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Abstract
Reference intervals are ideally defined on apparently healthy individuals and should be distinguished from clinical decision 
limits that are derived from known diseased patients. Knowledge of physiological changes is a prerequisite for understanding 
and developing reference intervals. Reference intervals may differ for various subpopulations because of differences in their 
physiology, most obviously between men and women, but also in childhood, pregnancy and the elderly. Changes in laboratory 
measurements may be due to various physiological factors starting at birth including weaning, the active toddler, immunological 
learning, puberty, pregnancy, menopause and ageing. The need to partition reference intervals is required when there are 
significant physiological changes that need to be recognised. It is important that laboratorians are aware of these changes 
otherwise reference intervals that attempt to cover a widened inter-individual variability may lose their usefulness. It is virtually 
impossible for any laboratory to directly develop reference intervals for each of the physiological changes that are currently 
known, however indirect techniques can be used to develop or validate reference intervals in some difficult situations such as 
those for children. Physiology describes our life’s journey, and it is only when we are familiar with that journey that we can 
appreciate a pathological departure.

Introduction
Clinical investigation classically begins with gathering 
symptoms or examining for signs. The purpose is to identify 
the clinical features that aren’t typically found in healthy 
people as well as to detect those characteristics associated with 
a particular illness. Similarly, measurements made by clinical 
laboratories only have value when they can be compared to 
the values that are outside the usual spread of values found 
in health or within the spread of values typically found in 
disease. It is important these are two distinct questions i.e. 
‘Is there evidence that the patient is not healthy?’ or ‘Is there 
evidence that a patient has a particular disease?’. Consequently 
we have separated two classes of thresholds that can be used 
by the clinical laboratory.1-5

The first class of thresholds are reference intervals which 
describe the typical range of results seen in a healthy reference 
population. These were historically known as the ‘normal 
ranges’ but this term has been formally identified as incorrect 
and superseded according to the international standard for 
quality in medical laboratories (ISO 15189).6 The second 
class of thresholds are called clinical decision limits, where 
values above or below this threshold are considered diagnostic 

for the presence of a specific disease or are associated with a 
significant higher risk of the adverse clinical outcome(s). The 
most obvious example is a fasting glucose ≥7.0 mmol/L or a 
HbA1c ≥6.5% (48 mmol/mol) being defined as decision limits 
for the diagnosis of diabetes mellitus based on associated 
clinical outcomes, including diabetic retinopathy,7-9 although 
this decision point has been debated.10-12

Reference intervals are defined with a high specificity for 
health (typically 95% or more) while clinical decision limits 
also consider sensitivity for disease. Receiver Operator 
Characteristic (ROC) curves are now widely used to balance 
the need for sensitivity and specificity. An ‘optimal’ cut-off 
derived using this technique may be neither a highly specific 
(95%) reference intervals nor a clinical decision limit based 
on high sensitivity. Whether ROC derived optimal limits, by 
balancing sensitivity and specificity, truly represent the best 
option can be debated according to clinical circumstances 
which may place higher importance on sensitivity or 
specificity. Therefore ‘optimal’ limits derived from ROC 
curves should be considered as an intermediate category of 
threshold which is neither a highly specific reference interval 
nor a sensitivity focussed clinical decision limit.
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This article will focus on reference intervals, which are more 
widely used than clinical decision limits or ROC based cut-
offs. It will also discuss the physiological aspects that are 
pre-requisite for defining reference intervals or agreeing 
on harmonised reference intervals. These physiological 
aspects are at least as important as the statistical aspects 
of reference intervals that are best obtained from the CLSI 
C28-A3 standard.13 This standard represents over 30 years 
of professional development in the theory and application 
of reference values largely developed by the International 
Federation of Clinical Chemistry (IFCC)14-20 which was 
integral in developing that CLSI standard.

The considerable resources and statistical effort that are 
required to define reference intervals may be wasted if they 
don’t consider the underlying clinical purpose of reference 
intervals. In the current age of personalised medicine, the 
aim is to understand each patient as an individual. For every 
investigation our question is ‘What do I expect as a result for 
this particular patient if he/she is healthy?’

