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Abstract
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for 
evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for 
medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. 
The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation 
(MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how 
uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a 
readily available spreadsheet such as Microsoft Excel. 

The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed 
probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally 
considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random 
numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides 
its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential 
equations associated with GUM modelling. 

The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide 
an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively 
common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically 
derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through 
the functional relationship and contribute to the combined standard uncertainty of the measurand.

Introduction
Since its introduction in 1993 with corrections and updates in 
1995 and 2008, the GUM has provided the basic framework for 
evaluating uncertainty in measurement.1 The GUM approach 
provides an alternative focus for uncertainty information to 
that which may have previously been provided in clinical 
biochemistry publications in the form of an error analysis or 
by the total error concept.2-5 A fundamental premise of the 
GUM is based on the assumption that all systematic errors 
are identified and corrected at an early stage in the evaluation 
process. The quality of a measurement is then expressed by 

taking the uncertainty associated with random errors and the 
uncertainty associated with any correction for systematic error 
(bias) into account on an equal footing. However, section 
F.2.4.5 of the GUM specifically describes the procedure where 
a significant systematic effect may be taken into account by 
enlarging the uncertainty assigned to the result. ‘An example 
is replacement of an expanded uncertainty U with U+b, where 
U is an expanded uncertainty obtained under the assumption b 
= 0 ’.1 This situation is directly comparable to the calculation 
of total error as described by Westgard and others, where the 
total error includes both a bias and an imprecision component 
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as part of the combined standard uncertainty statement.2-5 The 
GUM thus recognises that in some circumstances, particularly 
where time and resources are limited, such a procedure may 
be unavoidable. The preferred GUM approach however, as 
described in section 3.2.4 of the GUM, is to eliminate as early 
as possible in the analytical process any known systematic 
effect(s) by an appropriate correction(s), with the only 
uncertainty relating to systematic error being the uncertainty 
of the correction itself. The uncertainty in the reported value 
of the measurand will thus comprise the uncertainty due to 
random errors and the uncertainty of any corrections for 
systematic errors. 

The bottom-up approach as summarised in section 8 of the 
GUM has previously been given most emphasis.1 It requires 
that each step in the analytical process be evaluated in minute 
detail and that a mathematical model be available to describe 
the relationship between the various inputs and the output 
(the measurand). For this reason, the GUM has been criticised 
as not always providing procedures suitable for medical 
laboratories, particularly when IQC is used to derive most of 
the uncertainty estimates.6,7 Although the bottom-up approach 
does provide a rigorous methodology for the estimation 
of uncertainty, other logical approaches are certainly not 
excluded, for example:
•	 A top-down approach with the use of IQC for the 

assessment of precision (imprecision); and external quality 
assessment for the evaluation of systematic error (bias). 
The applications of bottom-up and top-down approaches 
have been reviewed.8,9

•	 Numerical procedures such as MCS as outlined in 
Supplement 1 to the GUM and by others.10-15

There are many articles in the medical sciences literature 
describing the use of MCS for the investigation of statistical 
problems,16-26 but few for the investigation of combined 
standard uncertainty associated with the calculation of a 
measurand through a functional relationship. Interestingly, one 
uncertainty evaluation used MCS in 1988 for ‘Error estimation 
in the quantification of alkaline phosphatase isoenzymes by 
selective inhibition methods’. The MCS procedure was well 
applied and eminently suited to this application, but certainly 
did not use the spreadsheet approach which we describe.16

Supplement 1 to the GUM, Guide to the expression of 
uncertainty in measurement – Propagation of distributions 
using a Monte Carlo method provides a detailed discussion 
which is ‘concerned with the propagation of distributions 
through a mathematical model of measurement … as a 
basis for the evaluation of uncertainty of measurement, and 
its implementation by a Monte Carlo simulation (MCS) 
method’.10 Whereas the GUM modelling approach requires 

advanced mathematical skills for many of its procedures, 
the MCS method can be applied to most medical laboratory 
applications using a readily available spreadsheet such as 
Microsoft Excel. Complex uncertainty calculations can be 
accomplished by standard spreadsheet applications rather 
than by technically demanding mathematical procedures. 

The aim of this article is to demonstrate the ease with which 
Microsoft Excel (or a similar spreadsheet) can be used to 
provide an uncertainty estimate for measurands derived 
through a functional relationship without the requirement of 
advanced mathematical knowledge or the detailed assessment 
required for the bottom-up approach. In addition, we also 
consider the relatively common situation where an empirically 
derived formula includes one or more ‘constants’, each of 
which has an empirically derived numerical value. Such 
empirically derived ‘constants’ must also have associated 
uncertainties and therefore should not be considered as true 
constants. Even though the uncertainties associated with these 
‘constants’ are not generally published, any such uncertainty 
must also propagate through the functional relationship 
and contribute to the combined standard uncertainty of the 
measurand. Examples which include plausible estimates of 
such uncertainties are discussed in Appendices 2 and 3. 

Probability Density Function 
A probability density function (PDF) or probability density 
distribution function is a mathematical relationship which 
describes how the probability density of a continuous random 
variable may vary over a permitted range of values. A PDF 
is usually illustrated by means of a graph. For example, 
the graph of the normal (Gaussian) PDF is a bell-shaped 
curve with a permitted range from minus infinity to plus 
infinity (with probabilities in the tails being very low). The 
horizontal axis of a PDF graph marks off the possible values 
of a variable, while the vertical axis gives the probability 
density. In addition, the area under a PDF graph between any 
two selected values of the variable is the probability that the 
variable may take any value within the specified interval. It 
naturally follows that the total area under a PDF graph has 
a probability of one (certainty), since the variable must take 
some value within its permitted range. 

A probability distribution (with ‘density’ omitted) is a more 
general statistical term which may include the probability 
density distribution, but usually refers to other types of 
distribution such as a cumulative probability distribution or a 
discrete probability distribution. For brevity in what follows, 
however, a ‘probability density function’ where appropriate 
will be referred to as a ‘probability distribution’ or simply a 
‘distribution’.



Calculation of Uncertainty in Measurement by MCS

Clin Biochem Rev 35 (1) 2014   39

In probability and statistics there are many types of PDF. For 
medical laboratory applications with respect to uncertainty in 
measurement, the normal, the Student t, the rectangular and 
symmetrical triangular distributions are particularly relevant. 
The importance of correctly allocating the most appropriate 
distribution for a specified uncertainty is discussed in many 
sections of the GUM (for example, section 4.4, Graphical 
illustration of evaluating standard uncertainty),1 in Supplement 
1 to the GUM (section 6, Probability density functions for 
the input quantities)10 and in Eurachem/CITAC guide CG4 
(appendix E).11 A particularly useful account is also provided 
in the G104-A2LA guide for estimation of measurement 
uncertainty in testing.27 

In brief:
•	 A rectangular or uniform PDF is used as a model in situations 

where the probability of obtaining any value between two 
stated limits is equal to the probability of obtaining any other 
value between these limits. The rectangular probability 
distribution has boundaries or limits which are usually 
specified as ±a from the central value, where a is the half-
width of the distribution. Thus 100% of the values must 
fall between –a and +a. This is the probability distribution 
of least knowledge, when all that is known are the limits 
within which a value will fall. The standard deviation of a 
rectangular distribution is given by a/√3.11,27 

•	 The triangular PDF (usually the symmetrical triangular 
distribution) also contains 100% of the possible values. 
With this distribution however, the probabilities increase 
linearly from zero to the peak or central value, and then 
decrease linearly at the same rate back to zero. In a similar 
manner to the rectangular distribution, the limits of a 
symmetrical triangular distribution are usually specified 
as ±a from the peak. The standard deviation of a triangular 
distribution is a/√6.11,27 

•	 The normal or Gaussian PDF represents the statistical 
behavior of many natural phenomena. It is the symmetrical 
‘bell-shaped’ distribution that (in theory) is produced if all 
that we know about a distribution are its mean and standard 
deviation. An important reason a normal distribution is 
often assumed is that other distributions when combined 
often yield a net distribution which is close to normal (this 
is the essence of the so-called central limit theorem). It 
is also the limiting distribution for a measurement which 
is subject to many small random errors. For many of 
the measurements in medical laboratory procedures, 
the distribution of the measurand is assumed to follow, 
or closely approximate, a normal distribution. This 
distribution is characterised by its mean and standard 
deviation, both of which must be specified. 

