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(homeostasis), must be more effective in association than in
isolation (synergy), and respond to environmental changes as a
unit rather than single individuals (communality) [3].

Introduction

any microorganisms are able to form surface-
Mattached microbial communities, known as

biofilms. In fact, biofilms are communities of
microorganisms attached to a surface and embedded in a
matrix of polysaccharides and proteins forming a slimy layer
[1]. The matrix typically takes 85% of the volume of a biofilm
[1]. Oral bacteria have the capacity to form biofilms on
distinct surfaces ranging from hard to soft tissues. The
characteristics of the biofilms depend upon the residing
bacterial species, composition and structure of the surface or
substratum, and the conditioning layer coating the surfaces
on which they are formed. Water constitutes 80% of the oral
biofilms, while the organic and inorganic fractions form
approximately 20% of the biofilm structure [2].

Adaptation mechanisms

Microorganisms undergo a wide range of physiological and
morphological adaptations in response to environmental
changes. In biofilms, different gradients of chemicals,
nutrients, and oxygen create variable micro-environments to
which micro-organisms must adapt to survive. The
perception and processing of chemical information from the
environment, forms a central part of the regulatory control
over these adaptive responses. Adaptation to a biofilm life-
style involves regulation of a vast set of genes, and the
microorganisms are thus able to optimize phenotypic
properties for the particular environment. Consequently,
biofilm microorganisms differ phenotypically from their
planktonic counterparts [4]. Formation of biofilms is a
stepwise process (Figure 1). Although the structural

Definition of biofilm
Biofilm is a mode of bacterial growth in which dynamic

communities of interacting sessile cells are irreversibly
attached to a solid surface, as well as each other, and are
embedded in a self-made matrix of extracellular polymeric
substances. A microbial biofilm is considered as a community
that meets the following criteria: it must possess the abilities to
self-organize (autopoiesis), resist environmental perturbations

organization of biofilms and the composition/activities of the
colonizing microorganisms in various environments may be
different, the establishment of a micro-community on a
surface seems to follow essentially the same series of
developmental stages, including deposition of a conditioning
film, adhesion and colonization of planktonic
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microorganisms in a polymeric matrix, co-adhesion of other
organisms, and detachment and releasing of biofilm
microorganisms into their surroundings [5]. Evidence is
emerging that expression of genes required during the
various stages is well-regulated [6-8].

The coordinated gene expression is regulated through
various signal transduction systems that induce cascades of
reactions, which leads to the induction or inhibition of gene
transcription. In some cases the external stimulus is inherent
in the environment, although the molecules involved are
mostly unknown. For other systems, the stimulus represents
known molecules. The so-called two-component regulatory
systems are frequently involved in the control of gene
expression in response to various stimuli.

Two-component regulatory systems include a histidine
kinase and a response regulator. Several such two-
component systems exist in gram-positive and gram-negative
microorganisms [9-11]. They play important roles in signal
transduction and may be essential sensors for adaptation to a
biofilm life [3, 12]. The external stimulus is sensed by the
transmembrane histidine kinase receptor that then catalyzes
an intracellular ATP-dependent autophosphorylation [12].
The phosphoryl group is subsequently transferred to a
conserved aspartate residue of the regulatory domain of its
cognate response regulator. In the most sophisticated
systems, activation of the response regulator occurs through
multistep phosphorelay cascades. The phosphorylated form
of the response regulator will influence transcription by
binding to the promoter sequences of genes under its control,
resulting in gene activation or repression [3, 12].

Types of endodontic biofilms
In endodontics, biofilms can be divided into intracanal,
external root (cementum), and periapical biofilms [2].

