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Abstract
AIM: To investigate the effect of hypoxia or hyperoxia 
on the progression of hepatic fibrosis and to examine 
the role of transforming growth factor-β (TGF-β) in the 
livers of rats exposed to hypoxic or hyperoxic condi-
tions.

METHODS: �ale Sprague-Dawley rats were injected 
intraperitoneally with thioacetamide to induce hepatic 
fibrosis and were randomly divided into a hypoxia 
group, a hyperoxia group and an untreated control 
group. Ten rats in the hypoxia group were exposed to 
an altitude of 20000 ft for 1 h/d during 7 wk. Ten rats 
in the hyperoxia group were exposed to a water depth 

of 20 m with 100% oxygen supply for 1 h/d during 7 
wk. We evaluated the degree of hepatic fibrosis using 
�asson trichrome stain and examined the expression 
level of hepatic TGF-β mRNA using quantitative real-
time reverse transcriptase-polymerase chain reaction 
analysis.

RESULTS: Eight of 10 rats exposed to hypoxia showed 
diffuse and confluent fibrosis with the formation of 
structurally abnormal parenchymal nodules involving 
the entire liver, consistent with hepatic cirrhosis. Nine 
of 10 rats exposed to hyperoxia also demonstrated 
obvious histological findings of hepatic cirrhosis identi-
cal to those in hypoxic rat livers. In contrast, 8 of 10 
untreated rats had periportal or septal fibrosis only. 
The frequency of hepatic cirrhosis in hypoxic rats (P  = 
0.009) and hyperoxic rats (P  = 0.003) was significantly 
higher than that in untreated rats. In addition, hepatic 
TGF-β mRNA levels in hyperoxic rats were significantly 
higher than those in untreated rats. The mean value of 
the normalized TGF-β mRNA/β-actin expression ratio in 
the hyperoxic rats was 1.9-fold higher than that in the 
untreated rats (P  = 0.027).

CONCLUSION: We demonstrated that both hypoxia 
and hyperoxia accelerated the progression of hepatic 
fibrosis in rats. Significant up-regulation of hepatic 
TGF-β in hyperoxic rats suggests that TGF-β is involved 
in the acceleration of hepatic fibrosis under hyperoxic 
conditions.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: We observed that both hypoxic and hyper-
oxic rat livers exhibited significantly higher frequencies 
of hepatic cirrhosis than untreated rat livers. We also 
observed that hepatic transforming growth factor-β 
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(TGF-β) expression in hyperoxic rats was significant 
higher than that in untreated rats, suggesting that 
TGF-β is involved in the acceleration of hepatic fibrosis 
under hyperoxic conditions. To the best of our knowl-
edge, up-regulated TGF-β expression in the livers of 
cirrhotic rats exposed to hyperoxia has not been re-
ported.
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INTRODUCTION
Hepatic fibrosis is an essential pathophysiological conse-
quence of  various chronic liver injuries and a common 
underlying mechanism for hepatic insufficiency[1]. He-
patic fibrosis is currently known to be part of  a dynamic 
process in the setting of  liver injury that leads to an ab-
normal accumulation of  extracellular matrix in the liver. 
The endpoint of  hepatic fibrosis is cirrhosis, which is 
characterized by the formation of  regenerative nodules 
of  liver parenchyma separated by confluent fibrotic sep-
ta and is accompanied by significant morbidity and mor-
tality[2]. Complex interaction between various liver cell 
types, such as hepatic stellate cells, hepatocytes, Kupffer 
cells, and liver sinusoidal endothelial cells, contributes to 
hepatic fibrosis. Each of  these cell types releases a subset 
of  mediators and cytokines that have diverse effects on 
the progression of  hepatic fibrosis and the development 
of  hepatic cirrhosis[1].

