ranges
from 30% to 50% within 24 hr after SAH (Prunell et al., 2004). However, the brief period of
ischemia caused by temporal clip, the lack of control over the volume of the hemorrhage,
and the high rate of morbidity and mortality significantly impacts its use for studies
exploring possible therapeutic options. Furthermore, the CBF on the side with the
perforation tends to be lower than that of the non-perforated side, thus suggesting that this
model results in some degree of laterality to the hemorrhagic event.

The blood injection model, in which blood is directly injected into the subarachnoid space
either once or twice, is another widely used technique for inducing experimental SAH. This
technique elicits early and delayed vasospasm in a variety of species, although its presence
depends on the site of injection. More recently, Marbacher et al. reported vasospasm in a
number of SAH models: The most frequently injected volume of blood amount (ml), the
peak onset of the vasospasm (day), and amount by which the blood vessel narrowed (%):
mice endovascular puncture (a range, day 3, 20–62%); rat single injection (0.3 ml, day 2,
19–29%); rat double injection (0.3 ml, two times, day 7, 28–47%); rabbit single injection (3
ml, day 3, 19–55%); rabbit double injection (not established, day 5, not established); dog
double injection (4–5 ml, two times, day 7, 45–66%); primate clot placement (5 ml, day 7,
32–52%) (Marbacher et al., 2010a). Recently, a novel technique of inducing SAH by extra-
intracranial blood shunt has been established to trigger delayed cerebral vasospasm under a
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controlled intracranial pressure (ICP) (Marbacher et al., 2010b). In the future, experimental
models of cerebral vasospasm should be improved so as to better mimic human SAH, in
terms of having a direct hemorrhagic brain lesion under systolic pressure (Pluta et al., 2009).

Given the availability of various types of SAH models, it is imperative that the model
chosen is appropriate for the objective of the study and that the model is replicable. In
addition, genome-wide association studies are helpful to identify novel genetic factors that
contribute to intracranial aneurysm susceptibility. Consequently, it is possible to produce an
aneurysm on cerebral vessels experimentally using genetic technology (Suda et al., 2013).
Furthermore, ensuring reproducibility of results, the efficacy of a treatment option should be
confirmed in multiple species and in multiple laboratories before beginning translation to a
clinical study (Tajiri et al., 2013).

2.4 Failure in Current SAH Studies
Despite the promising results seen in animal models, clinical studies have failed to translate
the outcomes seen in animal models to human subjects (Feuerstein et al., 2008; Savitz,
2007). The failure to translate animal studies could be due to methodological flaws during
animal experiments including the following: First, studies do not always indicate if the
animals used in the experiments were randomized or how the randomization was performed.
Yet, studies may not be translatable the animals used in the experiments were not randomly
allocated. Furthermore, control groups are often inadequate, and some studies do not even
include a control group. In addition, evaluations performed during experiments are not
always blinded, which is essential for a non-biased meaningful study. Second, most studies
utilize young, non-diseased male animals, which, therefore, does not simulate the age,
physical condition, or gender-specific risks seen in patients with SAH, who are more likely
to be (45–55 years old, have hypertension, and be female) (Kassell et al., 1996; Kongable et
al., 1996; Lanzino and Kassell, 1999). Furthermore, young rats are more resistant to the
effect of the products of bilirubin oxidation compared to aged rats post-SAH (Clark et al.,
2011). Third, sample size is not always adequate for statistical analysis, which can lead to
incorrect conclusions about the results of an experiment. Accurate power and statistical
analyses are crucial for drawing valid conclusions from a study.

Further, in depth evaluation of outcomes in preclinical models is crucial to measure an
agent’s efficacy for the successful clinical translation of novel therapies (Knight et al.,
2013). Given the high mortality rates in patients with SAH, mortality should be examined in
experimental studies. Neurological function also should be thoroughly evaluated, because
this information is crucial for translation of animal studies. Clinical evaluations of patients
after SAH commonly reveal cognitive deficits, and this information is critical to providing
for proper care (Wong et al., 2013). However, cognitive function, fatigue, and emotional
disturbances are seldom evaluated in preclinical experiments (Boyko et al., 2013; Tso and
Loch Macdonald, 2013). Additionally, for many patients with SAH and their relatives, the
activities of daily living is as important as, or even more important than, the life prolonged.
Therefore, efficacy of therapies should be evaluated using tests to examine not only sensory
motor function but also cognitive function, speech, and memory. Experimental studies need
to incorporate an assessment of neurobehavioral outcomes in the acute phase as well as a
more detailed evaluation of long-term neurological function.

It also is important to examine potential side effects of compounds being tested in animal
studies in order to eliminate drugs that may be too toxic for clinical use. Indeed, recent
failures in the CONSCIOUS trials may have occurred due to adverse effects, such as
hypotension and pulmonary complications, that are common after taking endothelin receptor
antagonists (Macdonald, 2012). For example, complications such as hypotension, pulmonary
complications, and anemia were encountered more often in patients who were treated with
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clazosentan than in those who received placebos (Macdonald et al., 2012). Similarly, use of
several of the synthetic N-methyl D-aspartate (NMDA) antagonists have been abandoned
because of concerns regarding drug toxicity, particularly in strokes (Muir, 2006). Using two
or three gradual dosages is helpful to show dose dependent and potential toxic effects in
experimental studies. The successful clinical translation of future studies requires the careful
design of experiments, adequate controls, and rigorous testing in experimental SAH models.
It may be prudent to develop a set of guidelines for SAH translational studies (Lapchak et
al., 2013).

2.5 Major Complications after SAH
2.5.1 Acute and Chronic Hydrocephalus—SAH often can lead to hydrocephalus, an
outcome with a frequency that varies from 9% to 67% in some patients (Milhorat et al.,
1970; Woernle et al., 2013; Yasargil et al., 1973). Traditionally, it has been believed that
patients with SAH suffer from hydrocephalus that is due to two major problems: 1) blockage
of cerebrospinal fluid (CSF) pathways in the ventricular system, and 2) compromised
reuptake of CSF within the subarachnoid granulations. The obstruction of CSF pathways in
the acute setting, largely due to the mass effect of blood clots, has been established as the
cause of acute hydrocephalus. Several studies have shown correlations between the amount
of cisternal and ventricular blood and the likelihood of developing acute hydrocephalus after
SAH (Graff-Radford et al., 1989). Recently, CSF overproduction by stimulation of the
irritant receptor glossopharyngeal and vagal nerve endings has been suggested to the
etiology of early hydrocephalus after SAH (Kanat et al., 2012), which, although plausible,
has yet to be confirmed with substantial scientific evidence (Shah and Komotar, 2013). In
contrast, the latter usually occurs in the chronic setting secondary to fibrosis of the arachnoid
villi as a result of inflammatory reaction or blood clotting products, which prevents the
reabsorption of CSF (Massicotte and Del Bigio, 1999; Suzuki et al., 2008).

Previous analyses also indicate multifactorial causes in the development of chronic
hydrocephalus after SAH. These include poor neurological condition upon the admission of
a patient, the presence of intraventricular hemorrhage, ruptured vertebral artery aneurysm,
surgical clipping and endovascular coiling, meningitis, hyperglycemia, gender, increased
sympathetic activity, and a prolonged period of external ventricular drainage (de Oliveira et
al., 2007; Dorai et al., 2003; Graff-Radford et al., 1989; Lai and Morgan, 2013; Lambert et
al., 2002; Yang et al., 2013). In experimental SAH, rats seem to develop hydrocephalus as
measured by magnetic resonance imaging if the SAH grade is high or if there is
intracerebroventricular bleeding, and if the cerebroventricular wall is damaged (Okubo et
al., 2013). The hepatocyte growth factor and vascular endothelial growth factor may
participate in the periventricular white matter injury in rats with chronic hydrocephalus after
SAH (Chu et al., 2011). The cascade of transforming growth factor β1-Smad3 induced by
thrombin might be a mechanism of communicating hydrocephalus after SAH in rats (Li et
al., 2013). To clarify and strengthen these observations, future studies should differentiate in
detail suitable SAH models that target this complication. More studies of the neurobiological
mechanisms of hydrocephalus, including prospective, double-blinded, randomized trials are
needed.

2.5.2 Seizures—Seizures are a well-recognized complication of SAH, although the
administration of prophylactic antiepileptic medication following an aneurysmal SAH is still
controversial (Ibrahim et al., 2013). Seizures occur in 5–35% of survivors of SAH, most
commonly onset time in the first 24 hr (Baker et al., 1995; Connolly et al., 2012; Ohman,
1990). They are associated with higher Hunt-Hess grade and Fisher scores, lower admission
Glasgow Coma Scale scores, hypertension, infarction, and rebleeding (Cabral et al., 2009;
Hasan et al., 1993). However, reports about the association between seizures and functional
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outcomes are heterogeneous (Butzkueven et al., 2000; Choi et al., 2009; Rhoney et al.,
2000). Therefore, further neurobiological investigation is warranted to understand the
mechanism of epilepsy and seizure disorders after SAH. To clarify and strengthen these
observations, a suitable model of SAH should be developed to target this complication.
Then, the efficacy and timing of prophylactic antiepileptic medication should be tested
carefully in that model before a multiple-center, double-blinded, randomized prospective
evaluation.

3. 3. Neurobiological Response after SAH
In cases when SAH is not immediately fatal, secondary complications can occur after the
initial bleeding (Figure 3). Recently, we have begun to see that SAH clearly has a complex,
multisystem, and multifaceted pathogenesis that involves several ongoing processes other
than vasospasm of the major cerebral vessels (Cahill et al., 2006; Hansen-Schwartz et al.,
2007; Macdonald et al., 2007). In this review, the term “EBI” and “delayed brain injury”
(DBI) are used according to the temporal progression of SAH-induced brain injury. In fact,
the term “EBI” was first coined in 2004 to explain the acute pathophysiological event that
occurs within the first 72 hr of the SAH (Kusaka et al., 2004). With advances in
understanding the pathophysiology of SAH, in the present review the term “DBI” is used to
demonstrate a host of critical, interrelated pathological pathways that arise in the late phase
of SAH as a consequence of EBI. Many of the pathogenic triggers of DBI are interrelated,
and furthermore, the mechanisms leading to delayed vasospasm and DBI are not mutually
exclusive. We believe that delayed vasospasm is a clinical manifestation and not a separate
entity of the many mechanisms of DBI after SAH.

3.1 Early Brain Injury
More than 300 articles in a PubMed/MEDLINE search provide an extensive coverage of
advances in the research on EBI over the last ten years; however, most of that information
comes from animal studies. The term “EBI” refers to global brain injury that starts
immediately after aneurysms rupture (Sabri et al., 2013b). A number of animal studies and
some data from human autopsies provide evidence that EBI begins within minutes after the
initial bleeding (Bederson et al., 1998; Nau et al., 2002). This correlates well with the
clinical scenario in which clinical deterioration is commonly observed within the first 2 hr
(Miyazaki et al., 2006; Ohkuma et al., 2001), and SAH fatalities occur within 48 hr of the
ictus (Ingall et al., 2000).

The major causes of death within 72 hr after the initial bleed are the effects of the initial
hemorrhage and aneurysms’ rebleeding (Broderick et al., 1994). Indeed, survivors with SAH
can succumb to injury at a later period or present with severe deficits, due to secondary
insult. Brain injury following SAH is not only limited to the distribution of the ruptured
vessel, but also extends to brain regions distant to the site of hemorrhage. In recent years,
increasing study efforts have been directed at elucidating the mechanisms of EBI after SAH,
which challenges the already tenuous link between vasospasm and DIND. The cascade of
events that occur with EBI is responsible for the initial signs and symptoms of patients with
SAH, which is believed to be a precursor for both delayed vasospasm and DIND. In
addition, a range of physiological derangements that occurs early on can trigger a number of
devastating cascades that lead to blood brain barrier (BBB) dysfunction, inflammation,
necrosis, apoptosis and oxidative stress (Ayer and Zhang, 2010). The physiological changes
that occur with EBI and the mechanisms responsible for EBI are discussed below.
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3.1.1 Initial Physiological Changes: A Culprit of EBI
3.1.1.1 Intracranial Pressure (ICP): Once an aneurysm ruptures, blood extravasates from a
ruptured defect and spreads into the subarachnoid space. The size of the ruptured defect in
vessel correlates with the amount of the blood clot. At the time of the SAH occurrence, ICP
sharply elevates, and the rate of increase is indicative of the severity of the initial bleed. The
rapid increase in ICP accounts for the “thunderclap” headache, which is the classical
presentation seen in patients at the clinics. ICP is normally less than 13mmHg. There are
two types of ICP increase. First, ICP rapidly increases to a value approximating the arterial
pressure (~120 mmHg), then decreases to a level slightly above baseline (Bederson et al.,
1995). Within 1–2 min after SAH induction, ICP rapidly rises to peak values in a new blood
shunt model, and it decreases to a plateau that is higher than the baseline values within 5–10
min (Marbacher et al., 2012). This initial increase in the ICP is thought to be a protective
mechanism, which arrests the initial aneurysmal bleed and preventing rebleeding, the so-
called “brain tamponade” (Nornes, 1973). This pattern is usually accompanied by a small
volume hematoma.