Intracanal biofilms

For the first time, by using transmission electron microscopy
(TEM), Nair examined the root canal contents of 31 teeth,
which had gross coronal caries and the periapical
inflammatory tissue was attached to root surface upon
extraction; besides the microstructure of the inflammatory
tissues, the major bulk of the organisms existing as loose
collections of cocci, rods, filaments and spirochetes was
observed as well [13]. In a scanning electron microscopy
(SEM) study, Sen et al. showed that the bacteria formed dense
colonies on the canal walls as well as in inter/intra tubular
dentin. Furthermore, they observed fungi capable of forming
dense, but separate colonies all over the root canal walls [14].

It has been shown that when E. faecalis was grown under
aerobic nutrient-rich condition, it produced irregularly shaped
amorphous macro-structures of 500-1000 um in dimension
[15]. According to George et al., these biofilms showed an
increased elemental concentration of Ca and P but the Ca/P
ratio was similar to that of dentin. [15]. When examined by SEM
and confocal laser scanning microscope (CLSM), E. faecalis
specimens kept under nutrient-rich, anaerobic conditions
showed mature biofilms with apparent water channels on the
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root canal wall. Bacterial cells suspended within the biofilm
structure were evident from the CLSM observations.

The examination of biofilms formed under nutrient-
deprived, aerobic environment showed obvious signs of surface
degradation of dentin. A study revealed that pure cultures of E.
faecalis inoculated to calcium hydroxide-medicated or non-
medicated root canals were able to form a biofilm structure on
canal walls [16]. Another study demonstrated that even after
instrumentation, irrigation and obturation in a one-visit
treatment, microorganisms existed as biofilms in untouched
locations in the main canal, isthmi and accessory canals in 14
out of the 16 endodontically-treated teeth [17].

Using SEM, light microscopy, and CLSM, Kishen et al.
demonstrated different stages in the interaction of E. faecalis
with root canal dentin [18]. Furthermore, the re-
precipitation of a bacterial-induced apatite on mature biofilm
was also observed. This ability of E. faecalis to form such
calcified biofilm on root canal dentin may be a factor that
contributes to its persistence.

External root-surface (cementum) biofilms

According to Ingle et al, cementum biofilms have been
reported in teeth with asymptomatic apical periodontitis as
well as teeth with chronic apical abscesses and a sinus tract
[2]. Using SEM, Tronstad et al. showed that the apex of the
roots adjacent to the apical foramen was coated with a
continuous, smooth, structure-less layer containing a variety
of bacterial forms [19]. The organisms were identified as
cocci and rods with presence of fibrillar forms, to a lesser
degree. The presence of calculus-like deposits on the root tip
of teeth with secondary (post-treatment) apical periodontitis
has been revealed [20]. Calcified biofilms on the apical root
surface of teeth with lesions refractory to conventional root
canal treatment has also been demonstrated [21].

Siqueira and Lopes used SEM to assess the extracted teeth
with extensive caries and asymptomatic periradicular lesions
[22]. It was observed that cocci and rods were restricted to
the root canal and in only one tooth; bacteria were seen
beyond the apical foramen. Most bacteria appeared
suspended in the fluid phase of the root canal. It was
remarked that the presence of bacteria at or outside the apical
foramen might not necessarily be a true condition, but rather
a function of extrusion of bacterial colonies during tooth
extraction. Based on their findings, extraradicular infection
in terms of root tip aggregations may not be a common
occurrence in untreated teeth with infected pulps.

Using SEM, Lomcali et al assessed the apical root
surfaces of teeth with chronic apical periodontitis [23]. In
addition to lacunar resorption sites and the clastic cells over
their surfaces, presence of bacteria and fungi in some of the
lacunae and periapical bacterial plaque was observed around
the main apical foramen.

In another study, Leonardo et al. found that the presence
of chronic periapical lesions caused severe changes in the
apical structure with destruction of fibers and different
degrees of forming cementum resorption lacunae in which
bacterial biofilm persisted [24]. Rocha et al. showed similar
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findings in primary teeth [25]. Noiri et al. analyzed the
presence of biofilms on root tips of extracted teeth with
refractory periapical pathosis and the removed gutta-percha
points during endodontic treatment by SEM [26]. Gutta-
percha points sticking out through the apex were almost
completely covered with glycocalyx-like structures. Bacteria,
mostly filaments or long rods, were seen on the external root
surfaces of the extracted teeth.

