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Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific
therapies and treatments remain elusive. To address this, many recent experimental and
translational studies of ICH have been conducted, and these have led to several ongoing clinical
trials. This review focuses on the progress of translational studies of ICH including those of the
underlying causes and natural history of ICH, animal models of the condition, and effects of ICH
on the immune and cardiac systems, among others. Current and potential clinical trials also are
discussed for both ICH alone and with intraventricular extension.

1. Introduction
Intracerebral hemorrhage (ICH) is a particularly devastating form of stroke with high
mortality and morbidity (Keep et al 2012; Qureshi et al 2009). Relative to ischemic stroke,
there have been few preclinical studies and clinical trials for the development of treatments
for ICH. However, increased interest in ICH over the past decade has improved our
knowledge of the underlying mechanisms of ICH-induced brain injury, which have been
found to differ from those of ischemic stroke (Xi et al 2006). These findings have led to the
initiation of several ongoing clinical trials investigating ICH treatment.

This review aims to describe the underlying causes and natural history of ICH, as well as the
animal models employed in its study. This is followed by a discussion of the systemic
effects of ICH, focusing on immune and cardiac effects, areas that have been largely
neglected in research on ICH research. Current and potential clinical trials in ICH alone and
with intraventricular extension are also discussed, of which the latter is particularly difficult
to treat and is associated with higher mortality (Hanley 2009).

2. Causes of bleeding
Spontaneous ICH, i.e., ICH that is not related to trauma, most frequently occurs secondary
to hypertension, with up to 70% of patients with ICH having a history of hypertension
(Mendelow et al 2005). However, ICH may also result from bleeding associated with
amyloid angiopathy, tumors, hemorrhagic conversion of ischemic stroke, dural venous sinus
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thrombosis, vasculitis and vascular malformations such as cavernous angiomas,
arteriovenous fistulae, arteriovenous malformations, venous angiomas, and aneurysms
(Qureshi et al 2001b; Ruiz-Sandoval et al 1999). ICH is considered primary if there is not an
identifiable underlying structural lesion that is likely to be responsible for the hemorrhage. It
is most commonly associated with arteriosclerosis as a result of hypertension and amyloid
angiopathy (Ritter et al 2005; Tuhrim et al 1999).

Hypertension is a significant contributory factor for ICH and is associated with morbidity
and mortality in all age groups (Ruiz-Sandoval et al 1999). Chronic hypertension induces
degenerative changes in small arterioles, making them prone to rupture. Treatment of
hypertension therefore reduces the annual risk of hemorrhage in hypertensive patients. In the
elderly, amyloid angiopathy is a significant cause of bleeding. The presence of either the e2
or the e4 allele of the apolipoprotien E gene also increases the risk of ICH through β-
amyloid deposition and fibrinoid necrosis in the vessel wall, rendering it more likely to
rupture (O'Donnell et al 2000).

Vascular lesions are prone to rupture, which can result in ICH, subarachnoid hemorrhage
(SAH), intraventricular hemorrhage (IVH), or any combination thereof, with each subtype
having a distinct natural history. For untreated aneurysms, the natural history varies by size,
location, and shape, with large and daughter dome-containing aneurysms having higher rates
of rupture. Of aneurysms in the anterior circulation, those in the anterior and posterior
communicating arteries have the highest rates of rupture (Gross et al 2013). The natural
history of AVMs varies, with annual rates of rupture between 0.9 and 34%. Furthermore,
depending on the study, the rate of rupture increases for hemorrhagic lesions, deeper
locations, older age, larger lesions, and pregnancy (Gross and Du 2012b; Halim et al 2004;
Hernesniemi et al 2008; Stapf et al 2006). Asymptomatic cavernous malformations are
generally benign with annual rates of ruptures of 0 to 0.6%. However, if a patient is
symptomatic with a prior hemorrhage, the re-bleed rate is 5 to 6% with the risk of re-
bleeding decreasing over time. Pregnancy is not a durable risk factor for hemorrhage of
cavernous malformations (Al-Holou et al 2012; Flemming et al 2012; Gross et al 2013). The
annual risk of hemorrhage from dural AV fistulas is dependent on the presence of
leptomeningeal venous drainage, which is 0, 2, and 46% for no drainage, asymptomatic
lesions with leptomeningeal venous drainage, and symptomatic lesions with leptomeningeal
venous drainage, respectively (Gross and Du 2012a).

Post-partum ICH is a rare, but increasingly recognized, cause of hemorrhage in young
women and is thought to be due to angiopathy in the post-partum period (Bateman et al
2006). The overall incidence of ICH in pregnancy and the post-partum period is
4.6-53/100,000 and is associated with significant maternal mortality (Bateman et al 2006;
Khan and Wasay 2013).

Risk of ICH also is increased by the use of anticoagulants. In the United States,
approximately 20% of patients with ICH use anticoagulants. Additional risk factors include
greater age, male sex, cigarette smoking, and heavy use of alcohol (Ariesen et al 2003),
whereas high cholesterol is associated with a decreased risk of ICH (Ariesen et al 2003).

It is still controversial whether statin therapy is a potential risk factor of intracerebral
hemorrhage. Evidence suggests cholesterol lowering drugs result in hemorrhagic
stroke(Goldstein et al 2009). However, recent analyses of randomized controlled trials
showed statin therapy are not associated with brain hemorrhage(Hackam et al 2011;
McKinney and Kostis 2012).
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3. Natural history of ICH
3.1. Hematoma enlargement

Post-ICH hematoma enlargement occurs in about one third of patients (Broderick et al 1990;
Brott et al 1997; Fujii et al 1994; Fujii et al 1998; Kazui et al 1996; Kazui et al 1997). For
example, in a study of hematoma enlargement in patients with ICH (n=103) 38% of patients
experienced a hematoma expansion within 20 hours (Brott et al 1997). Post-ICH hematoma
enlargement causes a midline shift and accelerates neurological deterioration (Broderick et
al 1990; Zazulia et al 1999). A spot sign on computerized tomography angiography or
contrast extravasation is highly correlated with hematoma enlargement (Hallevi et al 2010),
which mostly occurs within the first 24 hours after ICH (Brott et al 1997; Kazui et al 1996).
Several ongoing clinical trials are focused on lowering blood pressure quickly after ICH so
as to prevent hematoma enlargement and minimize ICH-induced brain damage (Anderson et
al 2010; Butcher et al 2010; Qureshi and Palesch 2011). However, the recently announced
results of one such trial (INTERACT2, NCT00716079) failed to find a significant reduction
in hematoma volume with rapid intensive reductions in blood pressure (Anderson et al
2013).

3.2. Brain Edema
Brain edema is an increase in the water content of brain tissue and results in increased brain
volume and intracranial pressure (ICP) (Bodmer et al 2012; Xi et al 2002). Perihematomal
edema is commonly observed during the acute and subacute post-ICH stages, appearing as a
hypodensity surrounding the clot on CT scan (Figure 1) and as a hyperintensity on T2-
weighted or flair MRI (Figure 2). In patients with ICH, edema develops within hours of
symptom onset and peaks 1 to 2 weeks later (Broderick et al 1995; Suzuki et al 1985;
Zazulia et al 1999). In animal models, perihematomal brain edema develops within hours
and peaks several days post-ICH (Suzuki and Ebina 1980; Wagner et al 1996; Xi et al
2002). For example, in a rat model of ICH brain edema peaks at day 3 or 4 post-ICH before
decreasing slowly (Enzmann et al 1981; Tomita et al 1994; Xi et al 1998a). In large animal
models (e.g., pig), perihematomal edema is located mainly within the white matter (Garcia
et al 1994; Tomita et al 1994).

Edema formation post-ICH elevates intracranial pressure and may result in herniation
(Ropper 1986). The amount of brain edema around the hematoma has been shown to
correlate with poor functional outcome in patients with ICH (Ropper and King 1984; Ropper
1986; Zazulia et al 1999).