In terms of biological variability theory, when group inter-
individual variability (CVg) is much larger than the intra-
individual variability (CVi), reference intervals are less useful 
for judging individual patients.21-25 Ideally the reference 
interval shouldn’t be much wider than each patient’s 
expected variations and if the ratio of CVi to CVg (the index 
of individuality) is below 0.6, reference intervals lose their 
utility.26 More recently Petersen et al. have showed that 
the influence of the index of individuality on usefulness of 
reference intervals is even more important when a second 
sample is taken to confirm an abnormality.27 Utility can be 
restored by stratifying (or partitioning) patients into similar 
groups. As exemplified by Fraser,28 urine creatinine has an 
index of individuality of 0.46 when viewed as a whole and 
a urine creatinine reference interval is not as sensitive, for 
example, when a man’s urine creatinine level falls to the lower 
values normally seen in women. Separating urine creatinine 
reference intervals into gender based limits reduces inter-
individual variation and improves the index of individuality 
to above 1.4 (1.42 for women and 1.83 for men), a value that 
confirms the utility of reference intervals.26

As well as providing some background on the important 
physiological impacts on laboratory measurement from the 
literature, this paper will demonstrate that such physiological 
changes are also evident in the data generated by clinical 
laboratories and laboratory databases. While laboratory data 
is affected by results from diseased individuals, indirect 
techniques for investigating reference intervals can be used 
according to CLSI C28-A3,13 which states ‘the (indirect) 
techniques are perhaps more appropriately employed using data 

from individuals who are relatively healthy’. Furthermore, it is 
important to note that even known disease generally does not 
affect all analytes.29 Over the last several years, the Australian 
laboratories of the Sonic Healthcare pathology network have 
been involved in a project to harmonise the reference intervals 
across these Australian laboratories.30-34 The databases 
consist of a predominantly primary care population which 
is largely Caucasian, using common analytical techniques 
(Roche Modular biochemistry and Sysmex haematology). 
In our deliberations we have found that the changes in the 
population medians for these investigations reflect the major 
physiological changes already described in the literature as 
well as many subtle physiological changes that should also be 
considered when establishing reference intervals.

Physiology of Gender Based Reference Intervals
There are differences between men and women that cannot 
be disputed but, in terms of physiology, what are the factors 
behind those differences? The chromosomal differences 
between women and men are relatively small (46XX vs 
46XY), yet they lead to profound sexual differences including 
the gonads, genitalia, breasts, hair and muscle. Each of these 
differences is largely understood at a biochemical level, from 
the impact of anti-mullerian hormone on the development 
of genitourinary tract in men,35,36 to the effect of sex steroids 
on pubertal development.37-41 There are other significant 
changes in biochemical tests that appear at puberty and are 
therefore attributable to these hormonal changes (Table 1). 
Haemoglobin and serum urate show a similar rise at puberty, 
but only in boys (Figure 1).

Figure 1. The increase in haemoglobin (squares, full line) 
and urate (circle, dotted lines) in girls (grey) and boys (black) 
between the ages of 10 and 18 years. For haemoglobin there 
were 45,939 girls and 33,361 boys and for urate there were 
30,164 girls and 23,444 boys.
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Physiology of Childhood
Children are not little adults and reference intervals for 
any paediatric biomarker should be developed specifically 
for children and include well-recognised developmental 
changes.42 While sexual characteristic changes across puberty 
are profound, the earlier changes during the growth of a child, 
from birth to puberty are also significant. One of the most 
important tools in confirming a healthy child is the growth 
chart.43 The growth represented in a child’s height or weight 
is not linear and typically has two growth spurts; one in 
the toddler age group (1 to 3 years) and one at adolescence 
(age 9 to 13 for girls and 11 to 16 for boys). Serum alkaline 
phosphatase (ALP) also demonstrates these two peaks, with 
the age of onset for the adolescent growth peak being earlier in 
pubertal girls and than pubertal boys (Figure 2).44,45 Other bone 
markers also showing these differences.46 This understanding 
is very important in setting paediatric reference intervals for 
alkaline phosphatase, as elevations of this enzyme can be 
considered the most common biochemical abnormality in 
Ricket’s47 and important48 or essential for its diagnosis.49

These periods of bone growth also correspond to changes in 
calcium and phosphate metabolism (Figure 3). The higher 
calcium and phosphate levels during the ‘toddler’ growth 
surge has no gender differences, whereas the fall in phosphate 
levels during adolescence is earlier in girls than boys, 
mimicking the gender related delay in skeletal growth.50

Skeletal height is the most obvious measure of childhood 
growth, but this is also accompanied by changes in muscle 
mass. Serum creatinine is a marker of muscle mass in 
children (especially as their renal function is usually intact), 
and it is interesting to note the changes in serum creatinine 

Table 1. Changes in some common analytes at puberty and 
the sex hormones most likely to have caused the change.