Periapical biofilms

According to Ingle et al., these types of biofilms may or may
not be dependent on the root canal infection [2]. Members of
the genus Actinomyces and Propionibacterium propionicum
have been demonstrated in asymptomatic periapical lesions
refractory to endodontic treatment [27]. This condition
consists of establishment of microorganisms in the periapical
tissues, either by their adherence to the apical root surface in
the form of biofilm-like structures [19] or within the body of
the inflammatory lesion, usually as cohesive colonies [28].

Although the exact pathogenicity mechanism of
Actinomyces species has not been completely clarified, there
is some evidence that may help with explaining infections
caused by these microorganisms. Possessing fimbrial
structures may play a role in bacterial coaggregation within
the root canal and can be important for bacterial survival in
the ecosystem. In addition, fimbriae would enable
Actinomyces cells to adhere to the root canal wall and to
dentinal debris forced out through the apical foramen during
treatment, and to cling to other bacteria or host cells as they
advance into the periapical tissues [29].

Actinomyces species usually have a hydrophobic cell-
surface, which facilitates their uptake (phagosytosis) by
leukocytes. Figdor and Davies suggested that both the
fimbriae-like structures and the matrix of the outer coat
surrounding the bacteria can help the cells to aggregate into
cohesive colonies of tangled filaments [30]. Moreover, strains
associated with post-treatment disease, grow as intertwining
filaments that form granulae within the host tissues [29, 31].
Actinomycotic colonies may live in an equilibrium with host
tissues that enables them to maintain a chronic periapical
inflammation without necessarily inducing an acute
response. Very high numbers of Actinomyces cells are usually
needed to form persistent infections [32]. The low
pathogenicity of these microorganisms and the consequent
minimal host response may be the reasons for the
perpetuation of the chronic periapical lesion.

Mechanisms of antimicrobial resistance of biofilm
There are several mechanisms for biofilms to resist
antimicrobial agents. By encouraging growth of species
beneficial to the biofilm, quorum sensing (communication
with one another) can influence the structure of the biofilm
[5]. Biofilm bacteria live in a low metabolic state, a slower
growth-rate and production of exopolysaccharides [33].
Subpopulations of bacteria in a biofilm form a phenotypic state
(altered gene expression) where they are highly protected [1].
The polysaccharide matrix of biofilms can retard
diffusion of antibiotics. Furthermore, extracellular enzymes

such as p-lactamase may become trapped and concentrated
in the matrix that ends up in inactivation of p-lactam
antibiotics [34]. Bacteria protect themselves by being located
within the interior part of a biofilm. Hence medicaments will
only act on the micro-organisms in the peripheral portion of
the biofilm. Bacterial cells residing within a biofilm grow
more slowly than planktonic cells and as a result,
antimicrobial agents act more slowly [34]. Depletion of
nutrients or accumulation of waste products can result in
bacteria entering a non-growing state which protects them
from the antibiotics [1], as well as the dose and frequency of
exposure to the antimicrobial agent [35]. Chemical changes
in the biofilm to face the environment, where the lack of
oxygen inhibits some antibiotics and also the accumulated
acidic waste, leads to a change in pH which has an
antagonizing effect on the antibiotic [36].

Effects of endodontic irrigants and medicaments on
biofilms

Antimicrobial agents have often been developed and
optimized for their activity against fast growing, dispersed
populations containing a single microorganism [5, 37].
However, microbial communities in biofilms are
remarkably difficult to eradicate with antimicrobial agents
and microorganisms in mature biofilms can be notoriously
resistant for reasons that have yet to be adequately
explained. There are reports showing that microorganisms
grown in biofilms could be 1000-1500 times more resistant
to antimicrobial agents than planktonic bacteria [5].