The other pattern of ICP increase is characterized by a sustained increase in ICP, which may
be due to an enlarging hematoma volume, vasoparalysis, distal cerebral arteriolar
vasodilation or the development of acute hydrocephalus (Asano and Sano, 1977; Brinker et
al., 1990; Grote and Hassler, 1988; Nornes and Magnaes, 1972). This pattern is less
common. The peak ICP elevation is a response to both the amount of blood released into the
subarachnoid space and the volume of hemorrhage (Bederson et al., 1998; Schwartz et al.,
2000a). High ICP predicts poor outcome after SAH (Czosnyka et al., 2005; Soehle et al.,
2007), as it disrupts cerebral perfusion pressure (CPP), the pressure driving cerebral blood
flow, and may lead to a critical loss of cerebrovascular autoregulation (Czosnyka et al.,
2005). The time course assessment of ICP suggests that it may contribute to a high rate of
early clinical deterioration in patients (Ohkuma et al., 2001). The results of the study
conducted by Westermaier et al. describe that a sharp increase of ICP does not correlate with
the development of edema (Westermaier et al., 2012). Unfortunately, early ICP monitoring
of patients is generally not feasible, so that the accurate impact of early ICP remains unclear.

3.1.1.2 Cerebral Perfusion Pressure (CPP): CPP is the net pressure gradient of blood flow
to the brain. Normal CPP, which is equal to mean arterial blood pressure minus ICP,
approximates 80 mm Hg (Huang et al., 2006). The relationship between ICP and CPP is
imprecisely understood, although it is predicted to be related to the “Monroe-Kelly” doctrine
(Ayer and Zhang, 2010; Schoffer et al., 2002). A profound fall in CPP to almost zero has
been observed immediately after SAH in animals and humans (Marbacher et al., 2012;
Nornes, 1973; Voldby and Enevoldsen, 1982). After a few minutes, CPP gradually recovers
with the decline of ICP. This pattern looks like global cerebral ischemia with gradual
reperfusion. Interestingly, some experimental studies suggest that decrease in CPP was
negatively associated with ICP (Kuyama et al., 1984). While CPP recovers, the reduction of
CBF persists, which indicates acute vasoconstriction within 6 hr (Westermaier et al., 2009).
However, reduction in CPP does not always correlate with a poor clinical outcome (Heuer et
al., 2004).

3.1.1.3 Cerebral Blood Flow (CBF): The rise in ICP and subsequent fall in the CPP results
in a significant decrease in the CBF, which can drop to zero after the initial impact of SAH
in experimental studies (Bederson et al., 1995). Once there is a transitory fall of CBF, the
consequences are significant, both short and long term. In some instances, severe global
hypoperfusion can exhibit as syncope or unconsciousness in patients with SAH (Jakobsen,
1992). Also, mortality rate increases with severe reduction in the CBF. In an experimental
study, Bederson et al. observed that CBF reduction to less than 40% of baseline in the first
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hour after SAH predicted 100% mortality and was defined as “lethal” SAH, while a lesser
degree of CBF reduction resulted in 19% mortality (Bederson et al., 1998). Furthermore, the
study showed that the mortality rate was independent of ICP and CPP in the first hour after
SAH. It appears that marked acute cerebral vasoconstriction can occur at this critical time
independent of changes in CPP and ICP, which likely contribute to the cerebral ischemia
(Bederson et al., 1998; Friedrich et al., 2012a).

Cerebral perfusion is essential for life, since the brain has high metabolic demands and is
very sensitive to hypoxia-ischemia. Early CBF reduction was accompanied by a lessened
cerebral metabolic rate of oxygen investigated by positron emission tomography analysis
(Frykholm et al., 2004). Positron emission tomography has the potential to increase our
knowledge of the role of cellular hypoxia in SAH, which described that hypoxia (increased
(18) F-FMISO uptake) was present in symptomatic patients with SAH (Sarrafzadeh et al.,
2010).

3.1.2 Disturbance in Cerebral Autoregulation—Cerebral autoregulation is a process
in mammals that plays an important role in maintaining adequate and stable cerebral blood
flow (Paulson et al., 1990). Cerebral autoregulation is able to deliver sufficient blood
containing oxygen and nutrients to the brain tissue for metabolic needs, and removes CO2
and other waste products (Muller et al., 2002). Under normal circumstances, CBF is
regulated through adjustment in the arteriolar size, which, in turn, drives the changes in
vascular resistance according to Hagen–Poiseuille’s Law (Kontos et al., 1978). Three
different mechanisms contribute to the process of cerebral autoregulation, including
metabolic, myogenic and neurogenic (Aries et al., 2010; Paulson et al., 1990).

Haemodynamic communication between neurons and the vasculature is necessary to
efficiently regulate CBF by neuronal activation (Attwell et al., 2010). In humans, CBF
autoregulation typically operates between mean arterial pressures of the order of 60 and 150
mmHg. The initial aneurysmal rupture seems to lead to acute impairment of cerebral
autoregulation (Lang et al., 2001; Ratsep and Asser, 2001). CBF, therefore, is dependent on
changes in CPP, blood viscosity, and systemic arterial pressure. Additionally, a degree of
cerebral dysautoregulation is also observed to occur throughout the subacute stage following
SAH as well during the delayed stage at the time of delayed vasospasm (Budohoski et al.,
2013).

Currently, TCD remains the most commonly used noninvasive tool to assess early
alterations in vascular diameter. Clinical studies have described primary autoregulation
failure measured by TCD as a direct result of SAH and, therefore, it is proportional to
severity of the ictus (Budohoski et al., 2012). In addition, experimental analysis has revealed
numerous activated molecular pathways that could lead to the observed dysfunction of
cerebral autoregulation in the acute phase after SAH (Cho et al., 2003; Shin et al., 2002). In
consideration of the existing reports on cerebral autoregulation following SAH, it is
imperative to determine the exact time course of autoregulatory impairment following SAH
and to determine the most appropriate methodology to detect the impairment, which might
be beneficial in patients especially who present with mild neurological deterioration.

3.1.3 Excitotoxicity, Spreading Depolization and Ionic Imbalance: A Path to
Neuroprotection—After the onset of SAH, there is a derangement in neurotransmitter
release and inhibition of the reuptake (Jung et al., 2012; Kahn et al., 2012) occurrence of
CSD (Hartings et al., 2013; Winkler et al., 2012) and loss of energy stores, which causes
ionic imbalance (Aihara et al., 2004; Hubschmann and Nathanson, 1985). Excitotoxicity,
CSD, and ionic imbalance are inextricably linked and contribute to SAH-induced cell death
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(Ohta et al., 2001; Petzold et al., 2005b; Sakowitz et al., 2013), and have been implicated in
poor outcomes in comatose patients after SAH.

3.1.3.1 Excitotoxicity: Excitotoxicity is defined as toxicity resulting from the excessive
activation of ionotropic and metabotropic glutamate receptors (Puyal et al., 2013). Excessive
glutamate causes neurotoxicity effects. Mounting evidence describes that glutamate, a major
excitatory transmitter, is elevated in the CSF after SAH, suggesting that it may play a
significant role in the pathophysiology of the ictus (Jung et al., 2013a). Glutamate is not
synthesized in neurons nor acquired from circulation (Hertz et al., 2007), but rather
synthesized and released by activated astrocytes and microglia through the hemichannels of
gap junctions (Takeuchi et al., 2006). Maintaining a minimal level of glutamate is critical for
normal neuronal function after brain injury (Zlotnik et al., 2012).

Glutamate concentration was significantly high in double-hemorrhage SAH rats from day 1
to day 7 after SAH, especially at day 1, which has an important role in neuronal death (Wu
et al., 2011). In the double-injection SAH rat model, an excessive and prolonged increase
level of glutamate in the CSF and a reduced level of glutamate transporters GTs, including
glutamate/aspartate transporter, glutamate transporter-1, and excitatory amino acid carrier 1
were observed on day 7, which was accompanied by wall thickness of the basilar artery and
neuronal degeneration in hippocampus (Wu et al., 2011). Moreover, the toxicity effect
mediated by glutamate includes excessive activation of the NMDA receptor leading to
massive Ca2+ influx and subsequent apoptotic cell death and necrosis (Owens et al., 1997).
Ionotropic glutamate receptors promoted an excessive influx of sodium with concomitant
cell swelling and edema. It has been reported that the NMDA receptor antagonist, felbamate,
improved neurological performance and limited the BBB disruption in a single-injection rat
model of SAH (Germano et al., 2007).

Currently, various strategies have been explored to target glutamate that include inhibiting
its synthesis, blocking its release from the presynaptic terminals, antagonizing its receptors
on the postsynaptic terminal, and accelerating its reuptake from the synaptic cleft. Blood
glutamate scavengers, oxaloacetate and pyruvate, have been shown to effectively reduce
blood glutamate concentrations, ameliorate BBB disruption, and improve neurological
outcome after SAH in rats (Boyko et al., 2012). Therefore, preventing glutamate-induced
neurotoxicity can potentially improve neurological outcomes after SAH. However, it should
be noted that clinical trials using NMDA receptor antagonists after ischemic stroke have not
lived up to the expectations from the experimental data in animals, because the blockade of
NMDA receptor-mediated synaptic transmission hinders neuronal survival (Ikonomidou and
Turski, 2002).

3.1.3.2 Cortical Spreading Depolarization (CSD): The term “cortical spreading
depolarization” has been characterized by Aristides Leão as a wave in the cortex of the CNS
(Leao, 1947). It is a self-propagating wave of neuronal and glial depolarization, which
travels at a characteristic 2 to 5 mm/min and can be induced by a variety of noxious stimuli
(Somjen, 2001). However, it does not spontaneously originate in normal brain tissue. CSD
near-completely results in a breakdown of ion gradients and a sustained depolarization in
individual metabolic impact observed as a result of cytotoxic edema after SAH (Canals et
al., 2005; Dijkhuizen et al., 1999; Dreier et al., 1998; Takano et al., 2007). The magnitude of
CSD-induced the disturbances of electrical, ionic, and metabolic is even larger than those of
epileptic seizure activity (Dreier, 2011). CSD results in massive ion translocation between
the intra- and extracellular space, redistribution of neurotransmitters, neurons swelling,
distortion of dendritic spines, slowing of electrical potential, and silencing of electrical
activity (Dreier, 2011; Somjen, 2001). Furthermore, CSD is associated with severe
vasoconstriction (Dreier et al., 1998). Under conditions similar to those of SAH, in the
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presence of extravascular hemoglobin and elevated extra-cellular K+ or low glucose, CSD
causes a vascular response ranging from hyperemia to hypoperfusion. The combination of
decreased CBF and increased energy requirements imposed by CSD may further worsen
neuronal injury (Strong et al., 2007). Thus, CSD represents an electrical circle between
intra- and extra-cellular space, and represents a biochemical and morphological alteration
after SAH.

Unequivocal electrophysiological evidence indicates that CSD frequently occurs in a clinical
setting after SAH (Sanchez-Porras et al., 2013): During the past few years, several studies
using subdural electrode strips have confirmed the presence of CSD in the cortex of patients
with SAH (Dreier et al., 2006; Schlenk et al., 2008). Neocortical application of a solution
containing hemoglobin with high K+ or a low level of glucose triggered CSD (Dreier et al.,
2000). Thus, CSD can be ignited by intense neural activity resulting in increases of
extracellular K+ and excitatory neurotransmitters.

In vivo, the noncompetitive NMDA receptor antagonist MK-801 inhibited CSD propagation
under physiological conditions, but an elevated baseline [K+]o reduced the efficacy of
MK-801 on depolarization (Petzold et al., 2005b). Furthermore, antagonists of NMDA
channels or voltage-gated Na+ channels or certain types of Ca2+ channels can postpone or
mitigate CSD (Addae et al., 2011). The recent demonstration that SAH is associated with
waves of CSD has revealed yet another potential mechanism for DCI after SAH (Sanchez-
Porras et al., 2013).