•	 When the number of observations is relatively small, 
the Student t distribution with its associated degrees of 

freedom should be considered. The t distribution applies 
in situations where high-accuracy analysis is undertaken 
with a limited number of observations or when the GUM 
bottom-up approach must be meticulously followed.1

•	 The U-shaped PDF models situations where the most 
likely values are at or near the containment limits.27 A 
particular example which may be of relevance to laboratory 
testing is the regulation of ambient temperature by an air-
conditioner. Even though several publications comment 
on room air-conditioning,10,11 section 3.3.2.4 of the G104-
A2LA guide provides the statement ‘… because of the 
way thermostats work, room temperature tends to be near 
the maximum allowed deviation from the set point, that 
is, the room temperature is most likely to be too hot or too 
cold relative to the set point’. The probability distribution 
which describes this situation is a U distribution, with 
containment limits ±a and standard deviation a/√2.27 

Some examples associated with the first three of the above 
distributions and their application to laboratory uncertainty 
calculations are given in Table 1. 

The GUM Modelling Approach
The separate introduction to the Guide to the Expression of 
Uncertainty in Measurement and related documents provides 
an overview of the GUM and its relevance to measurement 
science.28 It clearly states that the theoretical background 
for the ‘evaluation of measurement data and evaluation of 
uncertainty of measurement is supported by mathematical 
statistics and probability’.

Section 2.2.3 of the GUM defines uncertainty of measurement 
as a ‘parameter, associated with the result of a measurement, 
that characterises the dispersion of the values that could 
reasonably be attributed to the measurand’.1 Uncertainty 
of measurement may appear as random variations in the 
results of repeated measurements, as uncertainty documented 
from previous experience or as uncertainty estimated 
by professional judgment. As such, the ‘parameter’ may 
be evaluated as a sample standard deviation of repeated 
measurement results, the half-width of an interval having a 
stated coverage probability, the uncertainty associated with 
the correction for systematic error (bias), or estimated by 
other (non-statistical) procedures.29 Whatever method is 
chosen to provide an uncertainty estimate, GUM outlines 
the manner in which this can be described in the form of a 
standard deviation.1 Expressed in this manner, an uncertainty 
component is known as a standard uncertainty. Section 2.3.1 of 
the GUM describes standard uncertainty as ‘uncertainty of the 
results of a measurement expressed as a standard deviation’. 
To distinguish the statistical term standard deviation from 
standard uncertainty, sample standard deviation is given the 
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symbol s, while standard uncertainty is denoted by u. Variance 
is the standard statistical term for the square of a standard 
deviation or the square of a standard uncertainty. 

The procedural steps proposed by the GUM are outlined 
in section 8: Summary of procedures for evaluating and 
expressing uncertainty components.1 These steps may be 
summarised as follows:
•	 Specify the measurand: provide a clear statement of 

what is being measured and the mathematical functional 
relationship between the measurand and the input 
quantities upon which it depends.

•	 Identify sources of uncertainty. 
•	 Identify and correct for systematic error (bias) where 

possible.
•	 Quantify uncertainty components: determine the standard 

uncertainty associated with each of the input quantities, 
including any uncertainty associated with the correction for 
systematic error. An uncertainty estimate obtained by the 
statistical analysis of serial observations (for example, the 
standard deviation of an IQC specimen) is described by the 
GUM as a Type A evaluation of standard uncertainty. An 
uncertainty estimate obtained by other means (for example, 
information obtained from an authoritative published 
report, a calibration certificate, personal experience or a 
numerical quantity associated with a certified reference 
material) is described by the GUM as a Type B evaluation. 
Type B components should be characterised by uncertainty 
quantities which may be considered as approximations to 
standard uncertainties.1,10,11,29

•	 Calculate the value of the measurand: that is, calculate the 
result of the measurement from the functional relationship 
which connects the various input quantities to the 
measurand. 

•	 Calculate the combined standard uncertainty of the 
measurand: that is, calculate the combined standard 
uncertainty of the measurand from the standard 
uncertainties (and covariances if present) associated with 
the various input quantities. These standard uncertainties 
are combined according to the rules based on the law for 
the propagation of uncertainties.29 

•	 Calculate the expanded uncertainty of the measurand by 
applying an appropriate coverage factor, k. The expanded 
uncertainty is equal to the combined standard uncertainty 
of the measurand multiplied by k. For medical laboratory 
applications, k is typically given the value of 1.96 (or 2.0). 
This provides an expanded uncertainty which includes 
95.0% (or 95.4%) of the values within the distribution of 
the measurand. The expanded uncertainty calculated in this 
manner provides a coverage interval on the assumption 
that the distribution of the measurand is normal.

Monte Carlo Simulation
MCS provides a practical alternative to the GUM modelling 
approach and is a general tool for evaluating uncertainty.10-12 
Modern ‘personal’ computers running widely available 
spreadsheet software can be used for most medical laboratory 
applications. In contrast to the theoretical GUM modelling 
approach, MCS may be regarded as ‘experimental statistics’. 
This comparison between theoretical and experimental 
statistics is similar to the relationship between theoretical and 
experimental physics. In both sciences, a complex theoretical 
analysis can be put to an experimental test. In physics, such 
experimental testing has long been mandatory. In statistics 
however, it has only been possible since the development 
and routine availability of high computing power. Older 
theoretical statistical results can be (and have been) tested 
experimentally using MCS. It is now also common practice 
to use MCS to establish statistical results where a theoretical 
approach would be difficult or inconclusive. 

The MCS procedure uses algorithmically generated pseudo-
random numbers (but for simplicity we have used the 
term random) which are then forced to follow a prescribed 
probability distribution. For a normal distribution, the spread 
of random numbers is predetermined by its specified mean 
and its specified standard deviation. For each input, the MCS 
procedure generates a numeric value drawn at random from 
its respective PDF. Numeric values derived in this manner are 
produced for all inputs to the known functional relationship 
which is then used to produce a single numeric value as 
output. This process is repeated a sufficiently large number 
of times (or ‘trials’) so as to produce a set of simulated results 
as output. The mean and standard deviation of these output 
results are then the respective estimates of the measurand and 
its standard uncertainty. 

As these input values are randomly selected from the 
predefined probability distributions associated with each 
of the input variables, the overall process may thus be 
considered as a procedure for the propagation of distributions. 
Also, as the MCS procedure performs random sampling 
from the PDFs of the input quantities, it directly provides 
the probability distribution of the measurand and hence any 
required coverage interval. Whereas the GUM procedure 
yields the ‘bare bones’ (the mean and standard uncertainty 
of the measurand), the MCS procedure ‘fleshes this out’ as it 
yields the actual PDF of the measurand which contains much 
more information. This additional information may be used to 
graph the distribution of output data and to directly determine 
the coverage interval of the measurand even when the PDF of 
the measurand has significant asymmetry.
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As the GUM modelling approach does not explicitly 
determine a PDF for the output quantity, the GUM approach 
can sometimes limit the ability to clearly define an output 
PDF. The propagation of distributions using MCS however, 
will always provide a PDF for the output quantity which is 
consistent with the PDFs of the various inputs. Some further 
advantages of the MCS procedure over the GUM modelling 
approach as paraphrased from Supplement 1 to the GUM 
include:10 
•	 In contrast to the GUM modelling approach, the MCS 

procedure ‘automatically’ takes into account any 
nonlinearities in the functional relationship. 

•	 If two inputs are correlated, the MCS procedure provides 
joint simulation of a bivariate distribution provided the 
correlation coefficient (or equivalently the covariance) 
has been appropriately incorporated into the definition of 
the input PDF (see below, “Uncertainty in Measurements 
With and Without Correlation”). In this manner, any 
correlation will have been explicitly taken into account 
after the completion of the MCS procedure. 

•	 A graphical representation of the distribution of the 
measurand can be obtained directly from the MCS 
procedure. In this manner, any non-normality or 
asymmetry in this distribution can usually be seen. 

•	 There is a significant reduction in the mathematical skills 
required for most evaluations. 

•	 The MCS procedure generally provides improved 
estimates for non-linear models.

•	 The MCS procedure provides a coverage interval 
corresponding to a stipulated coverage probability. 
For medical laboratory applications with a normally 
distributed measurand, this is typically 95% for a 
coverage factor of 1.96 or 95.4% for a coverage factor of 
2.0. For asymmetric distributions, the coverage intervals 
(whether 95% or any other value) may vary in length. In 
such cases, the shortest 95% coverage interval (or any 
other percentage) is generally quoted, since this provides 
a narrower uncertainty range and the best location of the 
measurand. 