Extensive studies using animal models of  hepatic 
fibrosis have revealed that several groups of  key genes 
mediate liver fibrogenesis[3,4]. For example, genes regulat-
ing hepatocellular apoptosis and necrosis influence the 
extent of  tissue damage and the subsequent profibro-
genic response[5,6]. Genes regulating the generation of  
pro-inflammatory cytokines and reactive oxygen species 
(ROS) determine the profibrogenic response to injury 
and extracellular matrix deposition[7-10]. Among these, 
a particularly well-studied molecule is transforming 
growth factor-β (TGF-β), which is widely regarded as 
profibrogenic in liver injury[11]. A number of  studies have 
identified TGF-β as the most important fibrogenesis-
stimulating cytokine in the liver[1,2,12]. The findings of  in-
creased hepatic stellate cell activation and hepatic fibrosis 
in mice with elevated hepatic TGF-β level provide direct 
evidence for the critical role of  TGF-β in hepatic fibro-
sis[13]. TGF-β is also considered profibrogenic because it 
inhibits hepatic stellate cell apoptosis, thereby contribut-
ing to the increased number of  these cells in the setting 
of  liver injury[14]. In addition, TGF-β stimulates extracel-
lular matrix production by liver sinusoidal endothelial 
cells[15]. Strategies aimed at disrupting the TGF-β signal-

ing pathway have markedly decreased hepatic fibrosis in 
experimental models[16,17].

Oxygen has important functions as a substrate for 
biochemical reactions and a modulator of  gene expres-
sion. Impaired tissue oxygenation and cellular hypoxia 
are major components in the pathophysiology of  a va-
riety of  clinical conditions, including infection, wounds, 
stroke, myocardial infarction, chronic lung disease, and 
hepatic fibrosis[18,19]. Hypoxia always occurs during liver 
injury or inflammation, in which swelling of  hepatocytes, 
accumulation of  extracellular matrix in the spaces of  
Disse, construction of  regenerating parenchymal nod-
ules and fibrotic septa, and the formation of  abnormal 
vascular networks indicate that hepatocellular hypoxia is 
involved in the progression of  hepatic fibrosis and tissue 
remodeling[20-25]. Conversely, exposure to hyperoxic con-
ditions generally improves tissue oxygenation. A dramat-
ic increase in oxygen content and arterial blood oxygen 
pressures accounts for the markedly facilitated diffusion 
of  oxygen to tissues during hyperoxic exposure[26]. How-
ever, the advantage of  hyperoxia in augmenting oxygen 
availability to tissues is challenged by the commonly 
accepted paradigm of  cell injury, which emphasizes the 
role of  ROS formation leading to the up-regulation of  
pro-inflammatory mediators and aggravation of  tissue 
damage[27]. In particular, previous data have suggested 
that ROS generation is a fundamental mechanism of  
liver injury[28]. ROS can damage cellular macromolecules 
and therefore may participate in hepatocellular injury 
when produced in excess[29]. Moreover, increasing evi-
dence implicates ROS in the pathogenesis of  hepatic 
fibrosis and cirrhosis[29,30].

Although several studies have investigated the rela-
tionship between tissue fibrosis and hypoxia, they have 
focused on the effects of  hypoxia in diseases of  the 
heart, lung, and kidney[18,31,32]. Furthermore, the effect of  
hyperoxic exposure on hepatic fibrosis has not yet been 
reported. Therefore, the relationship between hepatic fi-
brosis and hypoxic or hyperoxic conditions in vivo remain 
to be elucidated. The aim of  this study was to investigate 
the effects of  hypoxia or hyperoxia on the progression 
of  hepatic fibrosis and to examine the expression level 
of  TGF-β in the livers of  rats exposed to hypoxic or hy-
peroxic conditions.

MATERIALS AND METHODS
Experimental model
Throughout the experimental period (7 wk), 30 Sprague-
Dawley adult male rats (Samtako Bio Korea Co., Ltd., 
Osan, Gyeonggi-do, South Korea) 6-7 wk of  age and 
weighing between 200 and 230 g were fed standard 
laboratory rat chow, provided with free access to water, 
and maintained on a 12-h light-dark cycle under patho-
gen-free conditions. Temperature and moisture were 
controlled at 20-25 ℃ and 40%-45%, respectively. To 
induce hepatic fibrosis, the rats were injected intraperi-
toneally with 200 mg/kg of  thioacetamide (dissolved in 
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Table 1  Degree of hepatic fibrosis