Sodium hypochlorite

Spratt et al. showed that sodium hypochlorite (NaOCI) was
the most effective anti-microbial irrigant followed by the
iodine solution [35]. Clegg et al. indicated that 6% NaOCI
was the only irrigant capable of both rendering bacteria
nonviable and physically removing the biofilm [38].

Ozok et al. compared growth and susceptibility to
different concentrations of NaOCl of mono- and dual-
species  biofilms of  Fusobacterium nucleatum or
Peptostreptococcus micros at 24 or 96 h, in vitro [38]. Results
revealed that although at 24 h the dual-species biofilms had
similar viable counts to those of monospecies, they were
more resistant to NaOCL. At 96 h, both microorganisms had
higher viable counts and were more resistant to NaOCl in
dual-species biofilms than in monospecies. Mixed-species
biofilms of F. nucleatum and P. micros showed a time-
dependent synergy in growth and resistance to NaOCL
Using a flow cell system, Dunavant et al. showed that the
percentage of killed bacteria in biofilms after using 6% and
1% NaOCI was above 99.99% and 99.78%, respectively [34].
Giardino et al. evaluated the efficacy of 5.25% NaOCI and
MTAD against E. faecalis biofilm and found that only
5.25% NaOCl can disgregate and remove the biofilm at
every time [39]. Williamson et al. indicated that 6% NaOCI
(Chlor-Xtra, Vista Dental, Racine, Mi, USA) was
significantly superior against E. faecalis biofilms compared
to 2% chlorhexidine (CHX) and CHX-Plus [40]. Arias-
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Moliz et al. revealed that NaOCl was the most effective
agent, capable of eradicating the biofilms after 1 min with a
concentration of 0.00625% [41]. Chavez de Paz et al. tested
the in situ effect of antimicrobials and Alkali (PBS adjusted
to pH=12 with NaOH) on biofilms of Enterococcus faecalis,
Lactobacillus  paracasei, Streptococcus anginosus, and
Streptococcus gordonmii isolated from root canals with
persistent infections [42]. Findings indicated that 1%
NaOCl affected the membrane integrity of all organisms
and removed most biofilm cells. According to Prabhakar et
al., 5% NaOCl showed maximum antibacterial activity
against E. Faecalis biofilm formed on tooth substrate [43].
Bhuva et al. demonstrated that both conventional syringe
irrigation and passive ultrasonic irrigation with 1% NaOCl
were effective in complete removal of intraradicular E.
faecalis biofilms [44].

According to Liu et al, biofilms of starved cells of E.
faecalis were more resistant to 5.25% NaOCI than stationary
cells and the impact of 5.25% NaClO on them decreased as
the biofilm matured [45]. Ozdemir et al. revealed that the
combined application of EDTA and NaOCI significantly
reduces the amount of intracanal biofilm [46].

Soares et al. demonstrated that the irrigation regimen
based on the alternating use of NaOCl and EDTA seems to
be a promising endodontic tool because it promoted the
elimination of root canal E. faecalis biofilms [47]. Del
Carpio-Perochena showed that in comparison with the 5-
and 15-min contact times, a 30-min application of NaOCl is
necessary to have higher values of biofilm dissolution and to
increase the cleaning of the dentin independent of the
solution concentration [48]. It has been revealed that 1%
NaOCI was the only irrigant that had a significant effect on
biofilm viability and architecture [49]. Seet et al. indicated
that syringe irrigation and sonic activation with NaOCI
showed reduced numbers of bacterial cells on the radicular
dentine but were not effective in eliminating E. faecalis in the
dentinal tubules [50]. Laser activation of NaOCI resulted in
clean dentine walls and undetectable levels of bacteria within
dentinal tubules. According to Neelakantan et al., 3% NaOCl
showed maximum antibacterial activity against E. faecalis
biofilm formed on the tooth substrate [51].