Analyte Pubertal Change  Sex Steroid
Creatine kinase Boys rise by 50 IU/L Testosterone
Creatinine Boys rise by 15 µmol/L Testosterone
Albumin Boys rise by 2 g/L Testosterone
Haemoglobin Boys rise by 20 g/L Testosterone
Urate Boys rise by 0.05 mmol/L Testosterone
Cholesterol Boys fall by 0.4 mmol/L Testosterone
Globulin Girls rise by 2 g/L Oestradiol
Platelets Girls rise by 25 x106/L Oestradiol
Bicarbonate Girls fall by 1.5 mmol/L Progesterone

Figure 2. The changes in alkaline phosphatase plotted as the 
median value for each age group in 42,725 girls (grey) and 
38,402 boys (black) derived from a laboratory population 
of predominantly outpatient children having a multiple 
biochemical analysis (screening) protocol.

Figure 3. The changes in serum calcium (cresolpthalien 
complexone) (squares, full line) and serum phosphate (circles, 
dotted lines) plotted as the median value for each age group 
in 42,725 girls (grey) and 38,402 boys (black) derived from 
a laboratory multiple biochemical analysis population of 
predominantly outpatient children.

Figure 4. The increase in median creatinine (Roche rate 
blanked modified Jaffe) (squares, full line) and median 
haemoglobin (circle, dotted lines) in girls (grey) and boys 
(black) between the ages of 10 and 18 years. For haemoglobin 
there were 62,971 girls and 48,289 boys and for urate there 
were 42,725 girls and 38,391 boys.
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in children (Figure 4); the trends show a gender related 
increase in creatinine that parallels the adolescent rise in 
haemoglobin. However, we can see that both creatinine and 
haemoglobin show an almost linear increase from 6 months 
to 12 years, without any gender differences in that period.51-56 
It is important to note that before puberty there aren’t any 
childhood surges in the rise of creatinine or haemoglobin that 
may be related to skeletal growth peaks, and therefore the 
most likely drivers of these changes are increasing physical 
activity and increased oxygen delivery requirements.

It is well known that respiratory rate and heart rate fall during 
childhood,57,58 therefore how can we reconcile this with 
increasing physical activity and oxygen demand? One of 
the answers comes from looking at the bicarbonate changes 
in childhood (Figure 5). The rising serum bicarbonate in 
childhood has been described in many studies59-61 but perhaps 
not fully appreciated as the consequence of a gradual fall 
in respiratory rate across childhood57,58 and a continuing 
increase in absolute oxygen requirement. This leads to 
rising pCO2 across childhood62,63 which will result in rising 
bicarbonate.64-66 Furthermore, due to the issues of electrolyte 
charge, the increase in bicarbonate (by 5 to 7 mmol/L) has 
influence on the more subtle changes in other electrolytes 
across in childhood such as sodium which rises by 2 to 
3 mmol/L (Figure 5) and chloride (not shown in Figure 5) 
which falls by 2 to 3 mmol/L.67 As these measured ion 
differences are balanced, they are not the cause of changes 
in the rising anion gap in childhood (rises in infancy and falls 
from age 2). This rising anion gap is caused by the changes in 
‘unmeasured’ ions, especially rising albumin in infancy and 
falling phosphate.