Blood components have been shown to contribute to perihematomal edema formation. In the
first hours following ICH, perihematomal edema results from clot retraction with movement
of serum from the hematoma into surrounding tissue (Wagner et al 1996). The coagulation
cascade and thrombin production also have a role in edema in acute edema development,
particularly in the first 24 hours post-ICH. Thrombin is an essential component in the
coagulation cascade and thrombin inhibition abolishes early brain edema in animal models
(Xi et al 1998b; Xi et al 2006). Whereas red blood cell lysis causes delayed brain edema; it
has been shown that hemoglobin and its degradation products, as well as carbonic
anhydrase-1 (another erythrocyte component), can cause brain edema (Guo et al 2012;
Huang et al 2002).

Although multiple forms of edema can occur as a result of ICH, vasogenic edema is the
principal form. The blood-brain barrier (BBB) is a physical barrier to the movement of many
molecules between blood and brain (Betz et al 1989) and disruption of the BBB following
ICH contributes to the development of brain edema (Keep et al 2012; Liu and Sharp 2012).
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Although the BBB remains intact to large molecules for several hours post-ICH (Wagner et
al 1996), by 8-12 hours perihematomal BBB permeability is increased (Yang et al 1994).
Animal data has implicated the blood components thrombin and lysed red blood cells in
disruption of the BBB following ICH (Lee et al 1997; Xi et al 2001a).

3.3. Neuronal death and brain atrophy
ICH causes significant death of brain cells, including necrosis, apoptosis and autophagy
(Keep et al 2012). Necrotic brain tissue has been found around the clot (Suzuki and Ebina
1980), and likely results from either mechanical forces during hematoma formation or
components of blood clots and degradation products. Marked perihematomal necrotic cell
death has been found in the perihematomal area in a rat model of ICH (Figure 3) (Jin et al
2013). In that study, increased propidium iodide permeability is used as a marker of
necrosis. Propidium iodide is a 668 Da membrane impermeable nucleic acid stain that emits
bright red fluorescence when bound to RNA or DNA. Another recent study also indicates
that programmed necrosis and plasmalemma damage may be useful therapeutic targets for
ICH (Zhu et al 2012).

Cell death also occurs in brain adjacent to the hematoma (Gong et al 2001; Hickenbottom et
al 1999; Matsushita et al 2000; Qureshi et al 2001a; Xue and Del Bigio 2000). Although
apoptosis has been implicated in perihematomal brain cell death (Matsushita et al 2000),
how important a role apoptosis has in ICH-induced brain damage remains unclear.

Autophagy is a cellular degradation process by which cellular proteins and organelles are
sequestered in double membrane vesicles, transported to lysosomes, and digested by
lysosomal hydrolases (Wang and Klionsky 2003). It has recently been demonstrated that
ICH is able to induce the autophagy-form of programmed cell death, and that iron has an
important role in the induction of autophagy. As in other neurological diseases, more
research work is needed to determine whether or not autophagy is protective (i.e., it removes
dying cells) or harmful (i.e., it induces death in potentially viable cells) (He et al 2008).

Mechanisms that are thought to play a role in neural cell death are described later in the text.
However, broadly, they are thought to include the initial physical distortion of brain cells
and their connections by the hemorrhage, clot-derived toxic factors (such as iron and
hemoglobin) and the brain response to the ICH (e.g. inflammation). The relative role of
these factors likely varies with hematoma size. The role of the ischemic cell death in ICH
has been the subject of much debate, particularly in relation to whether blood flow changes
reach the level necessary to cause brain injury and whether changes in flow reflect rather
than cause changes in neuronal function (Xi et al 2006).

The death of brain cells in animal models of ICH results in brain atrophy, which is also
characteristic of patients with ICH (Skriver and Olsen 1986). In fact, brain atrophy has been
used as an endpoint for experimental ICH studies (Okauchi et al 2009; Okauchi et al 2010).
In rats, delayed brain atrophy occurs following ICH induced by infusion of 100 μl
autologous whole blood (Felberg et al 2002; Xi et al 2004). Significant caudate atrophy with
enlargement of the ipsilateral lateral ventricle was identified 4 weeks post-ICH, and the
ipsilateral caudate area was approximately 70 % of that of the contralateral by weeks 8 to 12
(Hua et al 2006).

3.4. Inflammation
Inflammation exacerbates ICH-mediated brain injury. An inflammatory response in the
perihematomal area occurs soon after ICH and peaks several days later in humans and in
animals (Enzmann et al 1981; Gong et al 2000; Jenkins et al 1989; Xue and Del Bigio
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2000). Neutrophil infiltration develops within two days in rats and activated microglial cells
persist for long time (Gong et al 2004; Jenkins et al 1989). Inhibition of microglia activation
reduces brain damage after ICH in mice (Wang et al 2003; Wang and Tsirka 2005). Recent
studies have demonstrated that toll-like receptor 4 has an important role in brain injury
following ICH (Lively and Schlichter 2012; Sansing et al 2011; Wang et al 2013).

3.5. Brain recovery
Although usually incomplete, brain recovery is expected in patients surviving ICH. In such
cases, hematoma resolution, reduced edema, neuronal plasticity, and neurogenesis are
potential contributors to improved functional recovery. Using doublecortin as a marker in a
rat model of ICH, ipsilateral basal ganglia neurogenesis increased as early as 7 days post-
ICH, peaked at day 14, and then gradually decreased by 1 month post-ICH.
Immunohistochemistry also demonstrated increased doublecortin immunoreactivity in the
ipsilateral subventricular zone and basal ganglia at 2 weeks post-ICH. Thrombin also
increased doublecortin levels and the thrombin inhibitor hirudin blocked ICH-induced
upregulation of doublecortin, thus suggesting a role for thrombin in ICH-induced
neurogenesis (Yang et al 2008).

Phagocytosis by microglia and macrophages is involved in hematoma clearance and can be
enhanced by administering the peroxisome proliferator activated receptor (PPAR)-γ agonists
rosiglitazone or pioglitazone. PPAR-γ agonists accelerate hematoma resolution and reduce
ICH-induced deficits in a mouse model of ICH (Zhao et al 2007b).

Rehabilitation has been shown to enhance neurological recovery following ICH. In a rat
model of ICH, rehabilitation with enriched environment and skilled reach training improved
functional outcome but had no effects on neurogenesis but was associated increased
dendritic complexity (plasticity) (Auriat et al 2010).

Studies have demonstrated a functional improvement with the administration of stem cells
after ICH (Keep et al 2012). For example, intravenously injected bone marrow stromal cells
have been shown to migrate to the site of the hematoma and reduce ICH-induced
neurological deficits in rats (Seyfried et al 2010).

4. Animal models
4.1. Overview

Experimental models of ICHs have been available since the 1960's and commonly involve
the intracerebral injection of autologous blood, which is a straightforward and effective
technique for producing ICH. This type of model has been developed in large animals (e.g.,
dogs, cats, pigs and monkeys) (Sussman et al 1974; Takasugi et al 1985; Wagner et al 1996;
Whisnant et al 1963), by injecting blood into the frontal lobe. For small animals (e.g., rats
and mice) blood is injected into the caudate (Belayev et al 2003; Hua et al 2000; Nakamura
et al 2004b; Xi et al 1998a; Xi et al 1998b; Xi et al 2001b; Yang et al 1994). This method
does not reproduce the arterial vessel rupture present in human spontaneous ICH, but it does
control the volume of blood injected and has been shown to be useful for the study of
pathophysiological and biochemical consequences of ICH.

Another model of ICH was developed by Rosenberg and colleagues and involves the
injection of bacterial collagenase into brain (Rosenberg et al 1990; Rosenberg and Navratil
1997). Originally developed in rats, this approach has also been used extensively in mice
(Choudhri et al 1997; Clark et al 1998). Collagenase dissolves the extracellular matrix,
ultimately leading to blood vessel rupture and ICH. This model mimics the vascular
disruption in spontaneous human ICH, but also induces widespread disruption of the
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extracellular matrix (including the endothelial basement membrane), which is not found in
spontaneous cases of human ICH. Collagenase also appears to induce areas of ischemia that
are not generally found after blood injection and are not considered a major component of
ICH-induced injury (Zazulia et al 2001).