Chlorhexidine

Clegg et al. indicated that 2% CHX, was not capable of
disrupting biofilms [52]. Dunavant et al. evaluated the
efficacy of 2% CHX against E. faecalis biofilms after 1 or 5
min [34]. Findings showed that there was no significant
relationship between time and percentage of killed
microorganisms which was 60.49%. On the other hand, a
study by Lima et al. demonstrated that 2% CHX-containing
medications were able to thoroughly eliminate most of the
1- and 3-day biofilms of E. faecalis [53]. Williamson et al.
indicated that 2% CHX was significantly less effective
against E. faecalis biofilm compared to 6% NaOCl [40].
Arias-Moliz et al. showed that CHX eradicated biofilm after
5 min at 2% concentration [54]. According to Shen et al
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CHX-Plus (2% CHX with surface modifiers, Vista Dental,
Racine, Mi, USA) showed higher levels of bactericidal
activity at all exposure times than 2% CHX [55]. Chavez de
Paz et al. showed that 2.5% CHX had a mild effect on the
membrane integrity of E. faecalis and removed only 50% of
its biofilm cells [42]. Arias-Moliz et al. indicated that the
association of 0.1% and 0.05% cetrimide with any
concentration of CHX, whether in combined or alternating
application, effectively eradicated E. faecalis biofilms at all
tested contact times [41]. Shen et al. showed that the
combined use of CHX with mechanical agitation had a
more pronounced antimicrobial effect against the biofilms
[55]. It has been revealed that bacteria in mature biofilms
and nutrient-limited biofilms are more resistant to CHX
than in young biofilms.

Del Carpio-Perochena et al. showed that 2% CHX did
not dissolve the biofilms [48]. Du et al. demonstrated that 5
min treatment with Atmospheric Pressure Nonequilibrium
Plasmas (APNPs) or 2% CHX, killed the majority of
bacteria in E. faecalis biofilms [56]. It has been shown that
treating E. faecalis biofilms with dextranase or DNase I,
effectively sensitized the biofilms to 2% CHX [57]. Using an
intraorally infected dentin biofilm model, Ordinola-Zapata
et al. showed that 2% CHX gel was more effective than
calcium hydroxide against E. faecalis biofilms [49].

MTAD (a mixture of a tetracycline isomer, an acid, and a
detergent)

Dunavant et al. showed that Biopure MTAD (Dentsply,
Tulsa Dental, Tulsa, OK, USA), which contains 150 mg/5
mL concentration of doxycycline, killed 16.08% of bacterial
cells in E. faecalis biofilms [34]. Giardino et al. showed that
MTAD was not able to disintegrate and remove bacterial
biofilms [40]. Prabhakar et al. showed that MTAD was not
able to remove E. faecalis biofilm [43]. Pappen et al
revealed that MTAD was less effective than Tetraclean
(containing 50 mg/5 mL concentration of doxycycline,
Ogna Laboratori, Farmaceutici, Milano, Italy) against E.
faecalis biofilm in vitro [58]. Stojicic et al. showed that
MTAD were unable to kill all plaque bacteria in 30 sec, and
some E. faecalis cells survived even after 3 min of exposure
[59]. Tong et al. indicated that adding nisin to MTAD
enhanced its effectiveness against E. faecalis biofilm [60].

Iodine compounds

Spratt et al. investigated the effectiveness of some root canal
irrigants against single-species biofilms of Prevotella
intermedia,  Peptostreptococcus — micros,  Streptococcus
intermedius, Fusobacterium nucleatum and Enterococcus
faecalis [35]. Findings revealed that iodine and NaOCI were
more effective than CHX except against P. micros and P.
intermedia for which they were all 100% effective. Iodine
and NaOCI elicited a 100% bacteria elimination after 1 h
incubation for all used strains. However, after 15 min, they
showed differing bactericidal effects depending on the
strain. Abdullah et al. revealed that 10% povidone iodine
was less effective against E. faecalis biofilm than NaOCI [61].
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Calcium hydroxide