In view of experimental and their clinical evidence, Dreier et al. proposed that clustered
CSD with prolonged periods of depression is an early indicator of the start of delayed
neurological deterioration after SAH (Dreier et al., 1998; Dreier et al., 2006). However, at
the present an important issue is whether CSD is a possible new culprit for DCI, which
would require a more comprehensive understanding of CSD after SAH. If CSD is an early
manifestation of reversible neuronal dysfunction after SAH, then therapies that suppress
CSD may lead to decreased DCI and eventually improved clinical outcomes. However, if
CSD is manifested only as a terminal metabolic failure, then treatments targeting CSD may
not revive brain tissue already fated to die.

3.1.3.3 Ion and Ion Channels Change: Approximately 20% of the body’s resting
metabolism is consumed by the brain to establish ionic gradients (Mies and Paschen, 1984).
Several different ion channels are expressed in cerebrovascular myocytes, including those
for potassium, sodium, calcium, and often ignored anions, specifically, chloride. The
myocytes control cerebral autoregulation. More specifically, they regulate resting membrane
potential, vascular diameter, and vascular tone. Ionic distribution in the intra- and extra-
cellular space and ion channel expression in the brain is rapidly and severely impaired after
SAH, which thereby promotes a disturbance in electrical activity (Kamp et al., 2012).

3.1.3.3.1 Potassium (K+) and Its Channels: A high level of serum K+ has been detected
after SAH and this varies by gender (Fukui et al., 2004). K+ can be released into the CSF
from the blood clot in the subarachnoid space due to a decrease in sodium pump activity.
Microthrombosis, endogenous digitalis-like compounds, as well as activation of neuronal K+

channels play a key role in the rise of basal K+ after SAH (Dreier et al., 2000). Subarachnoid
hemoglobin combined with a high concentration of K+ causes widespread constriction of
cerebral arteries and a decrease in CBF, eventually leading to cell necrosis in the cortex.
Several authors have emphasized the role of loss of functional voltage-gated K+ channel
(Kv) in arterial constriction in dog double-injection SAH models (Jahromi et al., 2008;
Weyer et al., 2006). For instance, Kv1.5, Kv2.1 and Kv2.2 transcripts and protein levels
were reduced in basilar arteries of dogs in response to SAH, suggesting that Kv dysfunction
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contributes to the pathogenesis of delayed cerebral vasospasm after SAH (Aihara et al.,
2004; Jahromi et al., 2008). Furthermore, Ishiguro et al. demonstrated downregulation of
Kv1.5 protein in rabbit cerebral arteries after oxyhemoglobin exposure (Ishiguro et al.,
2006). The study also showed that oxyhemoglobin-induced suppression of Kv1.5 channels
was mediated by increased tyrosine phosphorylation-dependent trafficking of the channels
from the cell surface (Ishiguro et al., 2006). Therapeutic manipulation of the K+ channels
has been attempted to reduce vasospasm after SAH. The KATP channel activator,
levcromakalim, or endogenous activator, calcitonin gene-related peptide, displayed
vasorelaxation after SAH in dogs, rabbits and monkeys (Ahmad et al., 1996; Sugai et al.,
1999; Zuccarello et al., 1996). However, it failed to significantly attenuate vasospasm to a
greater degree than that provided by standard care in a randomized multicenter single-blind
clinical trial.

3.1.3.3.2 Sodium (Na+) and Related Syndromes: Hyponatraemia, which can occur in 10–
30% of patients with SAH, is strongly linked to adverse outcomes and should be avoided in
all victims of SAH (Naval et al., 2006). It is an early biochemical change seen in patients
with SAH that is difficult to remedy (Berendes et al., 1997). Patients with hyponatraemia are
at higher risk of developing cerebral ischemia and infarction, and mortality (Hasan et al.,
1990; Wijdicks et al., 1985). The cerebral salt-wasting syndrome (CSWS) and inappropriate
secretion of anti-diuretic hormones (SIADH) are suggested as the mechanisms underlying
SAH-induced hyponatremia (Bruder et al., 2009), though still debated (Benvenga, 2006).
CSWS is probably related to the outcome of the patients with severe SAH, and can occur
due to high sympathetic tone, hyperreninemic hypoaldosteronism syndrome, and enhanced
natriuretic peptides release (Audibert et al., 2009). Atrial natriuretic peptide (ANP) has been
suggested as a causal natriuretic factor in CSWS. By the time a patient is admitted, both
plasma ANP and brain natriuretic peptide (BNP) have been found to be increased, whereas
levels in CSF were unaffected (Espiner et al., 2002).

Kleindienst et al. concluded that ICP generates the delayed CSWS, and ADH release does
not mediate natriuresis in a rat model of SAH (Kleindienst et al., 2012). SIADH, the most
common etiology of hyponatremia (Sherlock et al., 2006), is a condition in which the body
produces excessive antidiuretic hormones and clinically manifests with hypertonic urine,
hypo-osmolar serum, and apparent euvolemia without renal, adrenal, or thyroid disorders
(Kao et al., 2009). In a retrospective case-note study consisting of 316 patients with SAH,
Sherlock et al. found that 56.6% of patients developed hyponatremia, which was related to
SIADH (Sherlock et al., 2006).

For clinicians it is important to distinguish between the two conditions that may account for
hyponatremia after SAH, because the treatment strategy is opposite for the two conditions:
They should restrict fluids and sodium in cases of CSWS but order increase sodium intake
for SIADH. Many biochemical parameters are similar between CSWS and SIADH, and a
compensatory hypersecretion of ADH to correct fluid depletion can occur with CSWS. The
status of blood volume is helpful to differentiate between these two situations; patients with
CSWS are hypovolemic, but SIADH patients are either normovolemic or hypervolemic
(Audibert et al., 2009).

3.1.3.3.3 Calcium (Ca2+) Channels and Magnesium (Mg2+): Ca2+ is a cofactor in multiple
intracellular processes. Disruption of intracellular Ca2+ regulation and Ca2+ overloading
have been hypothesized to play an important role in the process of cell injury, which results
in vasoconstriction and sometimes cell death following exposure to oxyhemoglobin. In
cultured cerebrovascular smooth muscle cells from primates, a significant increase in free
intracellular Ca2+ was observed as early as 2 min after application of oxyhemoglobin and
remained continuously elevated for 7 d (Takanashi et al., 1992). In vivo studies suggest that
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intracellular Ca2+ starts to increase at a very early stage – as soon as 15 min after SAH
(Ishiguro et al., 2008; Kohno et al., 1991; Meguro et al., 2001). Endothelin and
oxyhemoglobin, but not bilirubin, induced acute dose-dependent increases in intracellular
Ca2+ concentration in cultured vascular smooth muscle cells (Takenaka et al., 1991a;
Takenaka et al., 1991b). It has been shown that hemolysate released Ca2+ from endoplasmic
reticulum and promoted Ca2+ influx from voltage-independent Ca2+ channels in endothelial
cells of cerebral arteries (Zhang et al., 1996). Moreover, non-L-type Ca2+ channels play an
important role in the oxyhemoglobin-induced rise in intracellular Ca2+ to produce acute
vasoconstriction after exposure of the vessel to blood (Takenaka et al., 1991a). Long-term
oxyhemoglobin exposure enhanced the expression of voltage-gated calcium channels
(VGCC), pointing toward important roles for VGCC in delayed vasoconstriction after SAH
(Ishiguro et al., 2008).

In addition to R-type VGCCs, the components of low-voltage-activated (T-type) channels
Cav3.1 and Cav3.3 have been shown to be significantly increased in the dog basilar artery
after SAH (Nikitina et al., 2010); however the functional significance of this kind of channel
in SAH is a matter of debate (Cook et al., 2012). Intracellular Ca2+ can activate
endonucleases responsible for the cleavage of double stranded DNA (Moss et al., 1997).
Furthermore, increased intracellular Ca2+ can trigger apoptosis of endothelial and smooth
muscle cells, which is one of the factors attributed to BBB disruption and vasospasm
(Macdonald et al., 1995; Zhang et al., 2013b; Zhang et al., 2001). In addition, a defect in the
ionic mechanisms regulating Ca2+ permeability in the membrane of smooth muscle after
SAH impairs smooth muscle relaxation (Aihara et al., 2004).

Treatments that target Ca2+ dysregulation have been explored in clinical and preclinical
studies. In a model of SAH, glibenclamide, a selective antagonist of the Sur1-NCCa-ATP
channel, attenuated several pathologic effects associated with the inflammatory response in
response to extravasated blood (Simard et al., 2009; Simard et al., 2012b). Nimodipine, an
L-type Ca2+ channel antagonist, is currently the only pharmacologic agent that has been
shown to consistently improve neurological outcomes. However, it has not been found to be
effective in clinical trials of cerebral vasospasm in patients with SAH (Dorhout Mees et al.,
2007).

Mg2+ is a physiological antagonist of Ca2+, which plays a crucial role in maintaining the
intracellular concentration of Ca2+. Moreover, it is neuroprotective and has a well
documented clinical profile (McLean, 1994). The total level of Mg2+ in serum normally
remained unchanged, but the level of biologically active free ionized Mg2+ decreased after
traumatic brain injury (Memon et al., 1995). The various mechanisms of action of Mg2+

include reduction of excitatory amino acid release, blockage of the NMDA-glutamate
receptor and voltage-dependent calcium channels, inhibition of platelet aggregation,
inhibition of endothelin-1 synthesis, vasodilation through the release of endothelial nitric
oxide (NO), and increased synthesis of prostacyclins (Berthon et al., 2003; Nadler et al.,
1987; van den Bergh et al., 2004; Yang et al., 2000). Both animal studies and pilot clinical
trials using magnesium sulfate have reported trends toward improved outcomes (Mori et al.,
2011, 2012). In the Field Administration of Stroke Therapy–Magnesium (FAST-MAG) pilot
trial, prehospital administration of magnesium is feasible and safe in acute ischemia stroke
patients (Saver et al., 2004). Therefore, the results from FAST-MAG phase III are worthy of
exception. However, intravenous magnesium sulfate administered after SAH did not
improve the clinical outcome for patients in a phase 3 randomized, double-blind, placebo
controlled, multicenter study (MASH-2 and IMASH) (Dorhout Mees et al., 2012; Wong et
al., 2010). Likewise, intravenous magnesium sulfate did not benefit patients with ischemic
stroke and intracerebral hemorrhage in the Intravenous MAGnesium Efficacy in acute
Strokes (IMAGES) trial (Muir et al., 2004). There are some possible reasons for the
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unsatisfactory results from the IMAGES trial. First, magnesium solutions were administered
at the median time of 7 hr after stroke, which might be somewhat longer than the short-time
window. In fact, only 3% of participants received the treatment within 3 hr of stroke onset.
Second, unfortunately, the IMAGES trial did not measure the initial stroke severity, which is
the most important predictor for outcomes. Finally, the detrimental effects from magnesium
treatment in some patients may obscure the beneficial effects in others.

3.1.3.3.4 Chloride (Cl−), a Neglected, but Important, Ion: Injury to the CNS by SAH
results in a loss of ionic homeostasis that can lead to neuronal death. An increase in
intracellular cations has been well established, but there are no studies of changes in
intracellular anions after SAH (Galeffi et al., 2004). A rise in intracellular Cl− has been
observed in other CNS diseases except SAH, such as ischemia, seizure, neurodevelopmental
disorders, and pain (Ben-Ari et al., 2012; Galeffi et al., 2004; Yeo et al., 2013; Zhang et al.,
2013c). One of the major consequences of a rise in intracellular Cl− is that GABAA becomes
depolarizing, whereas it is normally hyperpolarizing. A loss of GABAA-mediated inhibition
may contribute to neuronal hyperexcitability observed after stroke, leading to neuronal
damage (Gao et al., 1999; Urban et al., 1989; Zhang et al., 2013c). The Na-K-Cl
cotransporter and the K-Cl cotransporter play a particularly important role in controlling the
intracellular concentration of Cl− (Ben-Ari et al., 2012). Thus, these two ion channels are
considered novel targets for brain edema (Walcott et al., 2012).

Cl− is a major anion in the brain (Terry, 1994), but to the best of our knowledge, there are no
studies addressing changes in chloride and the expression of its cotransporter in
pathophysiological events of SAH. As previously mentioned, a balance in intracellular Cl−

is necessary for the hyperpolarizing effects of GABAA in the adult brain. It is possible that
attenuation of neuronal concentration of Cl− post-SAH prevents the depolarizing effects of
GABAA, thereby influencing secondary brain injury. Future studies are needed to explore
changes in intracellular Cl− and its functional roles in SAH-induced neuronal death, which
may provide a novel therapeutic target for SAH treatment.