4.2. Small animal models
Small animal models of ICH have advantages of lower cost, relative homogeneity within
strains, cerebrovascular anatomy and physiology similar to that of higher species, and a
small brain that is suited to immunohistochemical and biochemical studies. Based on
reproducibility, the basal ganglia is often chosen as the site of blood infusion rather areas
near the brain surface. Considerable research indicates that this approach can be used for
sensitive and reliable assessment of chronic behavioral deficits and treatment effects (Hua et
al 2002; Hua et al 2006; Nakamura et al 2004a; Nakamura et al 2004b). The hippocampus
has also been used as an injection site because of the relative ease of determining neuronal
death (Song et al 2007).

In the mid-to late 1980's, a rat model of ICH was used to examine the relationships between
mass effect, perihematomal blood flow, and ICP (Bullock et al 1984; Kingman et al 1988;
Mendelow et al 1984; Nath et al 1986; Nath et al 1987). More recently, a method involving
[14C]iodoantipyrine has been developed to measure perihematoma blood flow. It also has
been used to investigate the mechanisms of brain edema formation following ICH (Keep et
al 2012; Xi et al 2001a; Xi et al 2001c; Xi et al 2004; Xi et al 2006), as well as to assess the
related neurological deficits and long term brain injury (Hua et al 2002). The effects of age
(Gong et al 2004), gender (Nakamura et al 2005a), hypertension (Wu et al 2011a) and low
capacity for exercise have also been investigated using this model (He et al 2012). Other
uses of the [14C]iodoantipyrine-model of ICH include combining it with MRI to determine
extent of brain damage (Wu et al 2010), test potential treatments (Nakamura et al 2004a;
Okauchi et al 2009; Okauchi et al 2010; Wu et al 2008; Zhao et al 2011a), and examine
hemorrhagic transformation after ischemia-reperfusion (Xing et al 2009).

Mouse models of ICH can also be used to investigate secondary inflammatory responses,
intracellular signaling, and molecular events. Models based on the injection of donated
blood into the mouse striatum (Belayev et al 2003) and autologous blood injected into the
basal ganglia (Nakamura et al 2004b) have also been established. The latter has been used to
test the effect of genetic deletions on ICH-induced brain injury (Nakamura et al 2004b;
Yang et al 2006). Ischemia-reperfusion can also induce hemorrhagic transformation in mice
(Campos et al 2013; del Zoppo et al 2012).

Collagenase rodent models of ICH can differ from blood injection models in their
mechanisms of injury and repair, and in the response to therapeutic interventions
(MacLellan et al 2008; MacLellan et al 2010). Although collagenase models have been used
to examine mechanisms of hematoma enlargement and develop prospective treatments
affecting hemostasis, this approach may amplify inflammatory responses and cause
neurotoxic effects at high doses (Del Bigio et al 1996; Del Bigio et al 1999; Xue and Del
Bigio 2000). Furthermore, extensive bleeding following intracerebral collagenase injection
may produce an ischemic cerebral injury that is not representative of human ICH pathology
(Weiler et al 1992).

4.3. Large animal models
In large animals, studies of ICH have been performed in cat (Kobari et al 1988), rabbit
(Kaufman et al 1985; Narayan et al 1985), dog (Enzmann et al 1981; Qureshi et al 1999;
Takasugi et al 1985), monkey (Bullock et al 1988), and pig (Wagner et al 1996), and these
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enable the examination of surgical treatments with and without pharmacological
interventions. The pig is a useful model of ICH because of its large gyrate brain and large
content of hemispheric white matter. A pig model of ICH with autologous blood infusion
has been used to investigate ICP, blood flow, edema development, metabolism, transcription
factor activation and inflammatory gene expression (Wagner and Broderick 2001; Wagner et
al 1998; Wagner et al 2002; Wagner et al 2003; Wagner 2007). It has also been used to
study surgical clot evacuation (Wagner et al 1999; Zuccarello et al 2002), clot lysis induced
by tissue plasminogen activator (tPA) followed by aspiration (Wagner et al 1999), and the
optimal time for surgical intervention (Yin et al 2006). It has also been used to test the
effects on ICH-induced brain injury of inhibiting heme oxygenase (Wagner et al 2000) and
iron chelation with deferoxamine (Gu et al 2009). The pig has also been used to generate a
collagenase injection model of ICH (Mun-Bryce et al 2001; Mun-Bryce et al 2004; Mun-
Bryce et al 2006) in which collagenase is injected into the primary sensory cortex to
examine the alterations in somatosensory-evoked potentials elicited by electrical stimulation
and changes in the somatosensory region after ICH.

5. Systemic responses post-ICH
5.1. Inflammatory and immune responses

ICH results in systemic inflammatory response. For example, in patients with hemorrhagic
stroke, interleukin-2 levels in peripheral blood T lymphocytes were lower than in healthy
controls, but no significant difference was observed between ICH and SAH groups (Zou et
al 1997). Experimental data from a murine model of ICH has shown that total neutrophils
and lymphocytes are reduced but that monocytes are increased, and that this is related to
hematoma size (Illanes et al 2011). Immune cells were reduced in spleen, thymus and lymph
nodes 3 days after the injection of 50 μl of blood, but not after an injection of 10 or 30 μl of
blood.

5.2. Cardiac responses
The association between brain damage and cardiac death has been well documented
(Cheung and Hachinski 2000; Tung et al 2004). Clinical and experimental evidence suggests
that traumatic brain injury leads to change in electrocardiogram (ECG), an elevation in
cardiac enzymes, myocardial dysfunction, and arrhythmias (Dujardin et al 2001; Elrifai et al
1996; Hurst 2003; Jung et al 2001).

Many patients with SAH or ICH have mild to moderate ECG abnormalities without
coronary events during the acute phase of hemorrhagic stroke, suggesting a probability of
heart injury caused by brain damage (Cheung and Hachinski 2000; Dujardin et al 2001;
Elrifai et al 1996; Hurst 2003; Jung et al 2001; Khechinashvili and Asplund 2002). ECG
abnormalities related to lesion location and outcome, but not to the level of the cerebral
lesion, frequently occur in patients with ICH (Liu et al 2011b). Elevated troponin levels in
SAH patients has long been recognized (Deibert et al 2000; Espiner et al 2002), and
elevated cardiac troponin I values also occur in ICH and are independently associated with
higher rates of in-hospital mortality (Hays and Diringer 2006). Elevated troponin levels may
represent cardiac toxicity mediated by sympathetic activation in response to acute
neurologic insults (Cheung and Hachinski 2000; Tung et al 2004).

Experiments in rats have demonstrated that ICH initiates cardiomyocyte contractile (Fang et
al 2006). Female rats have higher levels of cardiac HSP-32 than do males, and 17β-estradiol
treatment induces higher HSP-32 levels in male rats after ICH, thus suggesting that gender
differences in myocardial HSP-32 may be related to estrogen (Ye et al 2011). Also, ICH
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reduced cardiac HSP-27 and HSP-32 in aged rats, which may be associated with heart injury
caused by ICH (Hu et al 2011).

5.3. Others
Iron has been shown to play an important role in ICH-induced brain injury in experimental
animals (Gu et al 2009; Hua et al 2006; Nakamura et al 2004a; Okauchi et al 2010; Song et
al 2007; Wu et al 2003) and patients (Wu et al 2006). Recent studies show that high serum
ferritin levels, an iron storage protein, are independently associated with severe brain edema
and poor outcomes in patients with ICH (Mehdiratta et al 2008; Perez de la Ossa et al 2010).
Total serum iron in rats is increased after ICH, and this is reduced by minocycline (Zhao et
al 2011a). ICH is also associated with significant oxidative damage to DNA in the
perihematomal area, as assessed by 8-OHdG immunoreactivity at a number of AP sites and
a marked increase in DNA single strand breaks. The iron-chelator deferoxamine reduced 8-
OHdG levels following ICH (Nakamura et al 2005b). Acute ICH is associated with
increased leukocyte 8-OHdG levels and decreased glutathione peroxidase activity and
vitamin E levels, but only 8-OHdG is associated with ICH and the outcome at one month
(Chen et al 2011b).