Some metabolic changes in childhood seem to occur at the time 
of weaning. While digestive changes such as the reduction 
in lactase and increase in sucrase may be programmed for 
the expected change in diet,68 metabolic programming may 
also be affected by nutritional experiences such as formula 
feeding.69 The gut microbiota has also been implicated in 
the relationship between diet and metabolism.70 The serum 
calcium pattern in infants and toddlers60 shown in Figure 3 
reflects the understood nutritional importance of milk. It 
is also interesting to look at the changes in cholesterol and 
triglycerides (Figure 6). While cholesterol rises at weaning 

Figure 5. The increase in serum bicarbonate (squares, solid 
lines) and serum sodium (circles, dotted lines) in 42,725 girls 
(grey) and 38,391 boys (black) during childhood. The rise 
in childhood is related to the fall in respiratory rate across 
childhood and consequent increase in pCO2, the source of 
serum bicarbonate.

Figure 6. The increase in median values for random serum 
cholesterol (squares, solid lines) triglycerides (circles, dotted 
lines) in 42,725 girls (grey) and 38,391 boys (black) during 
childhood. While both cholesterol and triglyceride rise in 
infancy, cholesterol stays high while triglycerides fall back 
by age 3. 

Figure 7. The changes in serum globulin (biuret protein – 
BCG albumin) (squares, solid line), neutrophil count (circles, 
dotted lines) and lymphocyte counts (stars, dashed line) in 
girls (grey) and boys (black) during childhood. For serum 
globulin there were 42,275 girls and 38,391 boys and for 
neutrophil and lymphocyte count there were 62,971 girls and 
48,289 boys.
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(typically 6 months) and stays high, triglycerides rise at the 
same time but then fall back by age 5 years.60

Finally, the exposure to different antigens in food as well 
as different microbes represents one of the most important 
‘behind the scenes’ changes in childhood; the training of 
the immune system. During weaning and in the toddler 
age group, neutrophils and globulins rise to their plateau 
at age 5,71 whereas lymphocytes have an enormous peak in 
infancy and then gradually fall to adult levels (Figure 7).72 
The rise in globulins can be shown to be due to the rise in 
immunoglobulins.73

Physiology of Pregnancy
There are many important hormonal changes in pregnancy 
that ultimately impact on numerous aspects of physiology, 
such as the expansion in extracellular fluid volume74 and 
corresponding increase in renal filtration.75 These fluid 
changes are largely responsible for the typical falls in the 
concentration of most serum constituents. There are very 
few clinical laboratory measurements that rise in normal 
pregnancy, the most obvious being those related to the rise 
in oestrogens and progesterone. While we know that the 
synthetic oestrogens in the oral contraceptive pill increase 
transferrin levels and that the rise in oestrogens in pregnancy 
may do the same, most of the transferrin rise in pregnancy is 
in the third trimester and it is therefore misleading to attribute 
this solely to oestrogen. Furthermore, it is also know that iron 
stores are often depleted at this stage of rapid growth.76

The rise in alkaline phosphatase in pregnancy is largely due 
production of placental alkaline phosphatase.77 While most 
laboratorians are aware that alkaline phosphatase is higher in 
pregnant women, during the first and second trimester alkaline 
phosphatase levels are actually lower than in non-pregnant 
women and it is mainly in the third trimester that placental 
growth results in higher alkaline phosphatase levels.78,79 This 
increase is mimicked by another placental product, Cystatin 
C,80 which similarly undermines its usual clinical diagnostic 
role for renal function. An important biochemical measurement 
in the third trimester of pregnancy is serum urate, as increases 
are an important risk marker of pre-eclampsia.81 Obstetricians 
are aware that urate normally rises in the third trimester and 
risk thresholds change depending on the stage of the third 
trimester (Figure 8).82

Figure 5 clearly shows that the median serum bicarbonate 
level in young women is 26 mmol/L and approximately 2 
mmol/L lower than young men (28 mmol/L). This difference 
is because young women generally have lower pCO2 than 
men.83 In pregnancy, the pCO2 and bicarbonate levels are 
even lower,84 with bicarbonate a further 2 mmol/L lower than 

in non-pregnant women. All these changes are known to be 
due to the effect of progesterone which increases respiratory 
activity in pregnancy.85

Physiological Changes in Adults
The most profound physiological transition in adulthood is the 
menopause. Hormonal changes in the menstrual cycle affect 
breathing86 and, not surprisingly, the loss of the respiratory 
stimulation by oestrogen and progesterone ‘allows’ 
postmenopausal women to respire at a similar rate to men. 
Postmenopausal women adapt to the higher levels of pCO2