A fundamental requirement in applying MCS is software for 
generating random numbers. The period of the numbers so 
produced (the total number of trials that can be made before 
the starting point of the sequence of random numbers is again 
reached) should be as large as possible. This period is often 
around one billion, which is generally adequate for the great 
majority of applications.10,30 

Spreadsheet Procedure for MCS
Personal computers running spreadsheet software now 
provide the computing power and functionality to perform 
MCS with sufficient numerical precision for most medical 
laboratory applications. Details for the use of this spreadsheet 

approach have been described in detail.10,31,32 However, the 
very detailed and easy-to-follow procedure described by Chew 
and Walczyk has been used as the basis for the simulations 
described in this article.32 

In a similar manner to the GUM modelling procedure, the 
MCS approach requires a measurement model which can be 
described by an appropriate functional relationship (equation). 
From a mathematical perspective, a function can be regarded 
as a quantity whose value can be derived from one or more 
input quantities by applying a defined mathematical formula. 
In laboratory medicine, there are many examples where 
the measurand is calculated from other measurements by 
means of a functional relationship.29 In these circumstances, 
the output from the function is the required measurand, 
but the input quantities themselves can often be viewed as 
measurands which may also depend on other quantities, 
including corrections and correction factors for systematic 
error. Such interactions may well lead to a complicated 
functional relationship but one which accurately describes 
the measurement model. MCS is ideally suited to calculating 
the combined standard uncertainty of the measurand in this 
situation. The requirements for implementing an MCS are:
•	 A clearly defined measurement model which describes 

the measurement process in terms of the inputs to the 
measurand.29 

•	 A functional relationship (equation) which describes the 
measurand (output) as a function of the relevant inputs. 

•	 An assessment of the types of distribution which apply to 
the various input uncertainties. These uncertainties in the 
inputs should all be expressed as standard uncertainties 
and not as expanded uncertainties. If an input uncertainty 
estimate has been derived by statistical analysis of 
repeated measurements (as may occur by the repeated 
analysis of IQC), then this would constitute a GUM Type 
A evaluation and the associated probability distribution 
is likely to be normal. If an input uncertainty estimate 
has been obtained from a report, a certificate or other 
specification without further information, this would be a 
GUM Type B evaluation. However, a Type B uncertainty 
based on repeated measurements made in the past but now 
reported for use in the present, may often be regarded as 
a ‘fossilised’ Type A uncertainty and a normal distribution 
may still be appropriate.

•	 An uncertainty taken from a report or similar document 
can often be an expanded uncertainty. If this is so, the 
quoted value should be converted to a standard uncertainty 
for use in the MCS procedure. Where the expanded 
uncertainty refers to a 95% coverage interval, conversion 
to a standard uncertainty can be performed (usually to 
a good approximation) simply by halving the expanded 
uncertainty. 

•	 Some further examples are provided in Table 1.
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To demonstrate the power of the MCS procedure, we provide 
(in the appendices) three examples taken from well-known 
medical laboratory calculations. The three representative 
examples are those for calculating serum anion gap (AG),33,34 
the Modification of Diet in Renal Disease Study (MDRD) 
equation for estimating glomerular filtration rate (eGFR),35-37 
and the equation described by Sartorius et al. for calculating 
free testosterone (cFT).38 These three equations have been 
taken as described and were chosen to demonstrate the overall 
utility of the MCS procedure with:
•	 A relatively simple calculation using the MCS procedure 

and comparing this with GUM modelling (the AG 
equation). 

•	 More complex equations (eGFR and cFT) which involve 
several mathematical functions including power terms and 
empirically derived ‘constants’. 

•	 The use of MCS modelling and the effect on the measurand 
of introducing uncertainty estimates for empirically 
derived ‘constants’ such as those present in the eGFR and 
cFT equations. 

It is not our intent to discuss the actual validity, derivation, 
or clinical utility of these equations. They were chosen only 
to demonstrate the MCS procedure for a medical laboratory 
application using equations which we believe should be 
relatively familiar. 

For estimating the combined standard uncertainty of the 
output quantity (u(y)), given the standard uncertainties of the 
various input quantities (u(xi)), a spreadsheet is constructed 
with columns allocated for each of the input quantities and 
the output quantity (measurand) as described.31,32 Also 
required are the statistics which determine the PDF for each 
of the input quantities. For a normal distribution these are 
the mean and standard deviation (s) or standard uncertainty 
(u). In each of the columns allocated to the various input 
quantities, the appropriate spreadsheet formulae are entered 
and ‘filled down’ for the required number of trials. When 
referencing the cells which contain the basic input data (input 
mean or measurement value; rectangular, triangular or normal 
distribution limits, etc.), absolute cell references should be 
used. The inbuilt Excel spreadsheet formulae for generating 
random numbers according to the specified PDF are given in 
Table 1. Further information with regard to these formulae can 
be obtained from Excel ‘help’ or Excel ‘statistical functions’. 

The simulated data in the columns which represent the 
various input quantities are now combined row by row 
according to the specified measurement model (functional 
relationship). The results from this set of calculations now 
represent the many possible values which can be ascribed to 
the measurand, the mean of which provides an estimate of the 

measurand and the distribution of values its PDF. The data in 
the output (measurand) column can now be further evaluated. 
Some suggestions include: 
•	 Plotting a frequency graph (or frequency histogram) using 

the Excel chart function. 
•	 Visual inspection of the frequency chart to assess the 

shape of the distribution.
•	 Calculation of statistics such as mean, mode, median and 

standard deviation (standard uncertainty) using standard 
Excel statistical functions.

•	 Calculation of the coverage interval for the output 
quantity or measurand: a good general procedure is to 
copy the output values into a second column and sort from 
smallest to largest, exclude the lowest 2.5% and highest 
2.5% of values (based on row number) to give a 95% 
coverage interval (or other percentage as required). If the 
distribution is symmetrical and approximately normal, 
this will equate to the usual 95% coverage interval of 
±1.96 standard deviations. Alternatively, the Excel 
PERCENTILE function can be used to determine the 
required coverage interval boundaries. 

•	 Choice of coverage factor (k): for medical laboratory 
applications, a coverage factor is typically chosen to 
include approximately 95% of the distribution (k = 
1.96) or 95.4% of the distribution (k = 2.0). In medical 
laboratory applications, a coverage factor of 2.0 is 
often used to designate a range which contains 95% of 
values. From a purist statistical perspective this is not 
technically correct, as ±2.0 actually represents 95.4% of 
values within the distribution. In a similar manner, there 
are many articles which use a coverage factor of 1.96 to 
correctly represent 95.0% of values. However, section 
6.3.3 of the GUM suggests that for most measurement 
situations ‘where the distribution characterized by y and 
u(y) is approximately normal and the effective degrees of 
freedom of u(y) is of significant size … one can assume 
that taking k = 2 produces an interval having a level of 
confidence of approximately 95%’.1

•	 Calculation of skewness and kurtosis: even though not 
essential to the MCS procedure, these statistics may 
provide some additional assistance when considering 
the shape of the output PDF, its closeness to normality 
or when determining the coverage interval. For a normal 
distribution, the skewness coefficient (from the SKEW 
function in Excel) should be approximately zero with a 
standard deviation of approximately √(6/N), where N is the 
number of MCS trials.39,40 In a similar manner, the kurtosis 
coefficient of a normal distribution as calculated by Excel 
(from the KURT function) should also be approximately 
zero with a standard deviation of approximately √(24/N), 
where N is the number of MCS trials.39,40 The Excel 
kurtosis coefficient of zero contrasts with the usual 
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statistical kurtosis coefficient of 3, as the Excel equation 
used for the KURT function has an inbuilt −3 correction. 
If the observed kurtosis is more than about three standard 
deviations from zero, the distribution may well be non-
normal. This tentative conclusion is strengthened if the 
observed skewness is also about three standard deviations 
from zero. 

Precision Profile and Uncertainty of Measurement
IQC performed in a routine medical laboratory is often 
evaluated at only two or three measurand values. However, 
uncertainty of measurement may vary over the analytical 
range of the method and outside of the range covered by 
the control material. This can apply irrespective of whether 
the uncertainty is provided as a standard deviation or as a 
proportional uncertainty (CV%). The precision or uncertainty 
profile of an assay is a convenient way to describe the 
relationship between the concentration of a substance and 
its measured uncertainty. It is usually presented as a plot 
of standard deviation or coefficient of variation against 
measurand value and shows the change in uncertainty at 
values not directly covered by the routine control material. 
When deriving uncertainty of measurement values or using 
precision estimates in GUM modelling or MCS calculations, 
it is important to consider the use of the actual uncertainty at 
the measurand value in question. It is generally recommended 
that an uncertainty profile be established when a method is 
verified for laboratory use.29,41

The Number of Trials Required for Each Monte Carlo 
Simulation
One of the potential disadvantages of MCS is that a single 
run of trials does not indicate by itself the reliability of the 
results. However, the greater the number of MCS trials, the 
more ‘stable’ will be the output standard deviation (that is, 
the standard uncertainty of the measurand). This property of 
MCS can thus be used as a direct method for determining 
the number of trials for a given application. The following 
procedure is suggested for determining the number of trials 
required:
1.	 Perform 20 MC simulations with (say) 1000 trials 

each and calculate the standard deviation of the output 
(measurand). Record the standard deviation for each of 
the 20 simulations. 