Leptin has recently been discussed as a novel biomarker for clinical outcomes in critical
illness. Leptin levels in peripheral blood are highly associated with cerebral hemorrhagic or
ischemic stroke (Soderberg et al 1999; Soderberg et al 2003) and independently predict in
hospital and 1-week mortality rates of patients with ICH, as well as 6-month clinical
outcomes in pediatric traumatic brain injury (Dong et al 2010; Lin et al 2012; Zhao et al
2012). Higher plasma leptin levels correlate with disease severity and markers of systemic
inflammation and thus represent a novel biomarker for predicting 6-month clinical outcomes
in patients with ICH (Zhao et al 2012).

6. Therapeutic targets and ongoing clinical trials
All ongoing clinical trials have been summarized in a recent review paper(Keep et al 2012).
Below are major therapeutic targets and clinical trials.

6.1. Mass effect-surgical clot removal
6.1.1 Preclinical data—ICH results in a hematoma that ruptures or distorts brain
connections and – depending on size – increases ICP, with the latter potentially affecting
cerebral blood flow. These physical effects are generally termed the ‘mass effect’ (Keep et
al 2012). While the initial mass effect occurs at the time of ICH, in some patients the
hematoma continues to expand during the first 24 hours (Demchuk et al 2012). In addition,
formation of perihematomal edema can further exacerbate increases in ICP and the initial
mass effect may trigger other secondary mechanisms of injury (Keep et al 2012).

Multiple preclinical models have been used to examine the mass effect, including the
insertions of balloons and injections of ‘inert’ masses. These have demonstrated that
physical disruption alone can cause some brain injury (Mendelow 1993).

For over 50 years (McKissock et al 1961; Prasad et al 2008) there have been clinical trials
of surgical clot evacuation aimed at reducing the mass effect. Evacuation may also reduce
the effects of hematoma-derived factors deleterious to brain (e.g., hemoglobin/iron). There
have been very few preclinical trials of clot evacuation because of the difficulties of
performing surgical clot-removal studies in animals. However, in a pig model of ICH the
effects of ultra-early (3.5 hr) hematoma evacuation have been examined using tPA and
aspiration (Wagner et al 1999). Reduced edema formation and BBB disruption were
associated with evacuation. Similarly, in a rabbit model, evacuation using urokinase (u-PA)
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and aspiration after 6 hours reduced perihematomal edema, disruption of the BBB, and
glutamate content (Wu et al 2011b).

There are concerns over the extravascular effects of exogenous tPA in relation to ischemic
(Yepes et al 2009) and hemorrhagic stroke. The latter has been studied extensively in a pig
model of ICH in which tPA liquified the clot for aspiration, but there was evidence of
delayed edema formation (Rohde et al 2002) and an increased inflammatory response
(Thiex et al 2003). In that model, the hematoma could be removed surgically without the use
of tPA, reducing inflammation but having no effect on ICH-induced edema (Thiex et al
2005). The same group of researchers has examined methods to reduce thrombolytic-related
injury and found that the glutamate antagonist MK801 reduced injury, as did the use of
desmoteplase, an alternate thrombolytic (Rohde et al 2008; Thiex et al 2007).

However, it should be noted that the adverse effects of tPA are debated. As noted above,
Wagner et al. found reduced brain edema after tPA thrombolysis in a pig model of ICH
(Wagner et al 1999) and recently, Mould et al. reported reduced perihematomal edema with
tPA thrombolysis and aspiration in human patients with ICH (Mould et al 2013).

6.1.2 Past and current clinical trials of clot evacuation—Since the first clinical trial
of surgical ICH evacuation (McKissock et al 1961) there have been multiple small trials
with conflicting results (reviewed in Prasad et al. 2008). These trials have been based on
either the use of surgery alone or surgery with a thrombolytic agent to help dissolve the clot
prior to aspiration. Doubts over the utility of clot evacuation led to a large surgical trial (the
Surgical Trial in Intercerebral Hemorrhage (STICH) trial, n=1033) that failed to demonstrate
any benefit of clot evacuation (Mendelow et al 2005). However, questions remained over
the utility of clot evacuation. For example, it was not clear whether certain patient subsets
could benefit from clot evacuation. It should also be noted that ICH location is important in
determining outcome. For example, hindbrain hemorrhages are particularly devastating and
it is generally accepted that surgical decompression is potentially life-saving in such cases
(Adeoye and Broderick 2010; Anderson et al 2010).

Sub-analysis of the STICH I trial results indicated that a subset of patients with ICH with
superficial (< 1cm from cortical surface) lobar hemorrhages might benefit from clot
evacuation, perhaps because of reduced surgical trauma in such patients relative to deep-
seated hemorrhages. This resulted in the STICH II trial (Mendelow et al 2011), the results of
which have just been reported with again no evidence of significantly improved outcome
compared to medical treatment (Mendelow et al 2013).

Another question regarding clot evacuation is whether technical developments might
reduce surgical trauma and produce discernible benefits. Thus, other approaches currently
being tested use minimally invasive surgery in combination with hematoma lysis methods.
In the Minimally Invasive Surgery plus rtPA for Intercerebral Hemorrhage Evacuation
(MISTIE) trial (NCT00224770), a minimally invasive approach is being used with t-PA to
assist evacuation (Morgan et al 2008) and this has recently been reported to reduce
perihematomal edema (Mould et al 2013). There has also been interest in using a
combination of t-PA and sonothrombolysis to increase the speed of hematoma lysis in
patients (Newell et al 2011).

6.1.3 Future directions—Although on-going clinical trials are expected to advance our
understanding of the potential benefits of clot evacuation in patients with ICH, few studies
have yet to address the timing of clot evacuation. Although it could be argued that the
earliest possible evacuation of hematomas might be best, a substantial portion of patients
(~20-40%) undergo hematoma expansion during the first 24 hours (Delgado Almandoz et al
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2010; Dowlatshahi et al 2011) and attempting to remove a hematoma where there is
continued bleeding is potentially dangerous, particularly if a thrombolytic is being used. A
trial using ultra-early clot evacuation in patients was unsuccessful (Morgenstern et al 1998).

A reliable method of identifying patients that are experiencing hematoma expansion would
assist in determining when patients might more safely undergo evacuation. The ‘spot-sign’
on CT angiography has been proposed as a marker for the identification of patients that may
benefit from the use of a pro-coagulant to stop hematoma expansion (SPOTLIGHT and
STOP-IT trials, NCT01359202 and NCT00810888 respectively) (Chen-Roetling et al
2009b). There is also some evidence that administration of the Factor VIIa pro-coagulant in
combination with clot evacuation limits rebleeding (Imberti et al 2012; Sutherland et al
2008).

As noted above, t-PA can be used to induce thrombolysis and allow the aspiration of
hematomas, but there are some concerns over the potential extravascular effects of t-PA. A
recent meta-analysis has suggested that u-PA, an alternate thrombolytic, is superior to t-PA
for IVH clot evacuation (Gaberel et al 2011).

It should be noted that surgical clot evacuation – with or without a thrombolytic – is
incomplete. For example, Dye et al. (Dye et al 2012) reported that an average of 21% of a
hematoma remains after endoscopic surgery using t-PA for clot lysis prior to aspiration.
This, together with the required delay before evacuation, suggests that even if current
clinical trials of evacuation are successful in reducing ICH-induced brain injury and
mortality, use in combination with another therapeutic may be beneficial. For example, this
might involve promotion of the phagocytosis of the remaining hematoma or administration
of agents that reduce hematoma-induced neurotoxicity (see sections below).

6.2. Mass-erythrocyte phagocytosis
6.2.1 Preclinical data—Enhancing the endogenous mechanisms involved in hematoma
resolution is an alternative strategy in the treatment of ICH that may be able to overcome the
brain trauma associated with surgical clot removal. Although there is relatively little known
about the mechanisms involved in hematoma resolution and how they are regulated,
resolution may involve the lysis of red blood cell (RBC), in which energy depletion and
complement are thought to play a role (Ducruet et al 2009). Phagocytosis of RBCs by
microglia and/or infiltrating macrophages has also been suggested as having roles in
resolution (Zhao 2009). It will be important to delineate the mechanisms involved for
improved assessment of ICH-induced injury, e.g., RBC lysis (but not phagocytosis) will
release intracellular contents into the brain extracellular space with possible neurotoxic
effects. Indeed, injection of lysed RBCs into rat brain causes extensive brain damage (Wu et
al 2002; Xi et al 1998a).