saline; Sigma-Aldrich Co., St. Louis, MO, United States) 
twice per week. The rats were randomly divided into 
3 experimental groups. Ten rats in the hypoxia group 
were exposed to an altitude of  20000 ft for 1 h/d. Ten 
rats in the hyperoxia group were exposed to a water 
depth of  20 m with 100% oxygen supply for 1 h/d. 
The remaining 10 rats were used as an untreated control 
group. Animals were killed using diethyl ether 3 d after 
the last thioacetamide injection and laparotomized via a 
midline incision. Livers were removed from the animals 
and immediately preserved in a 10% formaldehyde (for-
malin) solution or frozen in liquid nitrogen and stored 
at -70 ℃ until quantitative real-time reverse-transcrip-
tase polymerase chain reaction (RT-PCR) analysis was 
performed. The institutional animal ethics committee 
of  the Republic of  Korea Air Force Aerospace Medical 
Center approved all experimental procedures involving 
animals.

Histological evaluation
After 48 h of  formalin fixation, the liver tissues were em-
bedded in paraffin and processed for routine hematoxy-
lin-eosin and for Masson trichrome stains. The degree of  
hepatic fibrosis was graded according to the standardized 
guideline proposed by the Korean Study Group for Pa-
thology of  Digestive Diseases (Table 1)[33].

Quantitative real-time RT-PCR analysis
Total RNA was extracted from the liver tissue samples 
using a NucleoSpin RNA Ⅱ extraction kit (Macherey-
Nagel GmbH and Co. KG, Dueren, Germany). For 
complementary DNA (cDNA) synthesis, 1 μg of  total 
RNA was reverse-transcribed using a ReverTra Ace-α- 
reverse transcriptase kit (Toyobo Co., Ltd., Osaka, Japan). 
The reverse-transcribed cDNA was used for real-time 
RT-PCR with SsoAdvanced SYBR Green Supermix (Bio-
Rad Laboratories, Inc., Hercules, CA, United States). 
PCR was performed using a Bio-Rad CFX384 Real-Time 
PCR Detection System (Bio-Rad Laboratories, Inc.). 
The primer sequences used for TGF-β were as follows: 
forward 5′-AGGGCTACCATGCCAACTTC-3′; reverse 
5′-CCACGTAGTAGACGATGGGC-3′. The primer 
sequences used for β-actin were as follows: forward 
5′-TCTTCCAGCCTTCCTTCCTG-3′; reverse 5′-CA-
CACAGAGTACTTGCGCTC-3′. PCR reactions for 
TGF-β and β-actin were initiated with an initial PCR 

activation step at 95 ℃ for 30 s, followed by 45 cycles at 
95 ℃ for 2 s, 58 ℃ for 5 s, and 65 ℃ for 10 s. A melting 
curve, ramping from 65 ℃ to 95 ℃, was produced after 
each RT-PCR to test for the presence of  primer dimers. 
When primer dimer formation was detected, the PCR 
was rerun using a separate aliquot of  cDNA. Each mea-
surement was repeated twice. The normalized expression 
ratio was calculated using the 2-ΔΔCt method[34].

Statistical analysis
Fisher’s exact test was performed to compare the degree 
of  hepatic fibrosis between groups. The Kruskal-Wallis 
test was performed to examine whether the expression 
level of  hepatic TGF-β messenger RNA (mRNA) dif-
fered significantly between the groups. Statistical analy-
ses were performed using SPSS version 20.0 (IBM SPSS 
Inc., Chicago, IL, United States). A P value of  less than 
0.05 was deemed statistically significant.

RESULTS
Histologically, all specimens showed hepatic fibrosis, 
although the degree of  fibrosis was variable. Eight of  
10 rats exposed to hypoxia showed diffuse and conflu-
ent fibrosis with the formation of  structurally abnormal 
parenchymal nodules involving the entire liver, consis-
tent with hepatic cirrhosis (Figure 1A). Nine of  10 rats 
exposed to hyperoxia also demonstrated obvious histo-
logical findings of  hepatic cirrhosis identical to those in 
hypoxic rat livers (Figure 1B). In contrast, only 2 of  10 
untreated rats exhibited hepatic cirrhosis; the remaining 
8 rats in the control group exhibited periportal (2 rats) 
or septal (6 rats) fibrosis only (Figure 1C). The frequency 
of  hepatic cirrhosis in the hypoxic rats (P = 0.009) and 
hyperoxic rats (P = 0.003) was significantly higher than 
that in the untreated rats (Table 2).