3.1.3.3.5 Promising Ion Channels: The hyperpolarization-activated/cyclic nucleotide
(HCN) channels are important regulators of neuronal excitability and network activity in a
variety of nervous system diseases, such as neuropathic pain, epilepsy, and SAH (Jung et al.,
2007; Tibbs et al., 2013). Li et al. found that oxyhemoglobin-induced neuronal
hyperexcitability was mediated by HCN channels (Li et al., 2012). An important observation
made in the study was that whole-cell recordings in rat brain slices indicated that perfusion
of bloody CSF promoted neuronal hyperexcitability and blocked HCN currents in CA1
pyramidal neurons by scavenging NO (Li et al., 2012). Given the evidence of a potential
role in SAH, these channels may emerge as an attractive therapeutic target to attenuate
neurovascular dysfunction after SAH; however, this necessitates more research.

Another promising ion channel that warrants further investigation in regard to SAH is the
purinergic receptor. Cytotoxic events following SAH, such as extracellular accumulation of
ATP, may activate the purinergic receptor to stimulate the innate immune response and
apoptotic/pyroptotic cell death as seen in ischemic stroke and CNS trauma (Burnstock et al.,
2011; Dahl and Keane, 2012). Bloody CSF elicits a steep, transient rise in Ca2+ by
activating ATP-sensitive P2 receptors in human astrocytes culture (Kasseckert et al., 2013).
Depending on the activation scheme, in vivo purinergic receptors are non-selective cation
channels (Locovei et al., 2006; Sperlagh et al., 2006). These receptors result exclusively in
the formation of non-selective large ion pores, termed pannexin (Locovei et al., 2007).
Based on the properties of these receptors, purinergic signaling may be a potential
therapeutic target for limiting ion distribution after SAH.
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3.1.4 Oxidative Stress: An Opportunity for Intervention—Reactive oxygen radicals
are a key mediator of SAH pathology. Mounting data supports the early generation of
reactive oxygen species (ROS) and oxidative stress after a SAH. The ROS produced include
superoxide anion (O2•), hydroxyl radical (OH•), hydrogen peroxide (H2O2), NO, and
peroxynitrate(ONOO•) (Asano and Matsui, 1999; Ayer and Zhang, 2008; Gaetani et al.,
1994; Lin et al., 2006; Marzatico et al., 1993; Petzold et al., 2005a; Schulz et al., 2000). The
major origin of ROS following SAH is the leakage of O2• from disrupted mitochondria due
to a disturbance in the electron transport chain, and from the auto-oxidation of hemoglobin
upon the lysis of erythrocytes into the subarachnoid space (Asano, 1999; Marzatico et al.,
1993; Piantadosi and Zhang, 1996; Sercombe et al., 2002). Other sources of ROS include
increased nitric oxide synthase (NOS) activity (Ayer and Zhang, 2008; Sehba et al., 2004a),
hypoxic conversion of endothelial xanthine dehydrogenase to xanthine oxidase (Sermet et
al., 2000), lipid peroxidation (Schulz et al., 2000), and an upregulation of NADPH oxidase
post-SAH (Liu et al., 2007). Additionally, high levels of Ca2+, Na+, and ADP in the
damaged cells stimulate excessive production of ROS by mitochondria (Martin et al., 2011;
Viola and Hool, 2013).

There are several enzymatic antioxidant systems that are activated to combat free radical
production during the typical cellular damage that occurs after SAH. Superoxide dismutase
(SOD), glutathione peroxidases, and catalase are the major enzymatic scavengers in brain
tissue (Lewen et al., 2000). However, levels of those endogenous antioxidant enzymes
normally are not adequate to eradicate excess free radical formation. In both experimental
models and clinical studies, there is an imbalance between the intrinsic antioxidant system
and the production of ROS in the brain after SAH (Gaetani et al., 1998a; Kaynar et al., 2005;
Marzatico et al., 1993; Marzatico et al., 1998). Thus, oxidative stress has been speculated to
be one of the factors involved in the short- and long-term pathogenesis of SAH (Asaeda et
al., 2005; Liu et al., 2007; Pyne-Geithman et al., 2009).

A large number of studies have provided evidence that oxidative stress plays a significant
role in EBI (Zhuang et al., 2012). Experimental studies in rats indicate that the activities of
enzymatic and non-enzymatic antioxidant systems (Cu-Zn and Mn SOD) decreased 1 hr
after SAH and remained so until 48 hr later (Marzatico et al., 1993). The metabolic products
of lipid peroxidation increased from 1 to 6 hr after SAH (Gaetani et al., 1990). Similarly, in
humans, a decrease in antioxidant capacity and an increase in lipid peroxidation products
were found within 72 hr after ictus and correlated well with poor clinical status and eventual
outcome (Gaetani et al., 1997; Gaetani et al., 1998a; Hsieh et al., 2009; Kamezaki et al.,
2002). The nuclear factor E2-related factor 2/antioxidant-response element (Nrf2/ARE)
pathway, an important antioxidant defense (Zhang et al., 2013a), was activated in the brain
after SAH, playing a beneficial role in EBI (Chen et al., 2011b; Zhao and Aronowski, 2013).

ROS can damage elements of the neurovascular unit by promoting lipid peroxidation,
protein breakdown, and DNA damage (Ostrowski et al., 2006a). Some of the consequences
of oxidative stress after SAH include neuroinflammation, disruption of the BBB, and
production of spasmogens (Gaetani et al., 1990; Yun et al., 2013). Intracellular ROS activate
NF-κB to upregulate NOS 2 (Chen et al., 2012). In addition, ROS can activate apoptotic
signals, including p53, caspase-3 and caspase-9 to promote apoptotic cell death (Lu et al.,
2013). Overexpressing CuZn-SOD in transgenic mice prevented apoptotic cell death (Matz
et al., 2000), and reduced mortality via activation of Akt/GSK3 beta survival signaling after
SAH (Endo et al., 2007).

Therapeutic avenues to reduce EBI and vasospasm after SAH by targeting oxidative stress
have been explored. Treatment with hydrogen, a medical gas used in novel experimental
studies of SAH, alleviated EBI and vasospasm by decreasing the oxidative stress-induced
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injury (Hong et al., 2012; Zhan et al., 2012). Hyperbaric oxygen suppressed NADPH
oxidase and the level of oxidative stress in cerebral tissues at 24 hr after SAH (Ostrowski et
al., 2006b). Although systemic antioxidants showed substantial success in preventing
oxidative stress and decreasing vasospasm in experimental SAH, there has been minimal
success in translating this approach into clinical trials (Germano et al., 1998; Zhang et al.,
2010). Also, oxidative stress seems to occur soon after SAH; thus, an effective therapeutic
window is the biggest challenge for clinical translation. It is possible that the injury caused
by free radicals may occur even before a patient can receive effective treatment (Haley et al.,
1997; Kassell et al., 1996; Lanzino and Kassell, 1999; Lanzino et al., 1999), which is a
possible explanation as to why clinical trials of free radical scavengers have failed.

3.1.5 Inflammation: A Promising Area of Research for New Treatments—A
burgeoning body of researches suggests that many components of the inflammatory
response contribute to the progression of an injury after an aneurysm ruptures. Microglias
are the resident immunocompetent and phagocytic cells in the CNS, which play a crucial
role in neuroinflammation (Kim et al., 2013; Xiao et al., 2013). Similar to microglias,
astrocytes are capable of synthetizing and secreting inflammatory factors, such as cytokines
and chemokines (Hutchison et al., 2013). The existing literature provides evidence that a
variety of factors that are linked to the development of inflammatory lesions. It emphasizes
brain injury mediated by inflammatory cells, which proliferate in response to the secretion
of cytokines from leukocytes and glia cells, which itself is in response to the free radical-
inducing properties of extravascular hemoglobin in the subarachnoid space.

3.1.5.1 Cytokines: A variety of inflammatory cytokines, including interleukin (IL)-1α,
IL-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α, have been shown to be strongly
associated with brain injury in both patients and animals after SAH (Gaetani et al., 1998b;
Greenhalgh et al., 2012; Larysz-Brysz et al., 2012). High-mobility group box 1, a potent
proinflammatory mediator, was increased after SAH and has been proposed to be a useful,
complementary tool for predicting functional outcome and mortality after SAH (Zhu et al.,
2012). In addition, convincing data implicate cytokines in the development and maintenance
of neurovascular injury. IL-1β, IL-6, and matrix metalloproteinase (MMP)-9 expressions
were elevated over time. They showed an early increase at around 6 hr, and a late peak
between 48–72 hr, post-SAH in the cerebral arteries. This occurred via early activation of
the mitogen activated protein kinase kinase (MEK)- extracellular signal-regulated kinase 1/2
(ERK1/2) pathway (Maddahi et al., 2012). A significant difference was observed in the
mRNA expression of IL-1α, IL-6, and IL-8 in the canine basilar artery over the course of
days after SAH, with maximal expression during the peak of vasospasm (Aihara et al.,
2001).

Additionally, the role of NF-κB, a key transcriptional regulator of inflammatory genes, has
been elaborately studied after SAH. You et al. recently demonstrated that the activated NF-
κB in neurons plays an important role in regulating the expression of inflammatory genes in
the brain and ultimately contributes to delayed brain injury after SAH (You et al., 2013).

A number of anti-inflammatory strategies have been utilized to reduce inflammation after
SAH. Pyrrolidine dithiocarbamate, an NF-κB inhibitor, reduced the levels of TNF-α and
IL-1β mRNA 5 d after SAH in a rabbit model and thereby suppressed the post-SAH
inflammatory response (You et al., 2013). Neutralization of IL-1β by an anti-rat antibody
resulted in a significant decrease of both endothelin-1 and TNF-α, but not of IL-6, in the
peripheral blood (Larysz-Brysz et al., 2012). Furthermore, inhibition of IL-1β by its
pharmacological antagonist attenuated EBI via the inhibition of c-Jun N-terminal kinase
(JNK)-mediated induction of MMP-9 and consequent preservation of tight junction protein
zonula occludens-1 after SAH (Sozen et al., 2009). Thus, a novel, safe, and effective anti-
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inflammatory drug might be a promising strategy to improve the outcome of patients with
SAH (Sercombe et al., 2002).

3.1.5.2 Chemokines: Chemokines are a class of small cytokines or signaling proteins that
induce the migration of nearby blood borne inflammatory cells toward the source (Lakhan et
al., 2009; Li and Ransohoff, 2008; Reaux-Le Goazigo et al., 2013). Consequently, these
molecules play an important role in cell recruitment in the damaging inflammatory
processes after stroke. They also are involved in cell to cell communication (Hughes et al.,
2002; Kim et al., 1995).

Expression of chemokines, such as monocyte chemotactic protein-1 (MCP-1) (Wang et al.,
2011), chemokine (C-C motif) ligand 5 (CCL5) (Smithason et al., 2012), and chemokine (C-
X-C motif) ligand 1 (CXCL1), are strongly upregulated in the cortex following SAH. The
elevation of chemokines CCL5 and CXCL1 were suppressed in mice with myeloid cell
depletion after SAH (Smithason et al., 2012). The level of MCP-1 was increased in a time
course parallel to the development of cerebral vasospasm in a prospective clinical study
(Kim et al., 2008). These findings suggest that the administration of specific MCP-1
antagonists might prevent cerebral vasospasm and improve the poor outcome caused by
SAH (Lu et al., 2009). It also implies that serum MCP-1 could be a possible biomarker for
SAH.

Another report that evaluated the human cerebral response of the neurotrophins fibroblast
growth factor-2 (FGF2) following SAH shows that FGF2 peaked 2 d after SAH. This study
also identified the potential threshold values for the chemokine to serve as a monitoring
indicator in the neurosurgical intensive care unit (Mellergard et al., 2010). In conclusion,
chemokines are a fascinating family of peptide mediators that contribute to neuron-neuron,
glia-glia, or neuron-glia communications relevant to SAH and are possible targets for
developing new therapeutic approaches for SAH.