2.	 Repeat the 20 simulations, but now with 10,000 trials 
each. Again calculate and record the standard deviation of 
the measurand for each of the 20 simulations. 

3.	 Again, repeat with 20 simulations for 100,000 trials each. 
The variation of the standard deviation will decrease as the 
number of trials increases. This procedure can be halted 
when the variation of the standard deviation is below the 
level considered significant.

Figure 1 demonstrates this suggested approach for determining 
the required number of MCS trials. Taking the AG example 
described in Appendix 1, Figure 1 shows how the output 
standard deviations change with the number of trials per 
simulation. As may be expected, the mutual consistency of the 
output standard deviations increases as the number of trials per 
simulation increase. However, as whole number percentages 
provide the uncertainty data for most medical laboratory 
applications, consistency of output standard uncertainties to 
one or two decimal places is more than adequate. As can be 
seen from Figure 1, even a relatively low number of trials 
(1,000) can often provide standard uncertainties which 
closely align with those provided by GUM modelling. For the 
three applications described in the appendices, 10,000 trials 
provide consistent results with sufficient numerical precision. 
Where a trustworthy simulation is required for the evaluation 
of a coverage interval from a PDF which is sparsely populated 
near its end-points, a higher number of trials may be needed. 
Section 7.2 of Supplement 1 to the GUM recommends at least 
200,000 trials for a 95% coverage interval which is reliable to 
one or two significant decimal digits.10

Figure 1. Variation of the standard deviation for anion gap 
calculated by 100, 1000, 10,000, 100,000 and 1,000,000 
Monte Carlo trials per simulation on 40 separate occasions. 
As might be expected, a low number of trials per simulation 
give a wider spread of results. The horizontal line at y = 2.267 
is the standard deviation calculated using GUM modelling 
and the mean standard deviation for each set of simulations 
performed as outlined in Appendix 1.
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Further discussion as to the number of MCS trials can also be 
found in the Eurachem/ CITAC guide CG4, section E 3.5.11 

The GUM and Numerical Precision
The number of significant figures used to report a quantitative 
result conveys not only its value but also connotes the 
confidence which may be attached to that result. Section 7 
of the GUM provides recommendations on reporting numeric 
results and their associated uncertainties. In particular, 
section 7.2.6 of the GUM states ‘The numerical values of 
the estimate y and its standard uncertainty u(y) or expanded 
uncertainty U should not be given with an excessive number 
of digits. It usually suffices to quote u(y) and U … to at most 
two significant digits, although in some cases it may be 
necessary to retain additional digits to avoid round-off errors 
in subsequent calculations’.1 

Another aspect of numerical precision is the truncation or 
rounding of numbers which may occur within computerised 
calculations. This particularly applies when very small or very 
large numbers form part of the procedure. As Excel generally 
performs its calculations with a numeric precision of 15 
significant figures, this is unlikely to be an issue for medical 
laboratory applications. However, input quantities which have 
been statistically derived from a sufficiently large number 
of observations may well be entered with more significant 
figures than usually reported. For example, IQC derived 
imprecision may be entered with one more significant figure 
than usually reported as an estimate of standard uncertainty. 
Rounding to an appropriate number of significant figures for 
both measurand and combined standard uncertainty should 
occur at the output end of the procedure. 

Quantitative clinical biochemistry results with whole number 
percentage expanded uncertainty values (whole number 
CV%s), should usually not require more than two significant 
figures for an appropriate uncertainty estimate. That is, the 
measurand value should be reported with an appropriate 
number of significant figures consistent with its uncertainty 
estimate.41-43 

Numerical Accuracy of Excel Statistical Functions
There are many technical evaluations which have identified 
significant flaws in early versions of Microsoft Excel’s 
statistical procedures.44-47 These criticisms are particularly 
uncomplimentary to versions such as Excel 97, Excel 2000 
and Excel 2002 (Excel XP). According to McCullough and 
Wilson, some of the problems which made Excel ‘unfit for 
use as a statistical package’ were fixed in Excel 2003, ‘though 
many were not’.45 Of particular importance to the application 
of MCS is the availability of a reliable random number 
generator. McCullough et al. have evaluated the generation 
of random numbers produced by the RAND() function and 

other statistical procedures in Excel 2003 and Excel 2007. 
However, while claiming significant improvements over 
earlier versions, they continue to suggest that some procedures 
still require improvement.45,46 Microsoft certainly claim that 
the previous criticisms have been addressed for Excel 2010.48 

The Excel based procedures and functions described in the 
current examples have been used on many occasions with 
consistent results when compared to GUM modelling and 
similar MCS procedures using Fortran 95 and Mathematica 
5.1. However, whenever spreadsheet calculations are 
performed (or calculations of any type), the ‘common-
sense’ test should always be used to assist with output 
assessment. In situations such as those currently proposed, 
exceptionally heavy use of the random number generator 
(the RAND() function) is not required and Excel should be 
capable of providing appropriate results. If in doubt, or if 
heavy-use situations require a robust well defined random 
number generator, a third-party statistical package with 
random number generation may be more appropriate. There 
are many specialised statistical packages currently available 
which would fulfill this purpose even though at much greater 
expense (for example, Wolfram Mathematica, IBM SPSS, or 
Oracle Crystal Ball). 

Another factor which may contribute to the suitability of 
Excel for medical laboratory applications is that the relative or 
proportional uncertainty of measurement is usually a relatively 
high percentage of the value being measured. That is, for 
medical laboratory applications the proportional uncertainty 
(CV%) is often a whole number percentage compared to many 
applications in the physical or mathematical sciences which 
may have proportional uncertainties of less than 0.01%. As 
a consequence, very small numbers or numbers which only 
differ in the fifth or sixth decimal place are rarely (if ever) 
encountered. 

The number of trials required for the examples described in 
the appendices can easily be accomplished with Excel 2003, 
2007 or 2010. Excel 2003 provides a work sheet of 65,536 
rows by 256 columns, more than sufficient for 10,000 trials 
(10,000 rows of data). Excel 2007 and 2010 provide 1,048,576 
rows by 16,384 columns, thus allowing simulations of up 
to 1,000,000 trials per simulation. In practice however, this 
may be limited by available memory and system resources. 
The examples provided in the three appendices have all been 
successfully tested using: 
•	 Excel 2003 with 1000, 10,000 and 50,000 trials
•	 Excel 2010 with 1000, 10,000, 100,000 and 1,000,000 

trials 
•	 Fortran 95, Mathematica 5.1 and Origin V6, with a varying 

number of trials for comparative purposes from 10,000 to 
1,000,000.
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Uncertainty in Measurements With and Without 
Correlation
When considering the overall relationship between the 
various input variables and the output from the functional 
relationship, any correlation between two (or more) variables 
requires special consideration. Usually however, the input 
variables have no relationship with each other, except through 
the functional relationship which defines the measurand. 
Under these circumstances, the input variables are described 
as having zero covariance or correlation. A general overview 
regarding the effect of correlation on uncertainty calculations 
has been provided previously,29 with detailed procedures for 
GUM modelling provided in section F.1.2 of the GUM.1 The 
Clinical and Laboratory Standards Institute document C51-A, 
Expression of Measurement Uncertainty in Laboratory 
Medicine, Approved Guideline, also provides a good 
introductory overview of the manner in which correlated 
variables may influence measurand uncertainty.41 

When input variables are correlated however, both GUM 
modelling and MCS procedure require a slightly different 
approach. Even though the inclusion of correlated variables 
is described in section C.5 of Supplement 1 to the GUM, 
this description assumes a knowledge of matrix algebra, 
where correlated variables are described using a variance-
covariance matrix such as:

Instead of random sampling from one of the previously 
described PDFs, the MCS procedure for correlated variables 
requires sampling from a multivariate PDF. The most useful 
multivariate distribution for medical laboratory purposes is 
the bivariate normal distribution and the procedures described 
below apply specifically to this situation. 

When two input variables are correlated, the following 
sequence should replace the relevant items in the MCS 
procedures described previously and those in the appendices: 
•	 Determine the correlation coefficient (r) between the two 

measured input variables (x1 and x2).
29

•	 Determine the standard uncertainties (u1 and u2) of the two 
input variables (x1 and x2).