Quantitative real-time RT-PCR revealed that the 
expression level of  hepatic TGF-β mRNA in the hy-
peroxic rats was significantly higher than that in the 
untreated rats (P = 0.027; Figure 2). The mean value of  
the normalized TGF-β mRNA/β-actin expression ratio 
in the hyperoxic rats was 1.9-fold higher than that in the 
untreated rats (Table 3). In contrast, the TGF-β mRNA 
levels in the livers of  hypoxic rats were not significantly 
different from those in the untreated rats (P = 1.000; 
Figure 2).

DISCUSSION
In this study, we investigated the effect of  hypoxia or 
hyperoxia on hepatic fibrosis progression using an ani-
mal model of  hepatic fibrosis. We observed that both 
hypoxic and hyperoxic rat livers exhibited frequencies of  
hepatic cirrhosis that were significantly higher than those 
in untreated, normoxic rat livers. Hypoxia is known to 
be a key factor in tissue damage and to play a crucial role 
in chronic liver injury. Exposure to hypoxic conditions 
stimulates the release of  a variety of  mediators from he-
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Descriptive diagnosis Definition

No fibrosis Normal connective tissue
Portal fibrosis Fibrous portal expansion
Periportal fibrosis Periportal fibrosis with short septa extending 

into lobules or rare porto-portal septa (intact 
architecture)

Septal fibrosis Fibrous septa reaching adjacent portal tracts 
and terminal hepatic venules (architectural 

distortion, but no obvious cirrhosis)
Cirrhosis Diffuse nodular formation
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Table 2  Difference in the degree of hepatic fibrosis among 
the three groups

patic stellate cells and affects the progression of  hepatic 
fibrosis[21,35-37]. Hernandez-Guerra et al[38] revealed that 
hypoxia aggravates intrahepatic endothelial dysfunc-
tion in cirrhotic rat livers. Some in vitro studies have also 
reported that hypoxia activates hepatic stellate cells and 
accelerates hepatic fibrosis[22,23,25]. In this context, our 
finding supports the notion that exposure to hypoxia 
worsens hepatic fibrosis. In contrast, the effect of  hy-
peroxia on the progression of  hepatic fibrosis or the 
development of  hepatic cirrhosis has very rarely been 
reported. Instead, some available data are sufficient to 
support the suggestion that hyperoxia exerts beneficial 
anti-inflammatory effects in models of  tissue hypoxia 
and has protective effects on hemodynamic and meta-
bolic parameters against splanchnic ischemia-reperfusion 
in rats[39,40]. However, hyperoxic exposure is generally ac-
cepted to often result in the formation of  ROS in tissues 
directly implicated in the induction of  cell injury via lipid 

peroxidation and up-regulation of  pro-inflammatory 
cytokines[41-44]. In the liver, Kupffer cells and neutrophils 
can induce oxidative tissue damage both directly via the 
effect of  ROS on cellular components and indirectly 
through the release of  protease[45]. Increased oxida-
tive stress and the formation of  ROS cause extensive 
necrosis of  the liver and ultimately contribute to the 
development of  fibrosis and cirrhosis. Oxidative stress 
figures prominently in several scenarios of  liver fibro-
genesis[46,47]. Bhandari et al[48] demonstrated that patients 
with Child-Pugh class C cirrhosis have greater oxidative 
stress than those with class B cirrhosis, suggesting that 
the severity of  hepatic cirrhosis is associated with the 
degree of  oxidative stress. Given these data, our findings 
suggest that hyperoxic exposure accelerates the progres-
sion of  hepatic fibrosis. In addition, this study can serve 
as a background for assessing the role of  antioxidants in 
preventing the progression of  hepatic cirrhosis.