Using SEM and SCLM, Distel et al. reported that despite
intracanal dressing with calcium hydroxide (CH), E. faecalis
formed biofilms in root canals [16]. In another study, Chai ef al.
reported that CH was 100% effective in eliminating E. faecalis
biofilm [62]. Brandle et al. investigated the effects of growth
condition (planktonic, mono- and multi-species biofilms) on the
susceptibility of E. faecalis, Streptococcus sobrinus, Candida
albicans, Actinomyces naeslundii and Fusobacterium nucleatum
to alkaline stress [63]. Findings demonstrated that planktonic
microorganisms were most susceptible; only E. faecalis and C.
albicans survived in saturated solution for 10 min, the latter also
survived for 100 min. Dentine adhesion was the major factor in
improving the resistance of E. faecalis and A. naeslundii to CH,
whereas the multispecies context in a biofilm was the major
factor in promoting resistance of S. sobrinus to the disinfectant.
In contrast, the C. albicans response to CH was not influenced
by growth conditions.

In summary, few studies have been conducted on the
antimicrobial potential of CH on biofilms and they have
demonstrated inconsistent results. Further studies are required
to elucidate the anti-biofilm efficacy of CH.

Advanced agents

Nanoparticles

Nanoparticles are microscopic particles with one or more
particle dimensions in the range of 1-100 nm.
Nanoparticles are recognized to have properties that are
very unique compared to their bulk or powder counterparts
[64]. In root canal therapy, nanoparticles may be applied as
slurry or in combination with sealers. They have the ability
to diffuse antimicrobial components deep in dentin tissue.
The successful application of nanoparticles in endodontics
will depend on both the effectiveness of antimicrobial
nanoparticles and the delivery method used to disperse
these particles into the anatomical complexities of the root
canal system.

Magnesium oxide (MgO) and calcium oxide (CaO)
slurries acted on both gram-positive and gram-negative
bacteria in a bactericidal manner [38], while Yamamoto
showed that zinc oxide (ZnO) slurry acted in a
bacteriostatic manner and exhibited stronger antibacterial
activity against gram-positive than gram-negative bacteria
[65]. Sawai et al. showed that by generating active oxygen
species, such as hydrogen peroxide and superoxide anion
radical antibacterial agents, powders of MgO, CaO, and
ZnQO exert their antibacterial effect [66]. The electrostatic
interaction between positively charged nanoparticles and
negatively charged bacterial cells, and the accumulation of a
large number of nanoparticles on the bacterial cell
membrane, have been associated with the increase in
membrane permeability and rapid loss of membrane
function [67].

Feng et al. showed that silver ions inactivate proteins
and inhibit the ability of DNA to replicate [68]. According
to Kim et al. nanoparticles synthesized from powders of

silver (Ag), copper oxide (CuO), and ZnO are currently
used for their antimicrobial activity [69]. Adherence of
microorganisms to a substrate, enables the microbes to
evade the normal flushing action of saliva and allows the
microbes to survive harsh growth conditions [70].

Kishen et al. demonstrated that the quantum size effect
of nanoparticles permits them to exhibit superior
interaction with bacteria and dentin substrate [71]. They
further revealed that when cationic nanoparticles in an
aqueous suspension were allowed to settle onto the dentin
surface with negative charge, the cationic nanoparticles
adhere to the dentin surface via an electrostatic interaction.
They also demonstrated that although the interaction
between nanoparticles and dentin was weak and easily
disrupted, it could impede bacterial re-colonization and
biofilm formation .

Chitosan (CS) is a natural non-toxic biopolymer derived
from the deacetylation of chitin. It binds to negatively
charged surfaces and has excellent antimicrobial and
antifungal activities [72]. The exact mechanisms of the
antibacterial action of CS and its derivatives have still not
been elucidated. Nonetheless, Rabea et al. stated that the
electrostatic interaction between the positively charged CS
nanoparticles and the negatively charged bacterial cell
membrane is believed to alter bacterial cell permeability
and loss of function [72]. Kishen et al. examined the
antimicrobial properties of ZnO and resin-based root canal
sealers loaded with CS and ZnO nanoparticles [71].
Findings demonstrated that the addition of antibacterial
nanoparticles in root canal sealers improves the direct and
diffusible antibacterial effects in root canal sealers based on
a direct antibacterial assay and a membrane-restricted
antibacterial assay, respectively.