•	 At an appropriate place in the spreadsheet create two data 
columns. Fill both of these columns with independently 
derived random numbers (z1 and z2) each drawn from a 
standardised normal distribution (with mean of zero and 
standard deviation of one). Using Excel, this may be 
achieved with the function NORMINV(RAND(),0,1). 

•	 Add ‘=NORMINV(RAND(),0,1)’ to the first cell of both 
‘z’ columns and fill down the number of rows required for 

the simulation (say 10,000). 
•	 Let the correlated input variables to the functional 

relationship (x1 and x2) take actual measured values (m1 
and m2), with standard uncertainties u1 and u2. 

•	 The quantities m1 (a given measured value), m2 (a given 
measured value), u1, u2 and r are known. 

•	 Create two more data columns corresponding to x′1 and 
x′2. Fill down row by row using the formulae:

	
•	 Using the values generated for x′1 and x′2 (as replacements 

for x1 and x2), with any other required input variables, 
calculate the measurand using the relevant functional 
relationship. 

•	 The output from the functional relationship (the 
measurand) now takes into account the correlation 
between measurement data sets x1 and x2. 

Examples: Calculation of Uncertainty Components 
through Functional Relationships
As outlined previously, the three equations chosen to 
demonstrate the MCS procedure are based on functional 
relationships for the calculation of serum AG, eGFR and 
cFT. The relatively simple calculation of AG standard 
uncertainty outlined in Appendix 1 is used to demonstrate 
the MCS procedure and its comparison to GUM modelling. 
More complex equations which involve several mathematical 
functions, including power terms, are then used to further 
demonstrate the utility of the MCS approach. The use of MCS 
modelling with the inclusion of uncertainty estimates for 
empirically derived numerical ‘constants’ is also demonstrated 
by the examples in Appendix 2 and 3. The three examples 
provided in the appendices are:
•	 Appendix 1. The serum AG equation and comparison of 

MCS with GUM modelling procedures for the calculation 
of AG standard uncertainty (u(AG)). All variables are 
assumed to be uncorrelated. 

•	 Appendix 2. The MDRD eGFR equation, comparison of 
MCS with GUM modelling for the calculation of eGFR 
standard uncertainty (u(eGFR)) and the inclusion of 
hypothetical standard uncertainty estimates for empirically 
derived numerical ‘constants’. All variables are assumed 
to be uncorrelated. 

•	 Appendix 3. An empirical equation for the calculation of 
cFT from the measurements of serum total testosterone 
(T) and serum sex hormone binding globulin (SHBG, S). 
This example compares MCS with GUM modelling for 
the calculation of cFT standard uncertainty (u(cFT)) using 
the equation described by Sartorius et al.38 The proposed 
procedure includes hypothetical standard uncertainty 
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estimates for the empirically derived numerical ‘constants’. 
This equation is also of interest from a mathematical 
perspective as it contains a 1/log10 term. All variables are 
assumed to be uncorrelated. 

Both the eGFR and cFT equations contain empirically 
derived numerical ‘constants’ which are assumed (in the 
functional forms provided in the original articles) to be free of 
inherent uncertainty. However, both of these equations have 
been derived by statistical procedures using multiple paired 
measurements as the input variables and contain numerical 
‘constants’ which are essentially coefficients derived by the 
statistical analysis. Empirical equations derived by ‘best fit’ 
numerical analysis of patient data will always incorporate a 
degree of variability as shown by the scattering of data points 
in a ‘y’ versus ‘x’ data plot (scatter plot). Numerical ‘constants’ 
derived in this manner must also have associated standard 
uncertainties. As a consequence, the numerical ‘constants’ as 
shown in the eGFR and cFT functions are not true constants 
and contribute an unknown degree of uncertainty which is 
not included in the expressions as usually applied within the 
clinical laboratory. Unless these standard uncertainties are 
also provided, the full impact on the output of the functional 
relationship which is now applied to new input variables 
cannot be assessed.29 

In the absence of any published estimates for the uncertainties 
likely to be present in the empirically derived numerical 
‘constants’ in the eGFR and cFT equations, we have used 
plausible (although possibly underestimated) values for these 
uncertainties in Appendices 2 and 3. We would certainly 
recommend that researchers in the medical sciences explicitly 
state their estimates of the standard uncertainties of all such 
empirically derived terms. 

Summary
MCS as described in Supplement 1 to the GUM, is a powerful 
method for evaluating uncertainties through a process that 
can be regarded as experimental statistics. The theoretical 
statistics described in the GUM for the calculation of 
uncertainty in measurement, with its cardinal approach based 
on the propagation of uncertainties from inputs to measurand, 
necessitates the use of differential calculus and various 
theoretical statistical formulas. By contrast, MCS starts with 
the generation of random numbers which represent the PDFs 
of the inputs, inserts these random numbers into the particular 
formula that relates inputs to measurand to produce another 
set of random numbers that represent the actual PDF of the 
measurand. This review describes all of these steps using 
Excel spreadsheet software. The original GUM approach 
based on the propagation of uncertainties from inputs to 
measurand is thus subsumed by using MCS. However, MCS 

also provides a richer output through the propagation of PDFs 
from inputs to measurand. The statistical coverage interval for 
the measurand is easily obtained using MCS, even in cases 
where the measurand PDF is significantly non-normal. 

Any severe non-linearities in the functional relationship 
relating inputs to measurand are automatically taken into 
account by MCS, whereas the standard GUM procedure 
relies on a simple linear approximation for the propagation of 
uncertainties and may lead to errors under such circumstances. 
In addition, correlations between inputs can be accounted for 
in a relatively straightforward manner using MCS. However, 
care must be taken when using MCS that the number of 
trials is sufficiently large. The larger the number of trials, the 
more stable will be the resulting standard uncertainty in the 
measurand. This stability can be tested in a commonsense 
way by taking (say) 20 simulations with (say) 1000 trials, 
and then comparing the stability with that obtained from 20 
simulations with 10,000 trials, and then again (if necessary) 
with 100,000 trials for each simulation. 

This review considers three medical laboratory-related case 
studies for illustrating the use of MCS. Two of these case 
studies involve empirically derived numerical constants, 
whose uncertainties are not known but have been given 
plausible (possibly underestimated) values for the purposes 
of this article. It is recommended that researchers should, 
as standard practice, estimate and publish the uncertainty 
attached to each numerical constant in an empirically derived 
formula. 
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Appendix 1. Anion Gap Equation

Overview
The serum (or plasma) AG is calculated from the 
measurements of serum sodium, potassium, chloride and 
bicarbonate.33,34 Even though some of these measurement 
variables may show a degree of correlation, for most usual 
applications it is assumed that all variables in the AG equation 
are uncorrelated.29 

Thus, assuming uncorrelated measurement variables: 
AG = (Na+ + K+) – (Cl− + HCO3

−)

Representative Measurement Values
Representative values for the component serum constituents 
and their standard uncertainties are given in Table 2. These 
values have been used to compare the GUM modelling and 
MCS approaches. Standard uncertainty estimates are given as 
one standard deviation derived from IQC, the mean value of 
which being similar to that of the corresponding measurand. 
All IQC data show a normal distribution. 

GUM Modelling Calculation
The uncertainty of a result is given by an appropriate 
combination of the individual uncertainties that are produced 
at each stage of the measuring process. For results derived from 
a functional relationship which contains only terms related 
by sums and/or differences, the variance of the measurand is 
obtained by adding the variances of the contributing inputs. 
Assuming no correlation between the individual terms in the 
AG function, the GUM uncertainty equation is: 
u2(AG) = u2(Na+) + u2(K+) + u2(Cl− ) + u2(HCO3

− )

Thus:	 u2(AG)	 = (1.2)2 + (0.10)2 + (1.5)2 + (1.2)2

		  = 1.44 + 0.01 + 2.25 + 1.44
		  = 5.14
And:	 u(AG)	 = 2.267 mmol/L (AG standard uncertainty)

Expanded uncertainty = 2 × u(AG) 
		  = 4.53 mmol/L for a 95.4% coverage interval.

Thus: Calculated anion gap 
		  = 14.5 ± 4.5 mmol/L (95.4% coverage interval)

Monte Carlo Simulation
In contrast to the GUM modelling approach, Table 3 shows 
part of an Excel spreadsheet using MCS to derive an AG and 
its associated standard uncertainty. The equation used for the 
calculation of AG is shown above, with representative values 
for the relevant variables given in Table 2.