3.1.5.3 Cellular Adhesion Molecules: Mounting evidence shows that the leukocyte-
endothelial interaction exerts a crucial effect in the pathogenesis of SAH. Elevated leukocyte
count has been reported to increase the risk of experiencing symptoms of vasospasm, and it
was closely associated with a 90% rate of poor outcomes. Adhesion molecules are important
mediators of inflammation after stroke, and essentially help cells stick to each other or to
their surroundings. They are proteins located on the surface of cells including the
immunoglobulin superfamily, integrins, cadherins, and selectins, all of which have been
detected in patients with SAH. These adhesion molecules are well known to mediate
endothelial capture, adhesion, extravasation of leukocytes, and recruitment to the site of
injury (Chaichana et al., 2010; Polin et al., 1998; Yang et al., 2012).

Studies have demonstrated that the levels of soluble forms of E-selectin, intercellular
adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) were
significantly elevated in the CSF and serum of patients after SAH as compared to normal
controls (Kubo et al., 2008). ICAM-1 is heavily glycosylated and possesses binding sites for
a number of immune-associated ligands. ICAM-1 binds to LFA-1 (Lymphocyte Function-
Associated Antigen-1), a glycoprotein receptor found on the surface of leukocytes (Marlin
and Springer, 1987). When activated, leukocytes bind to endothelial cells via ICAM-1/
LFA-1 and then transmigrate into brain tissue through the vascular endothelium (Yang et al.,
2006).

In a rat model of SAH, the expression of ICAM-1 was enhanced in the endothelial layer of
the basilar artery (Handa et al., 1995). The level of ICAM-1 mRNA increased early soon
after SAH, and peaked around day 7 in parallel with the persistent contraction of the basilar
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artery (Aihara et al., 2001). The anti-ICAM-1 antibody reduced vasospasm by 22%
following SAH (Bavbek et al., 1998). 6-mercaptopurine was effective in preventing and
reversing arterial narrowing by inhibiting ICAM-1 and E-selectin in a rodent model of SAH
(Chang et al., 2010).

E-selectin and P-selectin may also play an important role in mediating SAH-induced
inflammation. A marked increase in the concentration of E-selectin was observed in both the
CSF and serum from patients with SAH as compared to control (Tanriverdi et al., 2005). It
was especially high in patients who later developed moderate to severe vasospasm (Polin et
al., 1998). Furthermore, it has been reported that the monoclonal antibody against E-selectin
has a therapeutic effect similar to that of the anti-ICAM-1 antibody in terms of attenuating
vascular injury after SAH (Lin et al., 2005). A higher serum level of neutrophil P-selectin
glycoprotein ligand-1 at time of admission suggests an impending DCI in patients with
aneurysmal SAH (Yang et al., 2012).

Additionally, a new target for SAH is the adhesion molecule vascular adhesion protein-1
(VAP-1), a novel type of adhesion molecule with semicarbazide-sensitive monoamine
oxidases activity. Mounting evidence suggests that VAP-1 is an inflammation-inducible
endothelial glycoprotein. The expression and role of VAP-1 has been explored in both
patients and animal models of stroke (Airas et al., 2008; Ma et al., 2011). However, there are
no studies exploring the role of VAP-1 in SAH, which has the potential to be a target of
pharmaceutical interest.

3.1.5.4 Inflammasomes: An Emerging Inflammatory Mediator: The nucleotide-binding
domain, leucine-rich repeat containing (NLR) recently received attention because of its role
in innate immune regulation and genetic linkage to human inherited autoinflammatory
syndromes (Jha and Ting, 2009). Inflammasome complexes that are assembled in response
to danger signals lead to the autoactivation of pro-caspase-1, which in turn activates pro-
IL-1β/IL-18 (Deroide et al., 2013; Lippai et al., 2013). Since there are more than 20 NLR
members, the next step would be to identify which of the inflammasomes are involved in the
SAH pathology. Understanding inflammasome pathways may provide insight into the
development of neuroinflammation after SAH.

3.1.6 Apoptosis: A Target for Future Therapeutic Intervention—Apoptosis is a
potentially reversible process that is characterized by energy-dependent programmed cell
death to dispose of redundant cells (Taylor et al., 2008). Apoptosis after SAH may be caused
by elevated ICP, the neurotoxicity of blood breakdown components, ischemia, and
reperfusion, as well as by acute vasospasm (Bederson et al., 1998; Matz et al., 2001). Even a
brief brain insult is sufficient to trigger complex cellular events that subsequently can lead to
progressive apoptotic cell death.

Apoptosis was first identified in a patient who died of SAH-induced cerebral vasospasm
(Zubkov et al., 2000). A number of studies have since revealed apoptotic pathways and
cascades within the cortical, subcortical or hippocampal neurons, endothelium, and vascular
cells following the onset of SAH (Ostrowski et al., 2006a). A number of intrinsic and
extrinsic apoptotic pathways are activated after SAH, including the death receptor pathway,
the caspase-dependent and -independent pathways, as well as the mitochondrial pathway
(Cahill et al., 2006; Cheng et al., 2009; Endo et al., 2007; Hasegawa et al., 2011b).

3.1.6.1 Apoptosis in Neuronal Cells: If the initial bleed following SAH is severe enough to
block blood flow into the brain, as in the case of a global stroke, it is unlikely that the
cerebral tissue will survive. Apoptosis might play an important role in SAH pathology, and
neuronal apoptosis can occur after SAH (Cahill et al., 2006). Matz et al. injected hemolysate
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into the subarachnoid space and then observed apoptotic cells in the neocortex closest to the
injection site (Matz et al., 2001). In an endovascular perforation rat model of SAH,
pathological changes of apoptosis were noted in most brain regions, especially in the basal
cerebral cortex and hippocampus (Park et al., 2004). Caspase-3 and apoptotic cells were
present not only in the basal cerebral cortex, which was exposed to bloody CSF, but were
also evident in the hippocampal dentate gyrus and CA1 region, which is the region most
vulnerable to damage. Further, apoptosis related proteins, including apoptosis-inducing
factor, cytochrome C, P53, and caspases, have been shown to be activated after SAH
(Simard et al., 2012a; Yuksel et al., 2012). Endoplasmic reticulum stress has also been
implicated in orchestrating neuronal apoptosis via C/EBP homologous protein (CHOP) in
response to SAH (He et al., 2012a).

The role of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38,
in EBI induced apoptosis has been studied. JNK and p38 were activated in response to
apoptotic cascades (Hasegawa et al., 2011b), while ERK1/2 was significantly decreased in
the dentate gyrus but, not in the cortex or hippocampus (Lin et al., 2009). Yatsushige et al.
demonstrated the neuronal programmed death was mediated through the activation of JNK/
c-Jun pathway (Yatsushige et al., 2007). MAPKs alter both a variety of proapoptotic
proteins, including c-Jun, p53, bim, and bax, and anti-apoptotic proteins, such as Bcl-2 and
Bcl-xl following SAH. Furthermore, the “tropomyosin-related kinase” receptor family is
usually associated with cell survival, differentiation and apoptosis (Boulle et al., 2012).
Preservation of tropomyosin-related kinase B signaling by sodium orthovanadate attenuates
neuronal apoptosis after SAH (Hasegawa et al., 2011a).

Akt, a serine/threonine kinase, is one of the key anti-apoptotic signaling molecules
downstream of phosphoinositide 3-kinase, which mediates a protective effect against
neuronal apoptosis and vasospasm after SAH (Duris et al., 2011; Endo et al., 2006;
Sugawara et al., 2008; Zhuang et al., 2011). An elevated expression of phospho-Akt and
phospho-GSK3βwas described in the cerebral tissue after SAH, but it was not sufficient to
protect the brain. Administration of pharmacological agents, such as the α7 nicotinic
acetylcholine receptor agonist and simvastatin, enhanced p-Akt and p-GSK3β and attenuated
neuronal apoptosis (Cheng et al., 2010; Duris et al., 2011). Recently studies have shown that
anti-apoptotic drugs ameliorate negative outcomes after SAH in animal models (Zhou et al.,
2004; Zubkov et al., 2002). Current anti-apoptotic therapies for SAH focus on the MAPK
pathway (Cahill et al., 2007; Suzuki et al., 2010b), the tumor suppressor p53 (Chen et al.,
2011a; Li et al., 2010), and hypoxia inducible factor-1 (HIF-1) target genes. Additionally,
intravenous mesenchymal stem cell administration in vivo provided neuroprotective effects
by ameliorating neural cell apoptosis in SAH animal models (Khalili et al., 2012).

3.1.6.2 Apoptosis in Endothelial Cells and Blood Brain Barrier (BBB) Disruption:
Under normal physiological conditions, the BBB permits only water, ions, small lipophilic
molecules, and a limited number of nutrients transported via receptor-mediated transcytosis
(i.e., glucose, some amino acids, heparin, and transferrin) to enter the brain (Broadwell et
al., 1996). Plasma-borne macromolecules and most cellular elements are prevented from
crossing the BBB because of continuous-type endothelial cells and the junction complexes
that maintain the integrity of the BBB. A remarkable increase in capillary permeability
occurs at a very acute stage after experimental SAH (Peterson et al., 1990). Increased
extravasation of Evans blue dye in the ipsilateral hemisphere occurred as early as 3 hr after
SAH in rats, with a maximal extravasation at 48 hr (Doczi et al., 1986a; Doczi et al., 1986b).
A difference in barrier disruption of the intraparenchymal vessels located from proximal to
distal to cisternal clots was detected following SAH in rabbits (Johshita et al., 1990). Early
impairment of the BBB contributes to vasogenic edema, which results in brain volume
expansion and prolongs ICP elevation after SAH.
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Endothelial cells are an important component of the BBB and essential for maintaining the
integrity of the BBB. Apoptotic death of endothelial cells can lead to destruction of the BBB
and directly exposes smooth muscle cells to harmful blood components that can ultimately
worsen the consequences of SAH. Zubkov et al. introduced the concept of apoptosis of
cerebral endothelial cells in relation to a delayed cerebral vasospasm in a patient with SAH
(Zubkov et al., 2000). Early apoptosis of endothelial cells may trigger, aggravate, and
maintain delayed cerebral vasospasm (Chen et al., 2008; Zubkov et al., 2001). The
mechanism of apoptosis in endothelial cells involves the TNF-α receptor-1 and the
caspase-8 and caspase-3 pathways. Caspase-3 activation and DNA fragmentation in the
endothelial cells starts within 10 min of SAH (Friedrich et al., 2012b). Additionally,
upregulated p53 modulation of apoptosis induced apoptosis of microvascular endothelial
cells in the hippocampus may play a significant role in the disruption of the BBB that occurs
after SAH (Yan et al., 2011).

A variety of anti-apoptotic strategies have shown favorable results in treating endothelial
apoptosis after SAH. Beneficial effects have been reported upon inhibition of caspase
activity in endothelial cells after SAH (Gules et al., 2003), and caspase inhibitors may also
have a potential role in the treatment of cerebral vasospasm (Zhou et al., 2004). For
example, CHOP siRNA reduced apoptosis signaling effectors, bim and caspase-3, to
ameliorate EBI. Furthermore, inhibition of CHOP effectively combats apoptotic
mechanisms of cerebral vasospasm set in the basilar artery endothelia (He et al., 2012b). The
beneficial effect of recombinant human erythropoietin on vasospasm after SAH may be
related to its anti-apoptotic effects of the endothelial cells in the basilar arteries, mediated in
part by the JAK2/signal transducer and activator of the transcription signaling pathway
(Chen et al., 2009). Treatment with antioxidants such as alpha lipoic acid attenuated the
severity of endothelial apoptosis (Erdi et al., 2011).

3.1.7 Autophagy: A New Player in EBI—Autophagy is a cellular process that causes
degradation of long-lived proteins and organelles and recycling of cellular constituent to
ensure cell survival. It plays a role in regulating the turnover of cellular constituents, which
plays a role in mediating in cell homeostasis. Autophagy has recently been recognized as a
form of cell death that occurs after SAH, as do apoptosis and necrosis. Indeed, Lee et al.
identified the autophagic death of neurons as the third mode of cell death after SAH (Lee et
al., 2009a).

To date, autophagy has been studied extensively in stroke, but only to a limited degree in
SAH. In experimental SAH, autophagy was found to be activated in neurons as early as 6 hr
after experimental SAH (Zhao et al., 2013). Moreover, the conversion of light chain-3 I to
light chain-3 II and expression of beclin-1 increased significantly, thus suggesting that
autophagy is activated during EBI (Lee et al., 2009a; Zhao et al., 2013). However, it remains
an open issue as to whether activation of autophagy is an inducer of death as a part of
harmful response or a stopper of death as a part of an endogenous neuroprotective response
(Carloni et al., 2008; Wen et al., 2008).