The time course of hematoma resolution differs is slower in human ICH than in commonly
used animal models (Xi et al 2006). As such, the relative importance of different clearance
mechanisms may differ between species.

One potential method of enhancing clot resolution is through the use of PPARγ agonists
such as pioglitazone. These have been shown to enhance phagocytosis by microglia/
macrophages and accelerate the rate of clot resolution in a rodent model of ICH (Zhao 2009;
Zhao et al 2006; Zhao et al 2007a).

However, PPARγ agonists are pleiotropic agents and may have actions beyond accelerating
clot resolution. For example, PPARγ agonists have anti-inflammatory effects, induce anti-
oxidant defense mechanisms (e.g., catalase), reduce excitotoxicity, and upregulate anti-
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apoptotic genes (Zhao et al 2007a). Inflammation, oxidative stress, excitotoxicity, and
apoptosis have all been proposed as having a role in secondary brain injury after ICH (Keep
et al 2012).

6.2.2 SHRINC clinical trial—The preclinical data described above led to the Safety of
Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC;
NCT00827892) clinical trial. Although principally aimed at determining the safety of
pioglitazone, this dose escalation study also examined the effect of pioglitazone on
hematoma/edema resolution in patients with ICH (Gonzales et al 2012). Although recently
completed, the results of this study have yet to be reported.

6.2.3 Alternate Approaches—There is a growing interest in determining how to effect
hematoma resolution in terms of duration and mechanism. Systemically, phagocytosis is
essential for removing old or damaged RBCs. Cell-surface molecules act as ‘eat-me’ (e.g.,
phosphatidylserine) or ‘don't eat me’ (e.g., CD47) signals to potential phagocytes (Brown
and Neher 2012). These signals interact with specific macrophage receptors (e.g., CD47
interacts with SIRPα) regulating macrophage function (Brown and Neher 2012). After ICH,
the CD36 receptor on microglia/macrophages is important in regulating RBC phagocytosis
and the effects of PPARγ agonists on phagocytosis is mediated by CD36 upregulation (Zhao
2009). As we gain a greater understanding of how hematoma resolution occurs, it should be
possible to develop new methods to regulate this process , for example by enhancing
hematoma clearance by upregulating ‘eat-me’ or down-regulating ‘don't eat me’ signals.

Another potential approach is to prevent RBC lysis and the associated release of
hemoglobin/iron into the brain extracellular space. Activation of the complement system,
and insertion of the membrane attack complex, can cause RBC lysis. The complement
system is activated after ICH and complement inhibition is reduced after ICH-induced brain
injury in rat (Ducruet et al 2009; Hua et al 2000; Xi et al 2001a). However, complement
activation may have effects on brain injury that are not related to hematoma resolution
(Ducruet et al 2009; Hua et al 2000; Xi et al 2001a). Moreover, components of the
complement system (C1q and C3b) induce RBC phagocytosis (Brown and Neher 2012).
Further research is therefore required to identify how best to manipulate the complement
system in the treatment of ICH.

6.3. Brain iron overload and deferoxamine
6.3.1. Preclinical data—Iron has a major role in brain damage following ICH (Wagner et
al 2003; Xi et al 2006). Brain injury after ICH appears to involve several phases (Xi et al
2006), including an early phase involving the clotting cascade activation and thrombin
production (Gebel et al 1998; Lee et al 1996; Lee et al 1997; Wagner et al 1996; Xi et al
1998b) and a later phase involving erythrocyte lysis and iron toxicity (Huang et al 2002;
Nakamura et al 2004a; Wagner et al 2003; Wu et al 2006; Wu et al 2003; Xi et al 1998a).
After erythrocyte lysis within the hematoma, iron concentrations in the surrounding brain
can dramatically increase (Figure 4). A 3-fold increase in brain non-heme iron follows ICH
in rats with levels remaining high for at least one month (Wu et al 2003). Brain iron
overload causes brain edema in the acute phase of ICH and brain atrophy at later phases.

The iron chelator deferoxamine has been shown to reduce ICH-induced brain edema,
neuronal death, brain atrophy, and neurological deficits in young rats (Hua et al 2006;
Nakamura et al 2004a; Song et al 2007). Clinical data also suggest a role for iron in ICH-
induced brain injury, with clot lysis shown to be associated with the development of
perihematomal edema (Wu et al 2006). Recent studies show that high levels of serum
ferritin, an iron storage protein, are independently associated with poor outcomes and severe

Xi et al. Page 11

Prog Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



brain edema in patients with ICH (Mehdiratta et al 2008; Perez de la Ossa et al 2010). A
translational project was therefore conducted to determine an optimal dose, a therapeutic
time window, and optimal treatment durations for deferoxamine (Okauchi et al 2009). Male
Fischer 344 rats (18-months old) had an intracaudate injection of 100 μL autologous whole
blood and were treated with varying doses of deferoxamine (10, 50 and 100 mg/kg) or
vehicle at 2 and 6 hours post-ICH, and then every 12 hours for up to 7 days. Behavioral tests
were performed throughout the experiments and rats were sacrificed at days 3 and 56 for
brain edema determination and brain atrophy measurement respectively. All tested doses of
deferoxamine attenuated perihematomal brain edema at 3 days post-ICH, whereas 50 and
100 mg/kg deferoxamine also reduced ICH-induced ventricle enlargement, caudate atrophy,
and ICH-induced neurological deficits in aged rats. Although 10 mg/kg deferoxamine
reduced ventricle enlargement and forelimb placing deficits, this concentration did not
reduce caudate atrophy or corner turn deficits (Figure 5). These results indicate that
deferoxamine can reduce ICH-induced brain injury in aged as well as young rats and that a
dose of greater than 10 mg/kg is optimal in this model.

Potential therapeutic time windows and durations for deferoxamine administration have also
been investigated in rats (Okauchi et al 2010). Aged male Fischer 344 rats (18-month old)
received an intra-caudate injection of 100 μL autologous whole blood, followed by
intramuscular deferoxamine or vehicle with varying start times and duration periods.
Subgroups of rats were sacrificed at post-ICH day 3 and 56 for brain edema measurement
and brain atrophy determination respectively, and behavioral tests were conducted on days
1, 28 and 56. If started within the first 12 hours following ICH, systemic administration of
deferoxamine was shown to reduce brain edema. If started within 2 hours of ICH and
administered for 7 days or more, deferoxamine treatment attenuated ICH-induced ventricle
enlargement, caudate atrophy, and neurological deficits. When deferoxamine treatment
started within 24 hours and administered for 7 days ICH-induced brain atrophy and
neurological deficits were attenuated without detectable side effects (Figure 6).

Similar deferoxamine studies have also been performed in large animals, and these are
critical for translational research. In a pig model of ICH, autologous blood was injected into
the right frontal lobe and either deferoxamine (50 mg/kg, IM) or vehicle were administered
2 hours post-ICH and then every 12 hours up to 7 days (Gu et al 2009). Animals were
sacrificed at post-ICH day 3 or 7 and iron accumulation, white matter injury, and neuronal
death were examined. A reddish zone developed around the hematoma in all ICH pigs
(n=16) and deferoxamine treatment significantly reduced this zone at post-ICH days 3 and 7.
Enhanced Perls’ reaction revealed good spatial correlation between iron accumulation and
the reddish zone. Deferoxamine also reduced the number of perihematomal Perls’ positive
cells, ferritin positive cells, neuronal death, and white matter damage (Figure 7) (Gu et al
2009).