The mean and standard deviation for the 10,000 AG trials 
in column H provide an estimate of the true value and its 
coverage interval. A visual assessment of the output PDF may 
be obtained by determining the frequency (Excel function) of 
the simulated results in column H using a bin size of 0.5 (for 
example) and the Excel chart function to plot a histogram or 
smooth curve. 

For the 10,000 simulated AG values in column H, Table 3:
•	 Mean AG (mean of the trial AG results in column H) = 

14.5 mmol/L.
•	 Combined standard uncertainty for the simulated AG = 

2.268 mmol/L (average standard deviation for results in 
column H obtained from 40 simulations of 10,000 trials 
each, with 95.4% coverage interval (±2s) of 0.029). 

•	 Expanded uncertainty for the simulated AG = 2 × u(AG) 
= 4.54 mmol/L (two standard deviations of the AG results 
in column H) for a coverage interval of 95.4%. This value 
can be compared to the 4.53 mmol/L obtained by the GUM 
modelling approach as outlined above. 

•	 Skewness coefficient (calculated using the Excel SKEW 
function for the AG results in column H) is approximately 
0.007 (ideally this should be zero with 95.4% coverage 
interval of ±0.05 for a normal distribution with 10,000 
observations). 

•	 Excel kurtosis coefficient (calculated using the Excel 
KURT function for the AG results in column H) is 
approximately 0.050 (ideally this should be zero with 
95.4% coverage interval of ±0.10 for a normal distribution 
with 10,000 observations). 

•	 Each time the spreadsheet is opened or reset, all variables 
are recalculated (the values entered into cells B3, B4, C3, 
C4, D3, D4, E3 and E4 are the ‘constants’ which determine 
the properties of the respective PDFs). Consequently, the 
actual values for the mean, standard deviation, skewness 
and kurtosis change slightly for each set of trials or 
simulation. With 10,000 trials per simulation, the values 
obtained for the mean and standard deviation always 
appear to provide the same results with a precision to at 

Table 2. Representative values used for comparison of anion 
gap uncertainty.

Serum
substance Quantity Standard

uncertainty (u) Unit

Sodium (Na+) 140 1.2 mmol/L

Potassium (K+) 4.5 0.10 mmol/L

Chloride (Cl−) 105 1.5 mmol/L

Bicarbonate
(HCO3

−) 25 1.2 mmol/L
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least one decimal place, which is more than adequate for 
the AG calculation.

•	 Even though the above calculations were based on 10,000 
trials per simulation, consistent mean and standard 
uncertainty values for the AG calculation can also be 
obtained with as few as 1000 trials as shown in Figure 1.

Comparison of GUM Modelling and MCS for AG 
For the AG and similar equations, calculation of the combined 
standard uncertainty is relatively straightforward using the 
GUM modelling approach provided the constituent variables 
are uncorrelated (or show minimal correlation and can be 
assumed uncorrelated for practical purposes). Also, the output 
PDF for the GUM modelling approach is assumed to follow 
a normal distribution. In contrast, the MCS approach makes 
no assumptions with regard to the statistical distribution of 
the output and the coverage interval may be obtained directly 
from the simulated data as described previously. The MCS 
calculation for AG and AG standard uncertainty provides 
equivalent results and can easily be implemented using a 
spreadsheet such as Excel. 

Table 4 summarises the results for the AG calculations 
obtained by the GUM modelling and MCS procedures. 

Appendix 2. Estimated Glomerular Filtration Rate 
Equation

Overview
The glomerular filtration rate (GFR) is generally considered 
the best overall index of kidney function. However, an 
accurate GFR cannot be easily measured in routine medical 
practice and has usually been estimated by measurement of 
creatinine clearance. This measure has itself been the subject 
of much controversy, and GFR estimates are now routinely 
provided using one of several prediction equations which rely 
on serum (plasma) creatinine, age, race, gender, and body 
size.35-37,49,50 One such equation which has gained widespread 
clinical acceptance is the MDRD equation.35,37 More recently 

however, limitations with the MDRD equation have been 
identified and a new set of equations proposed by the Chronic 
Kidney Disease Epidemiology Collaboration (the CKD-EPI 
equations). The CKD-EPI equations relate serum (plasma) 
creatinine and age, with separate equations for males (with 
serum creatinine ≤80 or >80 μmol/L), females (with serum 
creatinine ≤62 or >62 μmol/L), and both with an adjustment 
for race.49,50 

Although most Australian laboratories will already have 
changed from the MDRD equation to the CKD-EPI equations, 
we have chosen the MDRD equation to demonstrate the MCS 
procedure due to its high profile use over recent years. In 
addition, the MDRD equation and CKD-EPI equations are of 
a similar mathematical style; both contain empirical constants 
with the MCS procedures being easily interchangeable. 

Uncertainty of serum creatinine measurement based on IQC 
should be readily available in all laboratories. However, the 
uncertainty associated with the calculated GFR requires a 
relatively complex procedure when using the GUM modelling 
approach.29 It is more easily accomplished using MCS. The 
revised MDRD formula for eGFR in male subjects was chosen 
to demonstrate and compare these two approaches. The formula 
includes a serum creatinine measurement which has been 
standardised against isotope dilution mass spectrometry.36,37

A number of similar formulae for the calculation of eGFR have 
been proposed and recently reviewed, all of which include 
adjustments for gender and various racial groups.36 As these 
adjustments all add multiplier terms to the basic equation, the 
approach used to evaluate uncertainty in the output variable 
(eGFR) is similar for all forms of this equation. 

In addition to the serum creatinine term with its analytical 
uncertainty of measurement, the various eGFR equations also 
contain patient age as a variable and numerical ‘constants’ as 
both multipliers and power terms. Presented in this manner, it 
may be assumed that these numerical ‘constants’ are free of 

Table 4. Comparison of procedures for calculating anion gap (AG) uncertainty.

Calculation procedure Measurand value (AG) 
mmol/L

Standard uncertainty
u(AG)

Expanded uncertainty
(95.4% coverage)

GUM modelling 14.5 2.267 4.53

MCS method * 14.5 2.268 4.54

*As each MCS generates a new set of values, slight variations in the least significant decimal places are expected from one 
simulation to the next. The values for the MCS method shown (mean standard uncertainty of 2.268 with a 95.4% coverage 
interval (± 2s) of 0.029), were obtained from 40 simulations of 10,000 trials each.
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uncertainty even though the original reports clearly indicate this 
assumption cannot be correct. Like many empirical equations 
which have useful applications in medicine, the eGFR 
equations have been derived by stepwise multiple regression 
procedures to determine a set of variables that jointly predict 
eGFR.35,37 With the exception of the factor 0.0113 in the serum 
creatinine term, the regression coefficients have been derived 
from data with a wide inherent variability. Thus, in order to 
provide a more complete uncertainty estimate of the output 
variable (eGFR) the actual uncertainty associated with each 
of these numeric terms is also required. As the factor 0.0113 
in the serum creatinine term provides a conversion of units 
from μmol/L to mg/dL, its value is known with sufficient 
precision to be treated as a true numeric constant.

Patient age may also present a potential uncertainty depending 
on how this variable has been programmed within the equation. 
If age is given as an integer number of years, the uncertainty of 
this term would be ±0.5 years. If actual years, months and days 
are programmed to provide an accurate age, then this variable 
could justifiably be considered to have zero uncertainty. 

Representative Measurement Values
Representative values for the variables in the eGFR equation 
are given in Table 5. These values have been used in comparing 
the GUM modelling and MCS approaches. In this example a 
serum creatinine (SCr) of 150 μmol/L has been chosen, as this 
value may be expected in a patient with possible borderline 
renal disease. The standard uncertainty of the serum creatinine 
value is given as one standard deviation derived from IQC, 
the mean value of which is close to 150 μmol/L. All IQC data 
show a normal distribution. The numerical ‘constants’ in the 
eGFR equation are assumed to follow normal distributions. 
Although it could be argued that these ‘constants’ should 
be treated as having rectangular distributions in a similar 
manner to certified values on a calibration certificate, they are 
essentially regression coefficients which have been derived 
from data which probably have a normal distribution.

As the actual uncertainty values of the numerical ‘constants’ 
in the various eGFR equations are not available, we have 
included standard uncertainty estimates of 1% in order to 
demonstrate the mathematical procedures involved. The 
allocation of hypothetical uncertainty values to terms without 
specified uncertainty and the use of MCS modelling can also 
provide very useful information regarding the combined 
effect of uncertainty components on the output value of the 
functional relationship or measurand (described in more 
detail below).