87,88
 

unless hormone (especially progesterone) replacement therapy 
is given.89 Serum bicarbonate levels correspondingly rise by 
1 or 2 mmol/L in postmenopausal women. Whilst such subtle 
changes in bicarbonate are seldom of any clinical concern, the 
physiological importance of this menopausal change could be 
clinically important, since a rise in bicarbonate results in an 
increase in complexed calcium90 and will increase the filtered 
renal load of calcium91 which, combined with a decrease 
in renal calcium reabsorption at menopause,92 can result in 
increased renal calcium loss at the menopause. Inevitably this 
will have to be replaced by diet or resorbed from bone.93,94 
The changes in median bicarbonate, calcium and alkaline 
phosphatase in serum shown in Figure 9 seem to be directly 
related to menopause and these physiological changes deserve 
much closer attention when we are trying to understand the 
physiology of the menopause and reference intervals across 
the climacteric.

None of these menopausal changes has a corresponding change 
in men. However men do have a gradual loss of the gender 
related differences that appeared at puberty. The gradual age-
related decline in haemoglobin is much more obvious in men 
and can be related to the decline in testosterone levels with 
age.95,96

Figure 8. The changes in serum urate (squares, solid line) and 
alkaline phosphatase (circles, dotted line) in 30,321 pregnant 
women of varying gestational age. 
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Some may argue that any decline in function with human 
ageing is due to the accumulation of pathology rather than 
a physiological phenomenon.97 As much as investigators 
have tried to understand ageing with concepts such as 
‘inflammaging’,98 telomere shortening,99 oxidative damage,100 
or hormonal deficiency and metabolic decline,101 the 
explanation of ageing remains elusive. It is possible that 
human design has a built in ‘expiry date’102 (or at least a ‘best 
before date’). Studies in the healthiest elderly show significant 
changes including an age related decline in respiratory 
function (e.g. falling pO2),

103-105 renal function (falling 
eGFR)106-108 and cardiac status (rising high sensitivity troponin 
levels).109-113 Many of the non-hormonal changes that occur 
with ageing are subtle compared to the hormonal changes 
such as for dehydroepiandrosterone sulphate (DHEAS).114 
Whether these deteriorations represent normal ageing or the 
accumulation of pathology may be ‘academic’, because either 
way they may represent the known increasing health risk in 
the elderly. Age related reference intervals have the effect of 
‘normalising’ physiological decline through maintaining age 
related specificity (i.e. 95%), but this necessarily also results 
in a decrease in sensitivity for disease and the associated 
mortality risks of ageing. 

The Challenge of Partitioning
The partitioning of reference intervals into separate subclasses 
according to age, gender, ethnicity or ‘other’ is advisable when 
a clinical foundation or a logical physiological basis exists.115 
Partitioning is a valuable tool for enhancing the diagnostic 
power of reference intervals.116 The partitioning of reference 
intervals is important but may also be the most complicated 
part of defining reference intervals. The partitioning into male 
and female seems the easiest step, but when should this be 
done? If the answer is where there is a significant difference 

between genders, what do we mean by significant difference? 
Differences have been generally considered as statistical 
differences. If there was a statistically significant difference 
for serum sodium of 1 mmol/L, how confident can we be of the 
usefulness of that difference in any particular individual when 
our routine assays cannot distinguish that difference? The 
balance between analytical quality and the quality of clinical 
interpretation is described in the Stockholm hierarchy,117 
where the ultimate measure of quality is established by 
its relationship with clinical outcome. This ideal goal of 
defining analytical quality goals based on clinical outcome 
has not yet been applied to most measurements in laboratory 
medicine, let alone to the related issue of the impact of the 
quality of reference intervals on clinical interpretation and 
outcome.118 Therefore, as we are also unable to determine 
whether differences in the quality of partitioning of reference 
intervals will impact on clinical outcomes, we need to apply 
lesser approaches to the suitability of partitioning such as 
clinical opinion, statistics or laboratory consensus. Statistical 
partitioning methods by Stinton et al,119 Harris and Boyd120 and 
Ichihara and Kawai,121 are essentially based on an arbitrary 
distance between two distributions, although improvements 
can be made by applying a prevalence adjusted distance.116 
These methods don’t apply where there are more than two 
partitions to compare (as with almost all measurands). Gender 
can be assessed as two partitions, but what of age or pregnancy 
or where there is a continuous change? In order to compare 
the appropriate partitions, knowledge of the physiological 
changes affecting that measure is required.