The effects of deferoxamine on post-ICH brain injury were also tested in other animal
models, with mixed results (Warkentin et al 2010; Wu et al 2011c). In a mouse model of
ICH induced by collagenase injection, systemic use of deferoxamine reduced brain iron
levels, neuronal death, inflammation, and neurological deficits. However, deferoxamine did
not reduce brain edema in this model (Wu et al 2011c). In contrast, deferoxamine failed to
reduce brain edema and neurological deficits in collagenase-induced ICH in rats (Warkentin
et al 2010).

It should be noted that, however, although deferoxamine is an iron chelator, it also can
activate hypoxia inducible factor-1α and inhibit Prolyl 4-hydroxylase activity which may
lead to protection from oxidative-stress induced cell death (Aminova et al 2005; Siddiq et al
2008).
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6.3.2. Deferoxamine-ICH phase I and phase II—A NIH-funded phase I trial of
deferoxamine has been recently performed to test the safety and tolerability of deferoxamine
in patients with ICH (Selim et al 2011). This multicenter, dose-determining, phase I trial
applied the Continual Reassessment Method with deferoxamine given by intravenous
infusion for 3 days and treatment started within 18 hours of ICH onset. Twenty patients with
ICH were enrolled with 7 mg/kg/day as the starting dose and 62 mg/kg/day as the maximum
tolerated dose. Their results demonstrated that consecutive daily intravenous infusion of
deferoxamine in Patients with ICH is safe and well tolerated.

A phase II trial (NCT01662895) of high-dose deferoxamine in intracerebral hemorrhage
(HI-DEF) is currently underway. Its aim is determine whether treatment with deferoxamine
mesylate is sufficiently promising in regard to to improving functional outcomes before
pursuing a phase III clinical trial to examine its effectiveness as a treatment for ICH.

6.3.3. Alternate approaches—A recent study has shown that minocycline reduces brain
iron overload following ICH and attenuates iron-induced brain edema (Zhao et al 2011b).
Minocycline is a potent inhibitor of microglia activation and has been reported to provide
neurovascular protection by inhibiting microglia or reducing matrix metalloproteinase
(Murata et al 2008; Tikka et al 2001). Moreover, minocycline is also an iron chelator
(Grenier et al 2000) and has been recently shown to attenuate iron neurotoxicity in cortical
neuronal culture by chelating iron (Chen-Roetling et al 2009a). Thus, minocycline may
show greater protection than an agent targeting iron or inflammation alone.

6.4. Lowering blood pressure after hematoma enlargement
6.4.1. Preclinical data—Collagenase-induced models of ICH have been used for
preclinical studies of hematoma enlargement, but the results on the effects of blood pressure
on hematoma expansion have been inconsistent. In a rat model of ICH, hypertension is
associated with larger hematoma (Bhatia et al 2012). However, Wu et al. (Wu et al 2011a)
found no difference in hemorrhage volume between spontaneously hypertensive rats
compared to normotensive controls after collagenase injection. It is possible that acute
changes in blood pressure rather than chronic hypertension may be more important in
hematoma expansion. For example, Benveniste et al. (Benveniste et al 2000) examined ICH
after biopsy and found no difference in hemorrhage volume between spontaneously
hypertensive rats and normotensive controls rats, but did observe increased hemorrhage in
normotensive rats subjected to acute increases in blood pressure.

6.4.2. INTERACT, ICH ADAPT, and ATACH-II—Several recently completed or
ongoing trials have addressed the potential of lowering blood pressure in hematoma
expansion, The Intensive Blood Pressure Reduction In Acute Cerebral Hemorrhage Trial
(INTERACT 1/2)(Anderson et al 2010; Anderson et al 2013), The Intracerebral
Hemorrhage Acutely Decreasing Arterial Pressure Trial (ICH ADAPT) (Butcher et al 2010)
and Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH-II) trial (Qureshi
and Palesch 2011).

In INTERACT, patients with ICH were randomly assigned to an intensive (target systolic
blood pressure to 140 mmHg) or standard guideline-based management of blood pressure
(target systolic blood pressure to 180 mm Hg) using routine intravenous agents.
INTERACT2 found that intensive lowering of blood pressure did not reduce mortality or
severe disability, nor did it reduce hematoma expansion. However, an ordinal analysis of
modified Rankin scores showed improved functional outcomes (Anderson et al 2013). The
final interpretation of these results will likely await the results of the other blood pressure
trials.
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The hypothesis of ICH ADAPT is that the reduction of blood pressure does not result in
significant or harmful changes in cerebral blood flow in patients with acute ICH. Two hours
after randomization to a systolic blood pressure target of <150 or <180 mmHg, cerebral
blood flow is measured using computed tomography perfusion (Butcher et al 2010).
ATACH-II is a multi-center, randomized Phase III trial in which intravenous nicardipine
will be used within 3 hours of the onset of ICH to reduce systemic blood pressure to ≤ 140
mmHg. It is yet unknown whether this will show long-term therapeutic benefits but
evidence of reduced hematoma expansion has been reported (Qureshi et al 2010).

6.4.3. Alternate approaches—Factor VIIa has been shown to reduce early hematoma
enlargement in a rat model of ICH (Kawai et al 2006), while several onging studies are
investigating collagenase-induced ICH in warfarin treated animals (Illanes et al 2011; Lauer
et al 2013). Illanes et al. (Illanes et al 2011) have examined the effects of a variety of
methods of reversing warfarin anti-coagulation on ICH in mice. They found smaller
hemorrhages with concentrated pro-thrombin complex and frozen plasma. FVIIa and
tranexamic acid had less of an effect. The inhibition of plasma kallikrein is an alternative
approach to reducing hematoma expansion. A recent study has found that it inhibits platelet
aggregation and hematoma expansion (Liu et al 2011a).

6.5. Hemorrhage intraventricular extension and hydrocephalus
Non-traumatic, spontaneous ICH is associated with IVH in 42-55% of cases. IVH is an
independent predictor of worse outcomes with mortality rates of 29-78%, compared to
5-29% for ICH without IVH (Hanley 2009). Moreover, the volume of blood within the
ventricle is associated with outcome in IVH, and >20 ml of blood in the ventricle is
independently associated with a worse outcome (Sumer et al 2002; Tuhrim et al 1999).
Intraventricular hemorrhagic extension is more common when the focus of hemorrhage is
adjacent to the ventricle, such as in the thalamus or caudate (Hallevi et al 2008; Sykora et al
2012). One study reported a 100% incidence of IVH in caudate ICH (Hallevi et al 2008).
Large volume ICH and hypertension are also associated with intraventricular hemorrhagic
extension (Pang et al 1986; Steiner et al 2006). In addition, the location of the hematoma in
the 3rd and 4th ventricle may contribute to poor outcome by causing autonomic dysfunction
(Hallevi et al 2012; Sykora et al 2012).

There are several IVH grading scales based on the percentage of the ventricular system that
is filled with blood and the distension of the ventricles (Graeb et al 1982; Hallevi et al 2009;
Hwang et al 2012; LeRoux et al 1992; Morgan et al 2013), some of which are used to help
predict prognosis.

IVH can result in acute hydrocephalus by obstruction of the ventricular system or
extraventricular compression from ICH (Lodhia et al 2006; Zazulia 2008). Acute
hydrocephalus is associated with increased ICP, reduced cerebral perfusion, and death, and
is an independent predictor of mortality in ICH with IVH extension (Mayfrank et al 1997;
Pang et al 1986; Stein et al 2010). Clots localized adjacent to the ventricle are associated
with hydrocephalus (Mayfrank et al 2000; Pang et al 1986; Sumer et al 2002). Chronically,
IVH may also result in hydrocephalus, and although the mechanism is still unclear it
probably involves an inflammatory-mediated pathway and scarring of the CSF outflow
pathways.

The fact that spontaneous decompression of ICH into the ventricular system does not
improve outcome (Hallevi et al 2008), combined with increased morbidity and mortality of
IVH in the setting of ICH, highlights the potential deleterious effects of blood within the
ventricular system. As a result, the majority of recent clinical research on IVH has focused
on hastening removal of intraventricular blood through primarily catheter-directed
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thrombolysis with u-PA, and more recently intraventricular recombinant t-PA , ultrasound,
and endoscopic removal.