GUM Modelling Calculation 
The uncertainty of a result is given by an appropriate 
combination of the individual uncertainties that are produced 
at each stage of the measuring process. For results derived 
from a functional relationship which contains terms 
(coefficients) which are themselves derived by regression 
analysis of empirical data, the standard uncertainties (standard 
error of the regression) of these terms should also be included 
for evaluation. 

The MDRD formula for eGFR in white male subjects is:35-37 
eGFR = 175 (SCr × 0.0113)−1.154 (age)−0.203

For the quantity values given in Table 5: 
eGFR = 41.5 mL/min/1.73m2

The differential equation required for calculating the 
combined standard uncertainty of the eGFR using the GUM 
modelling approach is derived from the general equation 
for the propagation of uncertainty. Assuming no correlation 
between the individual terms in the eGFR function, the GUM 
uncertainty equation is:29 
(u(eGFR)/eGFR)2 =
(−1.154 (u(SCr)/SCr))2 + (−0.203 (u(age)/age))2

+ (u(175)/175)2 + (−1.154 (u(0.0113)/0.0113))2

+ (ln(0.0113 SCr))2 (u(−1.154))2 + (ln(age))2 (u(−0.203))2

Table 5. Representative values used for comparison of eGFR uncertainty.

Term in eGFR equation Quantity Standard uncertainty (u) Unit

Serum Creatinine (SCr) 150 5.0 μmol/L

Patient age 60.0 0.0 (zero) years

175 175 1% (= 1.75)

1.154 1.154 1% (= 0.01154)

0.203 0.203 1% (= 0.00203)
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where:
u(eGFR)/eGFR	 = relative standard uncertainty in the 

eGFR
u(SCr)/SCr	 = relative standard uncertainty in serum 

creatinine
u(age)/age	 = relative standard uncertainty in age
u(175)/175	 = relative standard uncertainty in 

numerical ‘constant’ 175
u(0.0113)/0.0113	 = relative standard uncertainty in the 

creatinine units conversion factor
u(−1.154)	 = standard uncertainty in numerical 

‘constant’ −1.154
u2(−1.154)	 = squared standard uncertainty in 

numerical ‘constant’ −1.154
u(−0.203)	 = standard uncertainty in numerical 

‘constant’ −0.203
u2(−0.203)	 = squared standard uncertainty in 

numerical ‘constant’ −0.203 
ln	 =  logarithm to base e

Evaluating for u(eGFR) using the quantity values given in 
Table 5, with the creatinine units conversion factor and age 
having no uncertainty (that is, u(0.0113) = u(age) = 0): 
u(eGFR) = 1.70 (eGFR standard uncertainty), 
expanded uncertainty = 2 × u(eGFR) = 3.40 for a coverage 
interval of 95.4%.

Thus, using the GUM modelling approach for the quantity 
values provided in Table 5:
eGFR = 41.5 ± 3.4 mL/min/1.73m2. 

Monte Carlo Simulation
In contrast to the GUM modelling approach, Table 6 shows 
part of an Excel spreadsheet using Monte Carlo simulation 
to derive an eGFR and its associated standard uncertainty 
using the MDRD equation for white male subjects. As above, 
representative values for the variables are given in Table 
5, with no correlation between the individual terms in the 
eGFR function and zero uncertainty for the creatinine units 
conversion term and for age. 

The mean and standard deviation for the 10,000 simulations 
of eGFR in column I provide an estimate of the true value 
and its coverage interval. A visual assessment of the output 
PDF may be obtained by determining the frequency (Excel 
function) of the simulated results in column I using a bin size 
of 0.5 (for example), and the Excel chart function to plot a 
histogram or smooth curve.

For the 10,000 simulated eGFR results described in column 
I, Table 6: 
•	 Mean eGFR (mean of the trial eGFR results in column I) 

= 41.5 mL/min/1.73 m2 (compared to 41.5 mL/min/1.73 
m2 calculated directly from the stated values in row 3 
columns B to F (as shown in cell I3)).

•	 The combined standard uncertainty of the simulated eGFR 
(standard deviation of the trial eGFR results in column I) 
= 1.7 mL/min/1.73 m2 (one standard deviation).

•	 Expanded uncertainty of the simulated eGFR = 3.4 mL/
min/1.73 m2 (two standard deviations of the eGFR results 
in column I for a coverage interval of 95.4%). This value 
can be compared with the 3.4 mL/min/1.73 m2 obtained by 
the GUM modelling approach as outlined above. 

•	 Skewness coefficient (calculated using the Excel 
SKEW function for the eGFR results in column I) is 
approximately 0.386 (ideally this should be zero with 
95.4% coverage interval of ±0.05 for a normal distribution 
with 10,000 observations). In our experience, a consistent 
slight positive skew appears to be present in the simulated 
eGFR results, which can sometimes also be apparent in 
the frequency curve obtained from the output data. 

•	 Excel kurtosis coefficient (calculated using the Excel 
KURT function for the eGFR results in column I) is 
approximately 0.158 (ideally this should be zero with 
95.4% coverage interval of ±0.10 for a normal distribution 
with 10,000 observations).

•	 As each time the spreadsheet is opened or reset, all 
variables are recalculated (the values entered into cells B3, 
B4, C3, C4, D3, D4, E3, E4, F3 and F4 are the ‘constants’ 
which determine the properties of the respective PDFs). 
Consequently, the actual values for the mean, standard 
deviation, skewness and kurtosis change slightly for each 
set of simulations. With 10,000 simulations, the values 
obtained for the mean and standard deviation always 
appear to provide the same results with a precision to at 
least one decimal place (more than adequate for an eGFR 
with an expanded uncertainty of approximately 8% for a 
95.4% coverage interval). 

•	 Even though the above calculations were based on 10,000 
simulations, consistent mean and standard uncertainty 
values for the eGFR calculation can also be obtained with 
as few as 1000 simulations. 

•	 Figure 2 shows the type of frequency distribution which 
may be obtained by plotting the simulated eGFR results 
in column I. This graph was obtained by calculating 
the frequency of the results in column I using the Excel 
FREQUENCY function with a bin size of 0.5 mL/
min/1.73 m2. As noted above, a slight positive skew is 
usually present in this simulation suggesting that the 
output distribution is not truly normal. However, for 
the purpose of assisting with the interpretation of eGFR 
results, this slight departure from normality does not 
substantially alter the uncertainty result obtained. As the 
relative uncertainty (CV%) in the eGFR calculation is 
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generally quite large, any slight skewness shown in the 
MCS output does not significantly change the overall 
interpretation. This also highlights a theoretical difference 
between GUM modelling and MCS when an expanded 
uncertainty and a coverage interval are to be calculated. 
As the MCS procedure delivers an output PDF which may 
reveal an unsymmetrical or skewed distribution, care must 
be taken when calculating an expanded uncertainty and 
coverage interval from MCS output data. In contrast, the 
GUM procedure assumes a normal distribution of output 
data and therefore a symmetrical output distribution. 
When MCS reveals significant skewness, the true 
coverage interval may be obtained by sorting the output 
data into numerical order (the results in column I for the 
eGFR example) and then removing the upper and lower 
2.5% of the distribution (by row number), thus leaving a 
true upper and lower boundary (which contains 95% of 
the distribution).

Empirically Derived Constants and Their Contribution to 
Uncertainty
For functional relationships such as the eGFR equation (and 
free testosterone equations in Appendix 3), where empirically 
determined numerical ‘constants’ form part of the function 
but their actual uncertainty values are unavailable, either 
GUM modelling or MCS procedures can be used to determine 
the effect which uncertainty associated with the various 
input variables may have on the functions’ output. The use 
of modelling procedures and the allocation of hypothetical 
uncertainty values to terms without specified uncertainty can 
be used to demonstrate the relative contribution which each 
of these inputs makes to the combined standard uncertainty 
of the output.

A

B

C

Figure 3. Three dimensional graphs demonstrating the 
contribution which uncertainty in the empirically derived 
‘constants’ may have on the combined standard uncertainty 
of eGFR calculated using the MDRD equation. Using a fixed 
serum creatinine of 150 μmol/L with a standard uncertainty 
of 5.0 μmol/L, proportional uncertainty estimates (CV%) 
for eGFR are shown using hypothetical standard uncertainty 
values for the ‘constant’ 175 at 0%, 5% and 10% of its stated 
value, in association with the ‘constants’ –1.154 and –0.203 
at standard uncertainties ranging from 0% to 10% of their 
stated values. Figure 3(a) shows a graph with the ‘constant’ 
175 assumed to have zero uncertainty, with the other two 
‘constants’ taking proportional uncertainty values as indicated. 
In a similar manner, Figure 3(b) and Figure 3(c) show how the 
eGFR proportional combined standard uncertainty changes 
when the ‘constant’ 175 is given standard uncertainty values 
of 5% and 10%.