As previously mentioned, when intra-individual variability 
is much tighter than inter-individual variability (index of 
individuality is below 0.6), reference intervals lose their 
usefulness. However, by partitioning reference intervals (to 
reduce inter-individual variation), the ratio of intra- to inter-
individual variation can be increased above 1.4.

The dominant form of partitioning applied in clinical 
laboratory medicine is by social consensus: adulthood begins 
at age 18 (or 21), gestational age in pregnancy is divided 
into three trimesters, adult age can be divided into decades 
and old age is the age of retirement which is about 65 to 
70 years. In this review, I hope to have demonstrated in the 
preceding discussions that while physiological changes often 
coincide with social and commonly used partitions such as 
weaning, adolescence, pregnancy, menopause and retirement, 
many of these physiological changes do not follow such 
partitions. For example, does physiology of pregnancy have 
any relevance to our arbitrary division of the nine months of 
pregnancy into three trimesters? Partitioning in adolescence 
should ideally be linked to the pubertal Tanner stages, but this 
requires considerable effort for laboratorians to develop this 

Figure 9. The changes in median serum bicarbonate 
(squares, solid line), median serum calcium (cresolpthalein 
complexone) (circles, dashed line) and median serum alkaline 
phosphatase (stars, dotted lines) in 74,032 women from 40 to 
60 years of age. 
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understanding as well as an effort by clinicians to apply these 
partitions. Childhood definitions are particularly problematic 
as, for example, thyroid stimulating hormone (TSH) falls 
to adult levels by age 12, while ALP falls to adult levels by 
age 21 in boys. It is difficult to create a set of partitions that 
reflects all the changes in childhood and this is probably why 
many reference interval studies in children settle on dividing 
childhood in 5 year blocks. The social divisions of childhood: 
newborn, infant, toddler, preschool, primary school and 
secondary school, are also more understandable for anxious 
parents who may otherwise be confused when trying to 
understand nuances of their child’s pathology reports. 
While there may be pragmatic reasons to apply these social 
divisions, as well as tools to decide whether these partitions 
lead to statistically significant differences, we should consider 
in these discussions, the scientific understanding of how 
physiology affects reference distributions.

Conclusion
Reference intervals should represent our understanding of 
physiology and the way it normally affects laboratory tests. 
This understanding is vital for maintaining the high specificity 
of reference intervals. The lack of a full appreciation of the 
importance of this understanding of physiology became 
obvious to our pathology network over the many years we 
have spent reviewing our reference intervals using direct 
and indirect reference interval data. We were fortunate to 
have access to hundreds of thousands of patient results that 
are largely an outpatient population where screening using 
multiple biochemical analysis is common and satisfies the 
CLSI C28-A3 requirement that indirect techniques are most 
appropriate using data from individuals who are relatively 
healthy.13 Indeed it would be nearly impossible to create 
corresponding data using expensive direct reference interval 
projects. If we need 120 healthy people to develop one direct 
reference interval, that requirement becomes 240 if there 
are gender differences, 360 more for the three trimesters of 
pregnancy and hundreds more if we are to consider age related 
partitioning for the elderly. We would also require hundreds 
more for the various stages of childhood122 which is why CLSI 
C28-A3 specifically states that indirect techniques ‘are used 
when it is deemed too difficult to collect samples from healthy 
subjects (e.g. paediatrics)’13 and investigators have used the 
indirect approach successfully in both paediatrics123 and the 
elderly.124 It is, therefore, virtually impossible to perform 
direct reference interval studies with enough individuals to 
represent all the physiological differences that are known 
to exist.125 Indirect reference intervals usually compare very 
well with those derived directly,126 but may reveal previously 
unsuspected differences.127

As stated by Fraser: ‘appreciation of the biological changes 
that occur over the span of life is a necessary prerequisite to 
deciding whether stratification of reference values according 
to age is likely to be necessary’.128 Human physiology 
describes our expected journey through life. We cannot 
define pathological departures from that journey without first 
understanding the journey itself. 
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