After an interaction between apoptosis and autophagy was demonstrated, rapamycin and
simvastatin were tested and shown to inhibit apoptosis by activating post-SAH autophagy
(Zhao et al., 2013). Conversely, ischemic insult triggered autophagy, and thus an autophagic
mechanism may contribute to neuronal injury after cerebral ischemia (Wen et al., 2008).
When autophagy was inhibited by 3-methyladenine and wortmann in SAH rats, neuronal
apoptosis were increased and neurological function deteriorated. Brain edema and disruption
of the BBB were further aggravated, suggesting that autophagy may have a beneficial effect
(Jing et al., 2012; Wang et al., 2012). However, the precise role of autophagy in the
pathogenesis following SAH is requires further investigation, as in other CNS diseases.
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Next, the cross-talk between autophagy (self-eating) and apoptosis (self-killing) merit the
imagination of stroke scientists.

3.1.8 Necrosis: An Unregulated Cell Death—SAH simultaneously activates both
apoptotic and necrotic pathways. Apoptosis and necrosis can be differentiated according to
the morphological and biochemical differences, especially in early membrane disruption.
Conventional knowledge categorizes necrosis to be an accidental and uncontrolled mode of
cell demise, characterized by swollen organelles, increased cell volume, early membrane
integrity loss, and cellular collapse. Currently, necrosis is observed to contribute to a wide
range of pathological forms of cell death following SAH. However, little research effort has
been made to eliminate necrosis after SAH, possibly due to the widely held belief in its
unregulated manner. A study using cultured cells showed a high oxyhemoglobin
concentration induced necrosis in aortic smooth muscle cells, suggesting necrosis
contributes to vascular wall changes after SAH (Ogihara et al., 2001). Oxyhemoglobin also
exerts a necrotic effect on cultured astrocytes (Rollins et al., 2002). Considering the
discrepancy between in vitro study and in vivo studies, animal SAH experiments must be
performed. After continuous superfusion with artificial CSF containing hemoglobin,
necrosis was induced in focal areas of the cortex (Dreier et al., 2000). Additionally, tumor
necrosis factor levels are elevated after SAH, which can lead to necrosis (Lin et al., 2004).
Neuronal necrosis began very early in SAH rat models (Friedrich et al., 2012b). Some
mechanisms are responsible for SAH-induced necrosis. ATP depletion is an initial trigger in
SAH-induced necrotic cell death. The other potential candidates are calcium and ROS. ROS
stimulates oxidative stress that damages lipids, proteins, and DNA, subsequently leading to
mitochondrial dysfunction, ion balance deregulation, rapid loss of membrane integrity, and
finally necrosis. Elevated cytosolic calcium levels result in mitochondrial calcium overload
and activation of calcium-dependent proteases and phospholipases, which trigger necrosis.
Bloody CSF from hemorrhagic patients causes necrosis in cultured human astrocytes via
increased calcium levels. An ATP-sensitive P2 receptor antagonist inhibited the bloody
CSF-induced calcium peak and consequent necrosis (Kasseckert et al., 2013).

Recently, accumulating studies revealed necrosis could be a programmed process like
apoptosis, which challenged the traditional view of necrosis. A new form of non-apoptotic
caspase-independent cell demise, termed as necroptosis, has attracted attention in the CNS
(Fricker et al., 2013). Our next step is to evaluate whether necroptosis is a novel death
pathway after SAH.

3.1.9 Cerebral Edema: A Major Contributor to Poor Outcomes—Global cerebral
edema is a common and important feature of both experimental and clinical SAH (Altay et
al., 2012b; Westermaier et al., 2012). It is evident in 6–8% of patients at admission and
develops in an additional 12% over the first 6 d, as assessed by CT scans (Claassen et al.,
2002; Kassell et al., 1990). Four types of cerebral edema have been characterized:
vasogenic, cytotoxic, osmotic, and interstitial. In SAH, cerebral edema that develops soon
after the initial bleeding could be classified mainly as both a primary vasogenic and
secondary cytotoxic component (Barry et al., 2012). Global cerebral edema after SAH
reflects disruption of the BBB due to the apoptosis of endothelial cells, degradation of the
basal-lamina by proteases, diffuse inflammatory reaction or neurotoxic effects of blood and
its degradation products, ischemic injury due to transient ictal cerebral circulatory arrest,
abnormal autoregulation due to microvascular damage, or dysfunction of vasomotor centers
located in the brainstem (Claassen et al., 2002; Keep et al., 2005; Sehba et al., 2007).

In experimental studies, cerebral edema has historically been quantified as a change in the
percentage of water content in brain (i.e., water content divided by wet weight) (Adachi and
Feigin, 1966). However, that measurement can be influenced by the technical abilities of the
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investigator and by other conditions, such as room temperature, humidity, and air flow.
Therefore, if not measured carefully, the number can, be misleading as “small” changes in
the percentage water content actually mirror much larger changes in brain swelling. Thus,
constant temperature and humidity are needed when measuring brain edema using the dry/
wet method. Furthermore, some investigators have even suggested that it would be valuable
to find a new equation that might better reflect the impact of edema after SAH (Keep et al.,
2012). Until then, it is recommended that researchers measure brain swelling by imaging
techniques, such as computed tomography and magnetic resonance imaging, or by thermal
conductivity (Keric et al., 2012; Ko et al., 2012).

3.2 Delayed Brain Injury (DBI)
DIND is the leading cause of morbidity and mortality in patients who survive the initial
impact of SAH and have had their aneurysm effectively treated (Crowley et al., 2008;
Fergusen and Macdonald, 2007). Recent studies have demonstrated a host of critical,
interrelated pathologies arising in the subacute phase of SAH as a result of EBI, and this
phenomenon is designated as DBI. With advances in understanding the pathophysiology of
SAH, it has become clear that the mechanisms leading to EBI and DBI are not mutually
exclusive. In fact, many of the pathogenic triggers are interrelated.

3.2.1 Delayed Cerebral Vasospasm: From Extravascular Blood to Vessel
Lumen—Historically, cerebral vasospasm after SAH was considered to be a prolonged
contraction of the smooth muscle cells and abnormal endothelial hypertrophy, inflammatory
changes, and gene expression in the cerebral arteries, finally leading to tissue ischemia
(Rothoerl and Ringel, 2007). The central event in the contraction of vascular smooth
muscles is an increase in the concentration of intracellular Ca2+. Indeed, in the last century,
there was a wide assumption that vasospasm was the main cause of poor outcomes for
patients with SAH (Kassell et al., 1990). Several studies found a strong link between
radiologically confirmed vasospasm and clinical symptoms of DCI (Fergusen and
Macdonald, 2007; Rabinstein et al., 2004). As mentioned above, SAH-induced DCI is a
clinical syndrome of focal neurological and cognitive disorder. Unpredictably, it occurs in
30% patients from 3–14 d after the initial bleeding (Dorsch and King, 1994).

In vasospasm, overflowed blood from a ruptured aneurysm triggers a chain reaction of
cerebral artery vasoconstriction, brain tissue infarction, and clinical condition deterioration.
The most powerful predictors of vasospasm is including the volume, density, and prolonged
presence of subarachnoid blood surrounding the arteries (Fisher et al., 1980; Loch
Macdonald, 2006; Reilly et al., 2004; Suzuki et al., 1980). Conversely, vasospasm was
invariably absent in those patients with only a minimal subarachnoid blood load (Fisher et
al., 1980). In the filament model of SAH, contraction of the large arteries in the Willis circle
in rats after SAH is ascribed to the persisting subarachnoid blood clot. Vasospasm began on
the third day after the onset of SAH, and was maximal at 6–8 d, eventually lasting 2–3 wk
(Wilkins, 1990). In sum, it is reasonable to suppose that cerebral vasospasm commonly
takes place during DBI. However, there is not adequate evidence to conclude that
vasospasm, in and of itself, could be used as a surrogate marker to monitor SAH progression
and the efficacy of interventions (Nolan and Macdonald, 2006).

The effects of vasoactive agents have long been studied in regard to the pathogenesis of
vasospasm (Roman et al., 2006). These include neurogenic factors, biogenic amines (such as
histamine and norepinephrine), 20-hydroxyeicosatetraenoic acid (Mulligan and MacVicar,
2004), eicosanoids (such as prostaglandins, thromboxans and leukotrienes), ion (Girouard et
al., 2010), and free radicals (Nishizawa and Laher, 2005). Astrocytes and leukocytes release
endothelin-1, a potent vasoconstrictor in response to SAH. In addition, endothelin receptors
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are upregulated (Beg et al., 2006; Fassbender et al., 2000; Hansen-Schwartz et al., 2003b;
Pluta et al., 1997).

SAH increased the expression of G-protein-coupled vasoconstrictor receptors in cerebral
arteries, including ETB, 5-HT1B, AT1, and TXA2 receptors (Hansen-Schwartz et al., 2003a;
Povlsen et al., 2012). The Rho/Rho-kinase pathway is the main regulator of these actin-
dependent cell functions in the pathogenesis of sustained smooth muscle cell contraction and
vasospasm (Satoh et al., 2012; Takai et al., 1995). Therefore, the combination of treatment
with an inhibitor of RhoA, pitavastatin, and an inhibitor of Rho-kinase, fasudil, could
extensively prevent cerebral vasospasm after SAH (Naraoka et al., 2013). Furthermore,
phosphorylations trigger SAH-induced vasculopathy in cerebral arteries, as determined by
quantitative mass spectrometry, including focal adhesion complexes, ERK1/2, calcium
calmodulin-dependent kinase II, STAT3, and c-Jun (Parker et al., 2013). Tenascin-C, a
matricellular protein, induces cerebral vasospasm via TLR4 and activation of JNK and p38
(Fujimoto et al., 2013; Suzuki et al., 2013). Animal experiments have shown a benefit from
inhibiting the PKC and MAPK pathways on cerebral vasoconstriction (Beg et al., 2007;
Hansen-Schwartz et al., 2008) thus engendering enthusiasm that preconditioning stimuli
may protect against SAH, as vasospasm-induced brain damage is anticipated after SAH
(Wang et al., 2013b).

3.2.2 Microcirculatory Spasm and Dysfunction—Study of the changes in the
microcirculation due to SAH started about 30 years ago (Herz et al., 1975; Wiernsperger et
al., 1981). The concept of microvascular spasm is evolving, and recently, more attention has
been paid to the functional and structural changes in microcirculation (Kozniewska et al.,
2006). Under normal conditions, the cerebral microvasculature can accommodate, to a
certain extent, decreased perfusion pressure through vasodilation, a process underlying
pressure autoregulation (Paulson et al., 1990). SAH resulted in failure of the
microcirculation, including a significant decrease in the mass density of capillaries,
vasocontraction in small arteries, and changes of the vessel wall that might lead to laminar,
triangular, or round cortical infarcts (Ohkuma et al., 2000; Weidauer et al., 2008). Herz et
al., demonstrated that topical applications of homologous blood alone could result in a 33%
vasoconstriction in guinea pigs, which was consistent with a subsequent cortical infarction
(Herz et al., 1975). Progressive disturbances of the microcirculation result in, and/or
contribute, to formation of microthrombi (Sabri et al., 2012). Disturbances in the
microcirculation were found to be accompanied by disruption of the barriers of the
intraparenchymal microvessels located distal or proximal to experimental clots in rats
(Johshita et al., 1990). The thrombin receptor (protease-activated receptor-1) has been
observed as playing a role in disruption of the endothelial barrier of hippocampus tissue
(Yan et al., 2013). In addition, a spasm may occur in microcirculation in dissociation with
the state of extraparenchymal vessels (Ohkuma and Suzuki, 1999).

Aside from measuring CBF, which is the more common method, a study utilizing
orthogonal polarizing spectral imaging showed that mono- and multi-segmental cortical
arterioles constrict after SAH with a reduction in diameter of up to 75% (Uhl et al., 2003).
Ohkuma et al. noted that CBF was clearly associated with a prolonged circulation time in
the cerebrum, even in patients without demonstrable spasms of large vessel, thus suggesting
the impact of microcirculatory changes on constriction (Ohkuma et al., 2000). Although
these data suggest that there are likely some microvascular perturbations after SAH, how
these factors independently contribute to poor outcomes after SAH remains unknown.