In another part of their study, Kishen et al. indicated
that treatment of root dentin with ZnO nanoparticles,
ZnO-CS mixed nanoparticles, CS-layer-ZnO nanoparticles,
or CS nanoparticles, produced an 80-95% reduction in the
adherence of E. faecalis to dentin [73]. They further
revealed that root dentin treated with CHX and then with
nanoparticles, shows the maximum reduction (97%) in
bacterial adherence [73].

Shrestha et al. assessed the efficacy of CS nanoparticles
and ZnO nanoparticles in eliminating bacterial biofilm and
the effect of aging (conditioning with tissue fluids) on their
antibacterial properties [74]. E. faecalis strains in
planktonic and biofilm forms were tested in this study. It
was demonstrated that the rate of bacterial killing by
nanoparticles depended on the concentration and duration
of interaction. Total elimination of planktonic bacteria was
observed in contrast to the biofilm bacteria, which survived
even after 72 h of interaction. Both CS nanoparticles and
ZnO nanoparticles were found to retain their antibacterial
properties after aging for 90 days.

Bioactive glass
Bioactive glass (BAG) consists of SiO,, Na,O, CaO,, and P,0s
at different concentrations [75]. It has received considerable
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interest in root canal disinfection due to antibacterial
properties. Stoor et al. attributed the antibacterial mechanism
of BAG to its high pH, osmotic effects and Ca/P precipitation
[76]. Zehnder et al. demonstrated that compared to CH,
BAG showed significantly less antibacterial effects as an
intracanal medicament [77]. In addition, Gubler et al
showed that BAG did not effectively prevent
recontamination of instrumented root canals [78].
Incorporation of nanometric BAG fillers into
polyisoprene (PI) and polycaprolactone (PCL) root filling
materials, rendered the resulting composite material
bioactive and permitted improved mineralization [79].

Laser

Seal et al. compared the bacterial killing of Streptococcus
intermedius biofilms in root canals wusing lethal
photosensitization ~ with  various combinations of

photosensitizer concentration and laser light dose or 3%
NaOCl irrigation [80]. Findings showed that the combined
use of a photosensitizing agent and a low power laser
directed at the access cavity was bactericidal to §.
intermedius biofilms in root canals but was unable to
achieve total kill, unlike 3% NaOCI. Araki et al. evaluated
the effect of Er: YAG laser on the apical third of the roots of
newly extracted teeth to eliminate microbial contamination
on root apex surface and found that it may be considered as
an effective tool for removal of apical biofilm [81].

In an in vitro study, Bergmans et al found that
endodontic pathogens that grew as biofilms were difficult to
eradicate even upon direct laser exposure [82]. Soukos et al.
investigated the effects of photodynamic therapy (PDT) on
endodontic pathogens in planktonic phase as well as on E.
faecalis biofilms in experimentally infected root canals of
extracted teeth [83]. Strains of microorganisms were
sensitized with methylene blue (25 pg/mL) for 5 min
followed by exposure to red light of 665 nm with an energy
fluence of 30 J/cm. Methylene blue fully eliminated all
bacterial species except for E. faecalis (53% killing). The
same concentration of methylene blue in combination with
red light (222 J/cm) was able to eliminate 97% of E. faecalis
biofilm bacteria in root canals using an optical fiber with
multiple cylindrical diffusers that uniformly distributed
light at 360 degrees. Noiri et al. examined the in vitro effect
of Er: YAG laser against biofilms made of Actinomyces
naeslundii, E. faecalis, Lactobacillus casei,
Propionibacterium  acnes,  Fusobacterium  nucleatum,
Porphyromonas gingivalis, or Prevotella nigrescens. Findings
demonstrated that the Er: YAG laser was effective against
biofilms of 6 of the bacterial species examined, except for
those formed by L. casei. After irradiation, the numbers of
viable cells in the biofilms significantly decreased, whereas
atrophic changes in bacterial cells and reduction in biofilm
cell density were seen morphologically. They concluded
that Er: YAG lasers might be suitable for clinical application
as a suppressive and removal device of biofilms in
endodontic treatments [26].
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On the whole, although most studies support the
efficacy of lasers against endodontic biofilms, further
studies should be conducted to confirm this.