To clarify the role of  TGF-β on hepatic fibrosis 
under hypoxic or hyperoxic conditions, we investigated 
the expression of  hepatic TGF-β mRNA in rats ex-
posed to hypoxia or hyperoxia. Although a number of  
studies have examined the effect of  TGF-β in experi-
mental models of  hepatic fibrosis, to the best of  our 
knowledge, TGF-β expression in the livers of  cirrhotic 
rats exposed to hypoxia or hyperoxia has not been re-
ported. We observed that hepatic TGF-β mRNA level 
in hyperoxic rats was significantly higher than that in 
untreated rats. This finding is consistent with previous 
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Figure 1  Histology of hepatic fibrosis and cirrhosis. A, B: The livers obtained from 8 of 10 hypoxic rats (A) and 9 of 10 hyperoxic rats (B) demonstrated obvious 
histological findings of hepatic cirrhosis, including the formation of structurally abnormal parenchymal nodules and confluent fibrotic septa; C: In contrast, 6 of 10 un-
treated rat livers showed periportal fibrosis only (Masson trichrome stain; original magnification, × 40).

Diagnosis Number of rats
Control group Hypoxia group Hyperoxia group

(n  = 10) (n  = 10) (n  = 10)
Periportal fibrosis 2 0 0
Septal fibrosis 6 2 1
Cirrhosis 2  81  92

1P = 0.009 vs control group; 2P = 0.003 vs control group.

Lee SH et al . Hepatic cirrhosis and TGF-β up-regulation in hyperoxic rats



Table 3  Quantitative real-time reverse-transcriptase polymerase 
chain reaction results

data which showed that hyperoxic exposure elevated 
the expression level of  TGF-β[49]. Similarly, Alejandre-
Alcazar et al[50] demonstrated that hyperoxia up-regulates 
the expression level of  key components of  the TGF-β 
signaling pathway, including type Ⅱ TGF-β receptor, 
type Ⅰ bone morphogenetic protein receptors, and Smad 
proteins. They further illustrated that TGF-β stimula-
tion dramatically elevates the levels of  tissue inhibitors 
of  metalloproteinase-1 mRNA in fibroblasts, supporting 
the idea that dysregulation of  TGF-β signaling impacts 
extracellular matrix deposition and tissue remodeling[50]. 
Together with these results, the observation in the pres-
ent study that hyperoxic rats exhibited a significantly 
higher frequency of  hepatic cirrhosis than untreated rats 
suggests that TGF-β is partially responsible for the ac-
celeration of  hepatic fibrosis progression in rats exposed 
to hyperoxia.

However, no significant difference between hepatic 
TGF-β mRNA levels in hypoxic rats and untreated rats 
was found. In fact, relevant experimental studies have 
provided conflicting results regarding the effect of  hy-
poxia on TGF-β expression. An in vitro study demon-
strated that hypoxic exposure induces an increase in the 
expression level of  TGF-β mRNA[51]. A study using a 
model of  carbon tetrachloride-induced hepatic fibrosis 
also showed that hypoxic rat livers release TGF-β pro-
tein[52]. Similarly, hypoxia has been shown to up-regulate 
TGF-β synthesis and enhance its effect in human skin 
and lung fibroblasts[53,54]. In contrast, a study using a cell 
culture method has shown that hypoxia increases the 
production of  fibronectin, collagen Ⅰ, and collagen Ⅳ, 
but not TGF-β, in placental fibroblasts, suggesting that 
increased extracellular matrix production under hypoxia 
is not mediated directly by increased TGF-β[55]. Our 
observation raises 2 possibilities. First, hepatic fibro-
sis might be accelerated independent of  TGF-β under 
hypoxic conditions. Second, intermittent exposure to 
hypobaric hypoxia at the altitude of  20000 ft might be 
insufficient to affect TGF-β mRNA transcription in rat 

liver. Further investigations are necessary to clarify the 
relationship between TGF-β expression and the progres-
sion of  hepatic fibrosis under hypoxic conditions.

In conclusion, we demonstrated that both hypoxia 
and hyperoxia accelerated the progression of  hepatic 
fibrosis in rats. In addition, a significant up-regulation of  
hepatic TGF-β in hyperoxic rats suggests that TGF-β 
is involved in the acceleration of  hepatic fibrosis under 
hyperoxic conditions.