3.2.3 Microthrombosis: An Additional Explanation for DCI—Microthrombosis has
been attributed to the aggregation of platelets subsequent to the activation and amplification
of the coagulation cascade after SAH. The presence of multiple microthrombi were, for the
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first time, confirmed in the autopsy of an SAH patient in 1983 (Suzuki et al., 1983), and
have since then been confirmed in larger studies. A number of markers of microthormbosis
are significantly upregulated after SAH, including fibrinopeptide A, tissue factor, and
thrombin-antithrombin complexes (Stein et al., 2006; Vergouwen et al., 2008). Endothelial
NOS knockout and decreased P-selectin reduce the formation of microthrombi after SAH
(Sabri et al., 2012; Sabri et al., 2013a). Furthermore, the concentrations of these thrombotic
markers were significantly elevated within days of SAH in patients who eventually
developed DCI (Dorsch, 2011).

A very recent study showed that approximately 30% of constricted arterioles were occluded
by the microthrombi, suggesting that microthrombosis may be an etiology of the perfusion
deficits and CPP-independent decrease in CBF after SAH (Friedrich et al., 2012a). Another
line of investigation has suggested that microthrombi not only mechanically occlude the
vessel, but also mediate vascular damage and constriction as the platelets aggregate and
neutrophil infiltrates (Friedrich et al., 2011; Sehba et al., 2005). Intraluminal platelet
aggregates can occur as soon as 10 min after SAH and are associated with injury to the
vessel wall, including damage to the endothelium and the microvascular basal lamina
(Friedrich et al., 2010). Further, platelet aggregates can be amplified and stabilized through
thrombin activation as well. The intracellular contents of platelets include serotonin,
thrombin and adenosine diphosphate and MMP-9, which are known to potentially mediate
vasoconstriction, degrade collagen IV in the microcirculation, and thus lead to disruption of
the BBB (Scholler et al., 2007; Sehba et al., 2004b).

3.2.4 Cortical Spreading Ischemia—Cortical spreading ischemia is a newly described
phenomenon in which ischemia is the consequence of neuronal/glial depolarization in
experimental SAH and in patients with SAH (Dreier et al., 1998; Dreier et al., 2009).
Spreading ischemia in the cortex occurred when CBF reached 40%–70% compared to
baseline, which was deemed to be 100%. Cortical spreading ischemia produced widespread
cortical necrosis. In animal models, a number of pathologic conditions have been
demonstrated to trigger CSD with spreading ischemia, such as hypoxia, hypotension,
transient ischemia from microemboli, low glucose level, NO depletion, and free hemoglobin
and high extracellular K+ from erythrocytes (Dreier et al., 2000; Dreier et al., 1998; Nozari
et al., 2010).

3.3 Are We Close to Solving the Mystery of SAH?
Recent data challenge the traditional concept of delayed vasospasm as the sole cause of DCI
after SAH (Kusaka et al., 2004; Macdonald et al., 2007). Beyond vasospasm, an emerging
body of evidence at present suggests that DIND is likely to have a multifactorial etiology.
Recently, in the randomized, double-blind, placebo-controlled, phase III trial, clazosentan
(15mg/h), an endothelin receptor antagonist, significantly decreased vasospasm-related
morbidity, but did not significantly improve functional outcome in patients with aneurysmal
SAH (Macdonald et al., 2012; Sabri et al., 2011). The mismatch between treatment of
vasospasm and poor clinical outcome after SAH could have resulted from other underlying
mechanisms of injury as opposed to vasospasm. To date, clinical trials have concentrated on
vasospasm, which may be a wrong focus for SAH studies, since our increasing
understanding of the SAH pathophysiology reveals EBI to be a major player in SAH-
induced injury (Gomis et al., 2010).

A severe increase of ICP during the initial bleeding event has been identified as triggering
subsequent pathophysiological changes after SAH. In recent years, EBI has evolved as a
potential target to implement treatment modalities in patients with SAH, which could
ameliorate some of the devastating injuries in the long term (Cahill et al., 2006). It can be
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suggested that vasospasm might be only a late manifestation of EBI (Povlsen et al., 2013),
because they share many of the same pathogenic factors. Further, EBI may also contribute to
the pathogenesis of delayed neurological deficits. Nevertheless, research on EBI after SAH
has been relatively limited; further studies are needed to clarify the exact mechanisms
involved in EBI, which may reveal new therapeutic avenues that can be exploited in
combination with anti-vasospasm medications. A comprehensive assessment of patterns of
biomarkers during the past three years for predicting the SAH outcome is provided in Table
1.

Spontaneous recovery can occur in other types of stroke. For instance, in rats, a small
fraction of dead striatal neurons is replaced by new neurons after ischemic stroke (Arvidsson
et al., 2002). Neurogenesis in the hippocampus may affect functional outcome 30 d after
SAH (Mino et al., 2003). However, the involvement of neurogenesis in SAH has not yet
been sufficiently examined. It will be important to clarify whether and how SAH induces the
differentiation of new neurons. Furthermore, signaling molecules that attract neuronal
migration to the damaged area should be identified. A novel therapeutic strategy could be
explored if neuronal regeneration can be stimulated, and the developing neurons can sustain
and remain functional at the injury site after SAH.

4. The Vasculo-Neuronal-Glia Triad Model in SAH—A Paradigm
In recent years, strategies targeting neurons have been uniformly unhelpful in clinical trials.
Mechanistic investigations into brain function have shifted from a purely “neurocentric”
focus into emphasizing a more integrative perspective that involves all cell types in the CNS
diseases, including stroke and neurodegenerative diseases (Gorelick et al., 2011; Guo and
Lo, 2009; Lecrux and Hamel, 2011; Zlokovic, 2011).

Traditionally, the neurovascular unit was though of as a structural arrangement, with
microvessel components and neurons connect via common astrocytes. It is a conceptual
framework that links microvesicular and neuronal functions and their responses to injury
without including the large vessels (del Zoppo, 2012). Here, we propose an emerging
concept of the vasculo-neuronal-glia triad model in SAH pathology, in order to emphasize
the interactions among different types of cells, including neurons, astrocytes, capillary and
noncapillary endothelial cells, pericytes, smooth muscle cells, perivascular nerves,
fibroblasts, smooth muscle progenitor cells, and veins (Figure 4).

4.1 The Rationale of Vasculo-Neuronal-Glia Triad Model in SAH
The brain receives up to 20% of its blood from cardiac output. It does not possess any
reserve of energy or oxygen. Thus, it relies on a constant perfusion to fulfill its energetic
demands, particularly when neuronal activity is increased (Siesjo and Plum, 1971). The
blood can adequately deliver supplies of oxygen, glucose, and other nutrients, while taking
away metabolic products, such as lactic acid and carbon dioxide. When blood flow to the
brain stops or is greatly reduced, the functions of the brain stop within seconds and damage
to neurons may occur within minutes (Girouard and Iadecola, 2006). Thus, a normal
neuronal-vascular link is critical for maintaining normal brain function, and it is estimated
that nearly every neuron in the human brain is coupled with its own capillary (Zlokovic,
2005). Conversely, neuronal activity plays a major role in regulating vascular tone and
controlling blood flow (Figure 5).

The concept of a “neurovascular unit” was first described by Cohen et al. in 1996 to describe
the intimate interaction of a triad consisting of neurons, astrocytes, and blood vessels (Cohen
et al., 1996). Nowadays, the neurovascular unit is an emerging issue in several CNS
diseases, including ischemic stroke, SAH, and Alzheimer’s disease (Koide et al., 2013b;
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Urra and Chamorro, 2013). The large arteries are critical in determining the delivery of
blood to the parenchymal circulation in SAH. The large-vessels occurs contract after SAH
(Rajajee et al., 2012). This raises an interesting question as to whether information from the
traditional concept of neurovascular unit might be conveyed “upstream” to the arterioles of
the pia-arachnoid.

In this review, we endorse the concept of “the vasculo-neuronal-glia triad model” in SAH
over that of “the neurovascular unit”, which includes neurons, glial and vascular cells,
especially large arteries. In sum, the rationale for this model in SAH involves the
observations that (i) SAH is a vascular disorder with pathophysiological consequences
affecting the large arteries to the brain parenchyma, (ii) neurological consequences are
associated with all cell types in the CNS and large vessels, (iii) neuron–vascular
communication is interdependent and its interaction, acute cell–cell anatomic and
physiological relationships, and neurotransmission are fixed in the adult brain, (iv) SAH
causes inversion of neuron-vascular communication on both the local and global levels.

4.2 Neurons in the Model
Neurons are the core components of the nervous system. According to a traditional neuron-
centric view of SAH, neurons are the primary targets affected by the disease process.
Neuronal death results in edema. Activity within a localized brain region elicits increased
blood flow to that region, supplying oxygen and nutrients to the active neurons, termed as
functional hyperemia (Koide et al., 2013b), thereby releasing vasodilatory substances
(Attwell et al., 2010; Filosa et al., 2006; Gordon et al., 2007). However, under certain
conditions, neuronal activation can also lead to parenchymal arteriolar constriction by
triggering sufficient K+ efflux from large-conductance Ca2+-activated K+ (BK) channels
(Gordon et al., 2008; Metea and Newman, 2006). Localized neuronal activation can elevate
astrocytic endfeet Ca2+ and produce vasoconstricting agents such as 20-
hydroxyeicosatetraenoic acid (Newman, 2005; Schipke and Kettenmann, 2004), resulting in
decreased CBF (Alkayed et al., 1996).

Neuron-stimulating vasoconstriction may represent a pathological status promoting a
decrease. Although the mechanisms remain elusive, evidence suggests that elevated
perivascular K+ may underlie this inversion of neurovascular coupling with vasodilative
effects at concentrations of extracellular K+ below 20 mM, and constrictive effects when the
threshold of 20 mM is exceeded. This inversion of neurovascular coupling contributes to
decreased CBF and development of neurological deficits following SAH (Koide et al.,
2013a). Neuronal activity by electrical stimulation elevated astrocytic endfeet Ca2+ that
caused vasodilation in brain slices from normal animals. However, in brain slices from SAH
animals, neuronal activity by electrical stimulation induced a similar increase in astrocytic
endfeet Ca2+ that caused arteriolar constriction rather than vasodilation (Koide et al.,
2013a). Inversion of neurovascular coupling by SAH depends on large-conductance BK
channels (Koide et al., 2012). Moreover, neuron-to-glia signaling-evoked vasoactivity was
regulated by neuronal release of ATP and was interrupted by a purinergic antagonist (Metea
and Newman, 2006; Newman, 2005). Conversion of the neurovascular response from
vasodilation to vasoconstriction after SAH may act in concert with other reactions, such as
direct constrictor effects on parenchymal arterioles, microthrombi formation, and cortical
spreading depolarization, which compromises cortical blood flow.

4.3 Astrocytes in the Model
In neurovascular coupling, astrocytes are in close contacts with both neurons and capillary
endothelial cells through their microdomains or “foot processes” (Anderson and Nedergaard,
2003). Additionally, their endfeet are completely encased parenchymal arterioles (Gordon et
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al., 2007). Astrocytes tightly maintain local homeostasis, deliver glucose and provide
metabolic substrates. This unique position of the astrocytes might contribute to their role in
neurovascular coupling, which synchronizes neuronal activity and metabolic demands with
local regulation of CBF (Zonta et al., 2003). If the availability of oxygen is lowered, the
concentration of astrocytic Ca2+ is elevated, which maximizes astrocytic glycolysis and the
release of lactate. Astrocytes also clear neuronal waste, including not only metabolic
byproducts but also neurotransmitters released during synaptic transmission, which are
sequestered through active uptake. In short, astrocytes are multifunctional cells that, by their
housekeeping functions, allow neurons to progressively become the perivascular nerves and
vascular endothelial cells that regulate blood flow. Several mediators of astrocyte-neuron
signaling have been identified, including glutamate, ATP, adenosine, and gap-junction
signaling. Astrocytes contribute to brain communication pathways by regulating synaptic
transmission (Newman, 2003), neuronal firing thresholds, and plasticity (Nedergaard et al.,
2003).