Ozone

Ozone (0Os) is an energized, unstable gaseous form of oxygen
that readily dissociates back into oxygen (O,), liberating a
reactive form of oxygen, aka the singlet oxygen (O,). The singlet
oxygen is capable of oxidizing cells. It has been suggested that
ozone accomplishes its antimicrobial efficacy without
developing drug resistance [84]. Ozone gas (HealOzone; KaVo

Dental, Biberach, Germany) is currently used clinically for
endodontic treatment. However, results of studies on its efficacy
against endodontic pathogens have been inconsistent. This
inconsistency is attributed to the lack of information about the
optimum duration of application and concentration that should
be used [85]. In order to achieve a concentration that is relatively
non-toxic toward periapical and oral mucosal tissues, the ozone
gas concentration currently used in Endodontics is 4 g/m’. This
concentration has been shown to be slightly less cytotoxic than
2.5% NaOCl [85].

Aqueous ozone (up to 20 mg/mL) showed essentially no
toxicity to oral cells in vitro [85]. Hems et al. showed that
ozone had an antibacterial effect on planktonic E. faecalis cells
and those suspended in fluid, but little effect on cells
embedded in a biofilm structure [86]. Furthermore, the
antibacterial efficacy of ozone was not comparable with that of
NaOCl. Huth et al. assessed the antimicrobial efficacy of
aqueous (1.25-20 mg/mL) and gaseous ozone (1-53 g/m?) as
an alternative antiseptic against endodontic pathogens in
suspension and in a biofilm model [87]. E. faecalis, Candida
albicans,  Peptostreptococcus  micros, and  Pseudomonas
aeruginosa were grown in planktonic culture or in mono-
species biofilms in root canals for 3 weeks. It was concluded
that highly concentrated gaseous and aqueous ozone was dose-
, strain-, and time-dependently effective against the tested
microorganisms in suspension and in the biofilm test model.

Viera et al. assessed the antimicrobial efficacy of dissolved
ozone against planktonic and biofilm models of Pseudomonas
fluorescens [88]. Findings showed that even low concentration of
ozone (0.1-0.3 ppm) was able to completely kill bacteria after 15
or 30 min of contact time. However, the disinfectant action of
ozone on biofilm models was less effective compared with
planktonic bacteria. In the biofilm models, only a decrease of
two orders of magnitude was achieved. No increase in the anti-
biofilm efficacy was observed with increases in contact time.

Kustarci et al. evaluated the antimicrobial activity of a
potassium titanyl phosphate (KTP) laser and gaseous ozone
in experimentally infected root canals [89]. It was found
that both the KTP laser and gaseous ozone have a
significant antibacterial effect on infected root canals, with
the gaseous ozone being more effective than the KTP laser.
However, 2.5% NaOCI was superior in its antimicrobial
abilities compared with the KTP laser and gaseous ozone.
Silveira et al. has claimed that ozone dissolved in oil can be
used as an intracanal medicament [90].
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Conclusion

According to the latest data, removal of the smear layer is an
essential of root canal disinfection and sealing. Contrary to
the vulnerable planktonic state, bacteria are protected from
the antibacterial agents in biofilms. To date, many methods
and antibacterial agents have been proposed against biofilms
that are effective within a wide range of activity.
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