6.5.1. Preclinical data—There are several models of adult IVH, all of which are
variations on injection of blood products into the ventricle. Pang et al. (Pang et al 1986)
studied IVH in a canine model in which 9 ml of preclotted autologous blood was injected.
The thrombolytic u-PA hastened clot resolution, decreased ventricular size, and reduced the
amount of periventricular injury. Mayfrank et al, (1997) developed a porcine model of IVH
by injecting 10 ml of autologous blood along with thrombin into the ventricle. Treatment
with rt-PA decreased ventricle size and accelerated clearance of the hemorrhage (Mayfrank
et al 1997; Ment et al 1982). However, this model is limited in its applications as IVH was
induced by co-injection of blood along with thrombin, which alone is sufficient for
ventricular enlargement. A rodent model of IVH, created by injection of 200 μl autologous
blood into the ventricle (Lodhia et al 2006), has been used to study the potentially
deleterious role of iron in post-IVH brain injury (Chen et al 2011c). The iron-handling
proteins heme-oxygenase-1 and ferritin are up-regulated after IVH and treatment with the
iron chelator deferoxamine decreases post-IVH ventricular enlargement. Spontaneous IVH
has been induced in neonatal animal models after hypertension in the newborn beagle
(Goddard et al 1980; Litrico et al 2013) and after hypotension followed by volume
expansion in a beagle puppy model (Ment et al 1982). Spontaneous IVH has also been
induced in premature rabbits (Chua et al 2009; Lorenzo et al 1982).

Multiple animal models have evaluated treatment with intraventricular rt-PA post-IVH
(Mayfrank et al 1997; Pang et al 1986). Enhanced finbrinolysis is thought to clear blood
from the ventricular more quickly and decrease the time in which the ependymal and
subarachnoid spaces are in contact with blood. In these models, u-PA/t-PA reduced damage
to the ependymal surface (Mayfrank et al 2000; Pang et al 1986; Qing et al 2009). A recent
clinical study evaluating inflammation after intraventricular treatment with t-PA found
reduced leukocyte numbers in the CSF of patients that received rt-PA (Hallevi et al 2012).

It remains unclear how IVH results in hydrocephalus. Although older theories attribute
hydrocephalus to fibrosis of CSF outflow pathways, there is no robust preclinical data
supporting this. Pang's often cited study concluded that only “minimal fibrosis” of the
arachnoid villi was noted (Pang et al 1986). Fibrosis of the subarachnoid space leading to
delayed hydrocephalus is another possibility but this remains to be substantiated.

6.5.2. CLEAR clinical trial—Current treatment recommendations for ICH with IVH or
hydrocephalus are for ICP monitoring when Glasgow Coma Scale (GCS) is less than 8 and
for ventricular drainage if there is a decreased level of consciousness. A CPP goal of 50-70
mmHg also is recommended. Although such management strategies have tended to be
largely supportive in nature, there is a push now for active removal of intraventricular clot,
as the presence and volume of clot has repeatedly been shown to be independently related to
outcome (Hanley 2009). The Clot Lysis: Evaluating Accelerated Resolution of IVH
(CLEAR-IVH) is a series of clinical trials evaluating the safety, optimal dosing, dosing
interval, and efficacy of rt-PA for treatment of IVH (Naff et al 2011; Ziai et al 2012b). This
phase II trial was designed to evaluate the safety of intraventricular injection of 3 ml rt-PA
(1 mg/ml) versus 3 ml saline placebo for the treatment of IVH in the setting of small (<30
ml) supratentorial ICH (Naff et al 2011). Primary safety outcome measures included death
at 30 days, symptomatic bleeding, and ventriculitis. The rate of ventricular clot lysis was a
secondary outcome measure. Although there were no significant differences between the
treatment groups in regard to any of the safety outcomes, symptomatic bleeding occurred in
23% of patients after treatment with rt-PA compared to 5% for the placebo group. Patient
characteristics were well matched between the treatment groups with the exception of
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having 73% males in the rt-PA group. Clot resolution occurred at a faster rate with
intraventricular rt-PA (18% per day versus 8% per day for placebo), and required fewer days
with an external ventricular drain (EVD) and a shorter duration of treatment. Although there
was a trend for the rt-PA group to have improved outcome at 30 days on a variety of scales
(i.e., Glosgow Outcome Scale, modified Rankin scale, NIH stroke scale, and Barthel index
score) this result was not significantly different from that of the placebo group. A number of
additional analyses of the CLEAR-IVH data have also been published (Zacharia et al 2012;
Ziai et al 2012a). Clot lysis was found to be dose dependent and occurred most quickly in
the midline ventricles (Adams and Diringer 1998; Webb et al 2012). In addition, for the rt-
PA group, higher baseline levels of plasminogen and lower baseline platelet counts are
associated with faster initial clot lysis (Sumer et al 2002; Ziai et al 2012b). A phase III
CLEAR-IVH clinical trial to assess long-term outcome is currently underway
(clinicaltrials.gov NCT00784134).

Additional studies with u-PA, which has now been withdrawn from the market in the United
States, have added to our knowledge of how thrombolysis acts during ICH associated IVH.
A small randomized trial investigating intraventricular u-PA found that u-PA was safe and
increased the rate of clot resolution. However, there was no demonstrable difference in
outcome for those treated with u-PA versus those in the placebo group (Huttner et al 2007;
King et al 2012). An earlier study of 20 patients evaluated in a combined open label (12
patients) and randomized (8 patients) fashion found improved survival at 30 days with EVD
plus u-PA, compared with EVD alone (Naff et al 2000). This was followed by a randomized
double blind placebo controlled trial to evaluate the safety of intraventricular u-PA.
However, enrollment was terminated when u-PA was withdrawn from the U.S. market and
the study was limited to 12 patients (Naff et al 2004). A recent meta-analysis evaluating
EVD and EVD + u-PA or rt-PA included 4 randomized and 8 observational studies. Overall
mortality was reduced in the EVD + fibrinolytic group. However, when outcome by
fibrinolytic type was evaluated, only u-PA was associated with decreased mortality (Gaberel
et al 2011; Staykov et al 2009).

Treatment with rt-PA is not without risk,and given the generally larger numbers of
symptomatic bleeding events in those treated with intraventricular thrombolysis/EVD
compared with EVD alone, the risk of hemorrhaging should be viewed as substantial. The
safety of rt-PA appears to be increased when all ventricular catheter fenestrations are within
the ventricle, as reported in a retrospective review of 27 patients treated with intraventricular
rt-PA (Jackson et al 2012). The association between neuronal degeneration and t-PA in
animal models (Tsirka et al 1995) has led to the evaluation of edema surrounding the
hematoma after treatment with t-PA. Two retrospective studies have not identified a
significant difference in edema to hematoma volume ratio in patients treated with
intraventricular rt-PA versus external ventricular drainage (EVD) alone (Volbers et al 2013;
Ziai et al 2013). However, another retrospective study found a significant increase in peri-
hematoma edema at 3 and 4 days post admission after treatment with intraventricular rt-PA
(Ducruet et al 2010). Current AHA/ASA guidelines for management of spontaneous ICH
state that intraventricular rt-PA treatment is investigational as the efficacy is not yet known
(Morgenstern et al 2010).

6.5.3. Alternate approaches—Post-ICH hydrocephalus is common and various studies
have attempted to evaluate management strategies for this clinical condition. Trials
investigating treatment with intraventricular t-PA have been primarily focused on morbidity
and mortality as the primary outcomes. Development of chronic hydrocephalus requiring a
shunt occurs in 20-28% of patients with ICH who receive ventriculostomy, yet the need for
a shunt is often a secondary outcome measure (Miller et al 2008; Zacharia et al 2012).
Although a number of variables are associated with the likelihood of needing a shunt, only
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thalamic location of hemorrhage and elevated ICP have been found to be independently
associated with need for shunt. In such cases, the rates of chronic hydrocephalus after
thalamic hemorrhage with IVH were as high as 66-68% (Chen et al 2011a; Miller et al
2008; Zacharia et al 2012).