A vasodilating effect of astrocytes in the control of cerebral microcirculation mediated by
P450 2C11-catalyzed conversion of arachidonic acid to epoxyeicosatrienoic acids was
observed, which amplified K+-evoked current in the vascular smooth muscle cells of large
cerebral arteries (Alkayed et al., 1996). Neuronal stimulation up to ~300 nM by Ca2+

elevated astrocytic endfeet Ca2+ to ~400 nM and subsequently caused vasoconstriction in
post-SAH brain slices; however it dilated parenchymal arterioles in control brain slices
(Koide et al., 2012). It is possible that components of the blood such as oxyhemoglobin or
their breakdown products act directly to alter Ca2+ signaling in astrocytic endfeet (Asano,
1999; Nishizawa and Laher, 2005). The cytosolic concentration of Ca2+ in human astrocytes
was elevated by blood CSF via activation of ATP-sensitive P2 receptors and subsequent
inositol 1,4,5-trisphosphate-dependent Ca2+ release from endoplasmic reticulum (Kasseckert
et al., 2013). In cortical brain slices from rats, the responses of parenchymal arterioles to
increases of astrocytic endfeet Ca2+ evoked by electrical field stimulation were of three
distinct types: (I) 40% exhibited a sustained vasoconstriction, (II) 30% exhibited a transient
vasoconstriction (diameter restored within 1 min after stimulation), and (III) 20% responded
with a biphasic response (brief vasodilation followed by vasoconstriction) (Koide et al.,
2013a). BK channels on astrocytic endfeet play an important role in transducing altered
astrocytic Ca2+ signaling pathway into alternations in the diameter of arteries and blood
flow within the brain, perhaps leading to the development of neurological deficits following
SAH (Koide et al., 2012). The high-amplitude spontaneous events after SAH promote BK
channel activity to elevate basal [K+]o in the perivascular space between astrocyte endfeet
and arteriolar muscle cells. This inversion of neurovascular coupling may play a particularly
important role in the development of DBI following SAH.

4.3 Vascular Cells in the Model
The brain cortex is at risk if blood flow through parenchymal arterioles is restricted.
Matching the blood flow to regional brain function and metabolism involves the coordinated
activity of neurons, astrocytes, and parenchymal arterioles (Filosa et al., 2004). A persistent
interruption of blood flow results in subsequent swelling of perivascular astrocytes, neuronal
cells, and capillary endothelium. However, perhaps owing to the contemporary idea that
arterial cell types are only minor players in the pathophysiology of stroke, the physiological
importance of vascular smooth muscle cells in the traditional neurovascular unit has not
been emphasized (Zhang et al., 2012). Vascular smooth muscle cells were included in the
original model of the neuron–astrocyte–vasculature triad in 1996, but were replaced by
capillary endothelial cells in the revised definition published in 2002. Pathological
circumstances after SAH modulate the magnitude and timing of the vasomotor components.
Under such conditions the vascular response becomes predominantly vasoconstrictive, that
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is, inverted (Sonn and Mayevsky, 2000; Sukhotinsky et al., 2010). The smooth muscle cells
in blood vessels are highly dynamic, and their phenotype is influenced by multiple factors in
the perivascular environment. Acute applications of the blood component oxyhemoglobin,
suppress voltage-gated K+ channels in parenchymal arteriolar myocytes through heparin-
binding epidermal growth factor (EGF)-like growth factor-mediated activation of EGF
receptors. Activation of the EGF/EGF receptor pathway contributes to the suppression of
K(V) current and enhanced constriction of the parenchymal arterioles after SAH (Koide and
Wellman, 2013). This acute oxyhemoglobin-induced K(V) channel suppression is mediated
via a cell-signaling pathway involving activation of MMP-2 in SAH animals. SAH-induced
depolarization of membrane potentials, which involves altered K+ homeostasis, leads to
enhanced activity of voltage-dependent Ca2+ channels, increased cytosolic Ca2+ in smooth
muscles, and the constriction of parenchymal arterioles (Wellman and Koide, 2013).
Perivascular nerve fibers can promote smooth muscle growth and differentiation (Hamel,
2006). SAH significantly reduced the nerve fibers, which resulted in deleterious changes in
the function and phenotype of cerebrovascular smooth muscle cells (Alabadi et al., 1994).
More importantly, in all arteries, vascular smooth muscle cells exhibit multiple coexisting
functions and phenotypic characteristics, including migration, proliferation, secretion of
extracellular matrix proteins, and contraction (Alexander and Owens, 2012).

In addition, endothelial cells release numerous factors that can influence the proliferation
and differentiation of adjacent vascular smooth muscle cells. Endothelial cells can mediate
both vasodilatation and vasoconstriction by releasing vasoactive substances including both
vasodilator (acetylcholine, nitric oxide) and vasoconstrictor (endothelin) (Burnstock and
Ralevic, 1994). Additionally, vascular function during cerebral injury can be modulated
through active substances, including platelet-derived growth factors, vascular endothelial
growth factors, brain-derived neurotrophic factors, nerve growth factors, angiopoietins,
adenosine, and glutamate (Alexander and Owens, 2012).

5. Conclusions
Despite extensive research and vast efforts, patient outcomes following SAH remain poor.
More recently, EBI has emerged as a new frontier and requires further investigation and
consideration in devising therapeutic strategies for improving SAH outcomes. In addition, a
better understanding of animal models, evaluation methods, and the guidelines for
translational studies are essential for the successful translation of basic science research into
human trials of SAH. The vasculo-neuronal-glia triad model should provide a critical
platform in identifying potential therapies to ameliorate SAH injury. Success may come with
the development of a monotherapy targeting the contents of the model.
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Abbreviations

SAH subarachnoid hemorrhage

DIND delayed ischemic neurological deficit

DCI delayed cerebral ischemia

TCD transcranial Doppler

EBI early brain injury
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DBI delayed brain injury

ICP intracranial pressure

CPP cerebral perfusion pressure

CBF cerebral blood flow

CSD cortical spreading depolarization

BBB blood-brain barrier

NMDA N-methyl D-aspartate

ANP atrial natriuretic peptide

BNP brain natriuretic peptide

CSWS cerebral salt-wasting syndrome

SIADH syndrome of inappropriate secretion of anti-diuretic hormone

VGCC voltage-gated calcium channel

VAP-1 vascular adhesion protein-1

MAPKs Mitogen-activated protein kinases

ERK extracellular signal-regulated kinase

JNK c-Jun Nterminal kinase

STAT3 signal transducer and activator of transcription

Kv voltage-gated K+ channel

NO nitric oxide

NOS nitric oxide synthase

MEK mitogen activated protein kinase kinase

SOD Superoxide dismutase

IL-1α interleukin-1α

TNF-α tumor necrosis factor-α

MCP-1 chemotactic protein-1

CCL5 chemokine (C-C motif) ligand 5

CXCL1 chemokine (C-X-C motif) ligand 1

CAMs Cell adhesion molecules

ICAM-1 intercellular adhesion molecule-1

VCAM-1 vascular cell adhesion molecule-1

CHOP C/EBP homologous protein

EGF epidermal growth factor
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Highlights

1. A better understanding of the role of vasospasm after SAH.

2. Summary of recent data on the neurobiological role of EBI and DBI after SAH.

3. Description of the possible role of the vasculo-neuronal-glia triad model in
SAH.
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Figure 1. Schematic of a brief SAH history
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Figure 2. Comparison of subarachnoid hemorrhage (SAH) in human subjects and experimental
endovascular perforation rat model
A, a ruptured aneurysm (red arrow) in a middle cerebral artery causes SAH in the human
brain. B, a brain computed tomography (CT) scan showed a high density area in the cistern.
C, SAH was produced by the endovascular filament (slim black arrow) of the internal
carotid artery in a rat. D, an image of rat brain post-SAH showed a thick blood clot around
the circle of Willis. E, a table summarizes the conditions of the ideal SAH model.
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Figure 3. Mechanisms of early brain injury (EBI) and delayed brain injury (DBI) after SAH
The neurobiological responses contributing to all outcomes are listed. RBC, red blood cell;
CPP, cerebral perfusion pressure; CBF, cerebral blood flow; CSD, cortical spreading
depolarization; BBB, blood-brain barrier; ET-1, endothelin-1; 5-HT, 5-hydroxytryptamine;
COX-2, cyclooxygenase-2; VSM, vascular smooth muscle; ENDO, endothelium.
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Figure 4. The components of the Vasculo-Neuronal-Glia Triad Model
A. Schematic representation showing the traditional neurovascular unit as a component of
the Vasculo-Neuronal-Glia triad model, which includes neurons, astrocytes, capillary
endothelial cells, pericytes, smooth muscle cells, noncapillary endothelial cells, perivascular
nerves, smooth muscle progenitor cells, and veins. The Vasculo-Neuronal-Glia triad model
is larger than the neurovascular unit, therefore comprising all cells and structures required to
maintain cerebral blood flow under physiological and pathological conditions.
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Figure 5. Agents implicated in the connection of neurons and vessels
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Table 1

Agents listed were new biomarkers for predicting the outcome of SAH in the past three years

Agents Sample Main finding

Bradykinin (BK) CSF Elevated BK is correlation with brain edema (Kunz et al., 2013)

TNF-α serum CSF High level is associated with DCI, poor outcome and hydrocephalus, but
not vasospasm (Beeftink et al., 2011; Chou et al., 2012)

Tau protein CSF Tau level is proportional to SAH severity (Zanier et al., 2008; Zanier et al.,
2013)

TGF-β1 CSF TGF-β1 was upregulated in SAH-induced hydrocephalus (Lee et al., 2012)

Mitochondrial DNA CSF Higher CSF DNA levels on presentation are associated with worse
outcomes (Wang et al., 2013a)

Adrenomedullin (AM) CSF AM concentration 8 days after SAH is related to appetite loss and DIND
(Kubo et al., 2013)

Ceramide CSF Ceramide is associated with the occurrence of symptomatic vasospasm and
poor neurological outcome (Testai et al., 2012)

Catecholamine CSF Epinephrine serves as an useful index of outcome (Moussouttas et al.,
2012)

20-hydroxyeicosat etraenoic acid (20-HETE) CSF 20-HETE concentrations are associated with DCI and poor outcomes
(Crago et al., 2011)

Heart-type fatty acid binding protein (H-FABP) serum CSF The Hunt and Hess and Fisher grading scales are correlated with an
increase in H-FABP level on administration (Yilman et al., 2012; Zanier et
al., 2008; Zanier et al., 2013)

Monomethylated L-arginine (L-NMMA) CSF serum L-NMMA is associated with the occurrence of cerebral ischemic events
(Jung et al., 2013b)

Neuropeptide Y (NPY) CSF serum Higher levels of NPY were in patients with cerebral infarction caused by
vasospasm (Schebesch et al., 2011)

Haptoglobin (Hp) phenotype serum The Hp phenotype is associated with angiographical vasospams and
clinical deterioration by DCI but does not affect the cerebral
infarction(Ohnishi et al., 2013)

Interleukin-6 (IL-6) serum Higher IL-6 levels are associated with worse clinical outcome and the
occurrence of DIND (Muroi et al., 2013)

S100B serum S100B is a suitable marker for ischemia after SAH (Hassan et al., 2012;
Jung et al., 2013a)

Kallikrein 6(KLK6) serum Decreased KLK6 is correlated with poor outcome after SAH (Martinez-
Morillo et al., 2012)

High-mobility group box 1(HMGB1) serum HMGB1 on admission predicts poor outcome and mortality and
vasospasm (Zhu et al., 2012)

Myeloperoxidase (MPO) serum Elevated MPO correlates with clinically vasospasm (Lim et al., 2012)

Free fatty acid (FFA) serum n-6:n-3 FFA ratio is associated with DCI (Badjatia et al., 2012)

Glucose blood Glucose levels at admission are predictive of an elevated 1-year mortality
rate (Bian et al., 2012)

Copeptin plasma Copeptin indicates clinical severity of the initial bleeding and has
prognostic value for outcome of patients with SAH (Fung et al., 2013; Zhu
et al., 2011)

Angiopoietin-1 (Ang-1) serum Ang-1 is significantly altered in patients suffering from cerebral ischemia
(Fischer et al., 2011)

C-reactive protein(CRP) plasma CRP levels correlate with outcome but do not seem to predict DCI or
infarction (Juvela et al., 2012; Romero et al., 2012)

Asymmetric dimethyl arginine (ADMA) plasma ADMA ratios predict mortality after SAH (Staalso et al., 2013)

Taurine plasma Taurine concentrations on admission predict a poor outcome (Barges-Coll
et al., 2013)

B-type natriuretic peptide (BNP) plasma BNP is useful in detecting patients at risk for adverse outcomes without
large vessel vasospasm (Taub et al., 2011)
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Agents Sample Main finding

Matrix metalloproteinase-9 (MMP-9) Micro-dialysis
sample, CSF
Blood

MMP-9 was related to World Federation of Neurological Surgeons
(WFNS) grade severity and SAH outcome (Sarrafzadeh et al., 2012)

Metabolic ratio Metabolic ratio is a reliable marker for predicting the outcome of poor-
grade patients with SAH (Barcelos et al., 2013)

Prolonged QT interval and tachycardia Prolonged QT interval and tachycardia are independently associated with
Angiographic vasospasm (Ibrahim and Macdonald, 2012)
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