COMMENTS
Background
Hepatic fibrosis is a pathophysiological consequence of chronic liver injuries 
and a common underlying mechanism for hepatic insufficiency. Experimental 
models of hepatic fibrosis have provided a means to study the cell and molecu-
lar mediators of fibrosis and revealed that several groups of key genes mediate 
liver fibrogenesis. In particular, extensive studies have identified transforming 
growth factor (TGF)-β as the most important profibrogenic cytokine in the liver. 
Although a number of studies have investigated the relationship between tissue 
fibrosis and oxygen tension, they have focused on the effects of hypoxia in dis-
eases of the heart, lung, and kidney. The effect of exposure to hyperoxic condi-
tions on hepatic fibrosis and the role of TGF-β in the progression of fibrosis in 
hyperoxic livers have not yet been reported.
Research frontiers
Hyperoxic exposure is generally accepted to result in the formation of reactive 
oxygen species (ROS) in a variety of tissues directly implicated in the induc-
tion of cell injury via lipid peroxidation and up-regulation of pro-inflammatory 
cytokines. In the liver, Kupffer cells and neutrophils can induce oxidative tissue 
damage both directly via the effect of ROS on cellular components and indi-
rectly through the release of proteolytic enzymes. Furthermore, the formation 
of ROS and increased oxidative stress cause extensive hepatocellular necrosis 
and ultimately contribute to the development of hepatic fibrosis and cirrhosis. 
Oxidative stress figures prominently in several scenarios of liver fibrogenesis.
Innovations and breakthroughs
The authors observed that hyperoxic livers exhibited frequencies of hepatic 
cirrhosis that were significantly higher than those in untreated, normoxic livers. 
In addition, they further observed that hepatic TGF-β mRNA level in hyperoxic 
rats was significant higher than that in untreated rats. To the best of our knowl-
edge, no reports have been published demonstrating a significant relation-
ship between exposure to hyperoxia and frequencies of hepatic cirrhosis and 
discussing the role of TGF-β in the progression of hepatic fibrosis in hyperoxic 
rat livers. The observations in the present study suggest that TGF-β is partially 
responsible for the acceleration of hepatic fibrosis progression in rats exposed 
to hyperoxia.
Applications
Based on the observation that hyperoxic exposure accelerates the progression 
of hepatic fibrosis, this study may serve as a background for assessing the role 
of antioxidants in preventing the progression of hepatic cirrhosis.
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Figure 2  Quantitation of hepatic transformation growth factor-β mRNA 
expression level using real-time reverse-transcriptase polymerase chain 
reaction analysis. Results are mean values of 2 independent experiments with 
10 rats in each group. The mean value of the normalized hepatic transformation 
growth factor-β (TGF-β)/β-actin mRNA expression ratio in the hyperoxic rats 
was significantly higher than that in the untreated rats. aP < 0.05 vs the corre-
sponding values in the control group.

Measurement Control group Hypoxia group Hyperoxia group

TGF-β mRNA 
average Ct

31.51 ± 1.49 30.84 ± 1.07 29.57 ± 0.96

β-actin mRNA 
average Ct

23.99 ± 1.18 23.35 ± 1.27 22.90 ± 0.72

ΔCt   7.52 ± 0.63   7.49 ± 0.65   6.67 ± 0.67
ΔΔCt        0 ± 0.63  -0.03 ± 0.65  -0.77 ± 0.74
Normalized 
expression ratio

1.0 1.11 1.92

1P = 1.000 vs control group, 2P = 0.027 vs control group.

 COMMENTS

Lee SH et al . Hepatic cirrhosis and TGF-β up-regulation in hyperoxic rats



Terminology
Hepatic cirrhosis is the endpoint of hepatic fibrosis and various chronic liver 
diseases characterized by the formation of regenerative nodules of liver paren-
chyma separated by confluent fibrotic septa. It is typically accompanied by sig-
nificant morbidity and mortality. TGF-β is a protein that controls the cell cycle, 
apoptosis, proliferation and differentiation in most cells. In the liver, it plays a 
crucial role in inhibiting hepatic stellate cell apoptosis, thereby contributing to 
the increased number of these cells in the setting of liver injury. In addition, 
TGF-β stimulates extracellular matrix production by liver sinusoidal endothelial 
cells.
Peer review
This is well performed study, in which authors analyzed the frequency of hepatic 
cirrhosis and TGF-β expression status in rats exposed to hyperoxia. The results 
are interesting and suggest that TGF-β accelerates the progression of hepatic 
fibrosis following hyperoxic exposure. Further investigations are recommended 
to elucidate the molecular biological functions of TGF-β and a potential role of 
ROS in association with hyperoxia in the liver.
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