Acute hydrocephalus is often managed with EVD or lumbar drainage, but more often the
former (Sumer et al 2002). In a retrospective case series evaluation, EVD was not associated
with improved outcome or reduction in ventricular size. Moreover, when there was a change
in ventricular size it did not correspond to a change in level of consciousness (Adams and
Diringer 1998). However, in a meta-analysis, EVD alone reduced mortality rate to 58%
from 78% for conservative management of SAH or ICH-associated IVH (Nieuwkamp et al
2000). A combination of EVD followed by lumbar drainage after the obstructive component
has cleared has been reported and long-term shunt rates in this retrospective study were
lower with the addition of lumbar drainage (Huttner et al 2006b; Huttner et al 2007). A
prospective non-randomized study has evaluated EVD and intraventricular fibrinolysis with
rt-PA until clearance of 3rd and 4th ventricular blood followed by lumbar drain if the patient
failed an EVD clamping trial. Rates of shunting were lowest in this group compared with
historical controls of EVD alone, EVD combined with lumbar drain, and EVD and
intraventricular fibrinolysis with rt-PA (Staykov et al 2009). Treatment of IVH-associated
thalamic hemorrhage with EVD alone or EVD followed by endoscopic removal of
hemorrhage was evaluated in a prospective randomized study. Although there was no
difference in outcome or mortality between groups, there was a decrease in the need for
ventricular shunting in the group that underwent endoscopic surgery (48 versus 90%)
(Bateman et al 2006; Chen et al 2011a).

Endoscopic third ventriculostomy (ETV) has also been described as a treatment for acute
obstructive hydrocephalus secondary to IVH (Ballabh 2010; Oertel et al 2009). A
combination of endoscopic evacuation of intraventricular hematoma (through bilateral burr
holes) along with ETV and EVD placement was effective in 24 of 25 patients in preventing
long term hydrocephalus (Yadav et al 2007). A separate case series of 13 patients treated
with endoscopic removal of IVH via a flexible endoscope reported that this procedure
appeared safe, with none of the patients in this series developing hydrocephalus (Longatti et
al 2004). However, there are concerns over this procedure for the management of IVH in the
acute period, as small fragments of clot may cause delayed obstructive hydrocephalus.
Similarly, treatment with antifibrinolytic agents has been suggested as potentially increasing
the rates of hydrocephalus after hemorrhage (Harrigan et al 2010; Naff et al 2011).

The DITCH (Dutch Intraventricular Thrombolysis after Cerebral Hemorrhage study) trial is
currently underway to evaluate ventricular drainage and thrombolysis with t-PA on outcome
3 months post-ICH with intraventricular extension.

Endoscopic removal of IVH is appealing as case series have thus far reported low rates of
hydrocephalus. As the presence of an EVD may prolong stay in an ICU (Huttner et al
2006a), initial management to clear intraventricular blood with an endoscope may provide
more immediate removal of blood and less reliance on serial rt-PA injections into a catheter.
A clinical trial is currently examining evaluate neurologic outcomes in patients with IVH,
hydrocephalus, and an opening ICP of at least 20 mmHg treated with intraventricular rt-PA
versus endoscopic removal of clot (clinicaltrials.gov-NCT01064011).

Treatment of intraventricular clot with rt-PA has been augmented with catheter-directed
thrombolysis with ultrasound (Newell et al 2011). Three patients with IVH were treated in
this study and had a reduction in the size of their clot. Although this study is limited by the
small sample size and a retrospective control group, catheter-directed and focused
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ultrasound therapy for clot lysis may present potential areas of future investigation. A phase
II/III trial is underway to assess need for permanent VP shunt after ICH (<60 ml) and IVH
with casting of the 3rd and 4th ventricles treated with EVD plus rt-PA versus EVD, rt-PA
and lumbar drainage after opening on the 3rd and 4th ventricles (clinicaltrials.gov, NCT
01041950).

7. Future Directions
There has also been a marked increase in preclinical research into cerebral hemorrhage in
the past decade, resulting in the identification of novel potential therapeutic targets (Keep et
al 2012) that are starting to form the basis of clinical trials (Selim et al 2011). As with other
neurological conditions, there are concerns over whether animal models recapitulate the
human disease and whether preclinical efficacy will translate to the clinic. Determining the
validity of preclinical models is a major goal.

There are many approaches to try and modulate hematoma size. Reducing hematoma
expansion, promoting endogenous hematoma clearance or clot evacuation. Each method has
potential advantages and disadvantages (e.g. potential side-effects) and a greater
understanding is needed of relative merits.

While information has been gained into the role of clot-derived factors (e.g. thrombin and
iron) in ICH-induced brain injury, it is likely that many other factors in the clot modulate
brain function (enhancing or reducing injury). In addition, how these factors interact in the
setting of ICH is largely unknown. These are potentially important areas for future research.

Patients with similar hematomas may have very different outcomes. The underlying basis
for such differences is largely unknown. Understanding such differences may give insight
into how to develop therapies for ICH as well as guiding patient-based therapy.

8. Conclusions
Our understanding of the mechanisms involved in ICH-induced injury have increased in the
last two decades and there are now multiple, potentially pivotal, ongoing clinical trials,
creating hope that effective treatments for these devastating forms of stroke may be
discovered. The end may be in sight. However, it should be noted that others have thought
this before and that ICH covers a spectrum of conditions dependent upon location and size
of the hematoma. It is, therefore, likely that no one therapeutic approach (if one is
discovered) will be best for all patients and, even in a single patient, a combination of
approaches may provide the best possibility of a positive outcome (Morgenstern 2012).
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Figure 1.
CT scan showing a patient with an intracerebral hemorrhage.
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Figure 2.
T2 MRI (A) and Flair MRI (B) showing brain edema around hematoma at the first day in a
patient with an intracerebral hemorrhage.
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Figure 3. Marked perihematomal necrotic cell death in a rat model of ICH
Alexa Fluro 488-labeled dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa
(DARPP-32) (green) and positive staining for propidium iodide (PI; red) in the ipsilateral
basal ganglia at day 3 post- intracerebral hemorrhage. DARPP-32 is a cytosolic protein
highly enriched in medium-sized spiny neurons of the striatum. Plasmalemma permeability
to PI is associated with markers of cell death. Scale bar = 500 μm (upper panel) and 100 μm
(lower panel). The DARPP-32 negative area superimposes the PI-positive area (Jin et al
2013).
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Figure 4.
T2 and T2* MRI, H&E, and Perls’ staining in a rat model of intracerebral hemorrhage at 1,
3 and 14 days post-hemorrhage (Wu et al 2010).
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Figure 5.
A: Coronal gross H&E sections eight weeks after intracerebral hemorrhage (ICH) and
treatment with vehicle or deferoxamine (DFX; 50 mg/kg). B: Caudate size expressed as a
percentage of the contralateral side. Values are expressed as the means ± SD. *p<0.05,
#p<0.01 vs. ICH + Vehicle group (Okauchi et al 2009).
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Figure 6.
Therapeutic time window of deferoxamine (DFX) for use in treating brain atrophy and
improving functional outcome. A: Forelimb placing test; B: Corner turn test; C: Ventricle
volume expressed as a percentage of the contralateral side at eight weeks post-intracerebral
hemorrhage (ICH); D: Caudate size expressed as a percentage of the contralateral side at
eight weeks post-ICH. Values are expressed as the means ±SD. *p<0.05, #p<0.01 vs. ICH
+Vehicle group, respectively (Okauchi et al 2010).
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Figure 7.
Fluoro-Jade C positive cells in the perihematomal area (A-C) and Luxol fast blue staining (E
& F) post- intracerebral hemorrhage (ICH). Fluoro-Jade C staining was used to detect
neuronal degeneration. Luxol fast blue-stained was used to measure white matter. Part D
shows four sampled fields for Fluoro-Jade C cell counting. Pigs had ICH and were treated
with either vehicle or deferoxamine. Values are means ±SD. *p<0.05, #p<0.01 vs. vehicle,
respectively. n=4. Scale bar = 50 μm (A & B) (Gu et al 2009).
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