Figure 2. Representative frequency distribution curve for 
10,000 simulated eGFR results.
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For example, using the MDRD eGFR equation for white male 
subjects and uncertainty estimates for the three numerical 
‘constants’, the contribution which these estimates provide to 
the overall combined eGFR uncertainty may be assessed. As 
indicated previously, the factor 0.0113 in the serum creatinine 
term is known with sufficient precision to be treated as a true 
numeric constant as it provides a conversion of units from 
μmol/L to mg/dL. In a similar manner, age can probably be 
treated as a variable with very low (zero) uncertainty. On the 
other hand, the standard uncertainty of the measured serum 
creatinine (u(SCr)) can be obtained from IQC with a similar 
mean value.

Using a fixed serum creatinine of 150 μmol/L with a standard 
uncertainty of 5.0 μmol/L, proportional uncertainty estimates 
(CV%) for eGFR have been derived using hypothetical 
standard uncertainty values for the ‘constant’ 175 at 0%, 5% 
and 10% of its stated value, in association with the ‘constants’ 
–1.154 and –0.203 at standard uncertainties ranging from 0% 
to 10% of their stated values. The results obtained using MCS 
are provided as 3D graphs which demonstrate how each of 
these components contributes to eGFR uncertainty. Figure 3(a) 
shows a graph with the ‘constant’ 175 assumed to have zero 
uncertainty, with the other two ‘constants’ taking proportional 
uncertainty values as indicated. In a similar manner, Figures 
3(b) and 3(c) show how the eGFR proportional combined 
standard uncertainty changes when the ‘constant’ 175 is given 
standard uncertainty values of 5% and 10%. 

Comparison of GUM Modelling and MCS for eGFR
As the GUM modelling approach does not explicitly determine 
a PDF for the output quantity, it is often assumed to follow a 
normal distribution. As discussed previously however, MCS 
will always provide a PDF for the output quantity which is 
consistent with the PDFs of the various inputs. Using the MCS 
procedure described in this example, a slight positive skew 
is usually apparent in the MCS output for the MDRD eGFR 
equation which is not sufficient to invalidate using normal 
distribution statistics. In this situation, the MCS output can be 
regarded as following a normal distribution.

Table 7 summarises the results for the eGFR calculations 
obtained by the GUM modelling and MCS procedures and 
demonstrates that equivalent results are obtained by either 
procedure. 

Appendix 3. Free Testosterone Calculation 

Overview
Testosterone in blood is present as both protein bound and non-
protein bound (free) moieties. In men, approximately 50% is 
loosely bound to albumin, approximately 44% is strongly 
bound to sex hormone binding globulin (SHBG or S), 4% 
is bound to other proteins and approximately 2% is free and 
non-protein bound (FT). Free testosterone may be calculated 
or measured. However, because the direct measurement 
of free testosterone is difficult and impractical for routine 
laboratory practice, several equations have been developed 
to provide estimates of free testosterone concentration. The 
most widely used of these equations are those described by 
Sodergard et al., Vermeulen et al., Nanjee and Wheeler, Ly 
and Handelsman, and Sartorius et al.51-54,38 

There are essentially two approaches to developing equations 
for the calculation of free testosterone (cFT). One approach 
is based on the chemical equilibrium which exists between 
free testosterone, SHBG (and/or other binding proteins) 
and bound testosterone. The alternate approach uses patient 
specimens for the measurement of free testosterone, total 
testosterone (T) and binding protein(s), which are then used to 
derive an empirical equation which can be used to relate these 
three variables. The equations developed by Sodergard and 
Vermeulen use equilibrium binding as the model,51,52 while 
Nanjee and Wheeler, Ly and Handelsman, and Sartorius et al. 
use the empirical approach.53,54,38 Even though comparisons of 
these four equations and their application in routine laboratory 
practice have been well described,38,55 there appears to be 
no information available as to the uncertainty of calculated 
free testosterone. In a similar manner to the eGFR example 
described in Appendix 2, all equations contain numerical 
‘constants’ which have been derived as coefficients from data 

Table 7. Comparison of procedures for calculating eGFR uncertainty.

Calculation procedure Measurand value (eGFR) 
mL/min/1.73 m2

Standard uncertainty
u(eGFR)

Expanded uncertainty
(95.4% coverage)

GUM modelling 41.5 1.70 3.40

MCS method * 41.5 1.70 3.40

*As each MCS generates a new set of values, slight variations in the least significant decimal places are expected from one 
simulation to the next. The values for the MCS method shown (mean standard uncertainty of 1.70 with a standard deviation (s) 
of 0.012), were obtained from 20 simulations of 10,000 trials each.
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with an inherent variability (uncertainty). This uncertainty in 
the original data used to derive the various equations will also 
propagate through the equation and contribute to uncertainty 
in the output (measurand). 

Sartorius et al. have derived an empirical equation by best-fit 
modelling which they claim provides superior cFT estimates 
derived from the measurement of T and SHBG (S). This 
equation is also of interest from a mathematical perspective 
as it contains a 1/log10 term. This provides an extra challenge 
when calculating the combined standard uncertainty using 
the GUM modelling approach. The appropriate differential 
equation for the combination of terms in the Sartorius 
equation was not provided in a previous review of the rules 
for calculating uncertainty components through functional 
relationships,29 but is provided below for comparison with the 
MCS procedure. 

Representative Measurement Values
The mean values provided in the paper by Sartorius et al. have 
been used as representative values for serum T and SHBG.38 
In a similar manner to the previous examples, the standard 
uncertainty in the measurement of T and SHBG are given 
as one standard deviation derived from IQC (with both sets 
of QC data showing a normal distribution). The uncertainty 
values used for T and SHBG (S) are consistent with what may 
be obtained from an automated immunoassay analyser. In the 
MCS given in this appendix, all four quantities appearing in 
the Sartorius equation (T, S and the two ‘constants’) have 
been sampled from normal distributions. In the case of T and 
S, the relevant distributions relate to the individual serum 
measurements for a given patient and the uncertainty which 
surrounds these individual measurements (obtained from 
IQC data which is normally distributed). Even though the 
underlying population of serum testosterone measurements 
may not actually follow a normal distribution, the sample 
drawn from this population and used as input for the derivation 
of the Sartorius equation would presumably include this 
non-normality in a manner which influenced the form of the 
functional relationship so obtained.

The numerical ‘constants’ in the cFT equation have also 
been assumed to follow normal distributions even though it 
could well be argued that they should be treated as having 
rectangular distributions in a similar manner to certified values 
on a calibration certificate. However, these ‘constants’ are 
essentially regression coefficients derived from the evaluation 
of empirical data where the residuals from such a process are 
likely to be approximately normally distributed. 

As the actual uncertainty values of the numerical ‘constants’ 
in the various cFT equations are not available, we have again 
included standard uncertainty estimates of 1% to demonstrate 
the mathematical procedures involved. The allocation of 
hypothetical uncertainty values to terms without specified 
uncertainty and the use of MCS modelling can also provide 
very useful information regarding the combined effect of 
uncertainty components on the output value of the functional 
relationship or measurand (as described previously in 
Appendix 2). 

The representative values used in the example calculations for 
cFT are given in Table 8.

GUM Modelling Calculation 
The uncertainty of a result is given by an appropriate 
combination of the individual uncertainties that are produced 
at each stage of the measuring process. For results derived 
from a functional relationship which contains terms 
(coefficients) which themselves are derived by regression 
analysis of empirical data, the standard uncertainties (standard 
error of the regression) of these terms should also be included 
for evaluation. 

The equation for calculating free testosterone proposed by 
Sartorius et al. is:

Table 8. Representative values used for comparison of calculated free testosterone (cFT) uncertainty.

Term in Sartorius cFT equation Quantity Standard uncertainty (u) Unit

Serum testosterone (T) 12.2 5% (= 0.61) nmol/L

Serum SHBG (S) 36.6 5% (= 1.83) nmol/L

24.00314 24.00314 1% (= 0.2400314)

0.04599 0.04599 1% (= 0.0004599)
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This may be expressed in a more general mathematical form 
as:

where: K1 = 24.00314, S = SHBG and K2 = 0.04599.

The differential equation required for calculating the 
combined standard uncertainty of cFT using the GUM 
modelling approach is derived from the general equation 
for the propagation of uncertainty. Assuming no correlation 
between the individual terms in the Sartorius cFT function, 
the GUM uncertainty equation is:

Using the representative quantity values provided in Table 
8 and evaluating for cFT and u(cFT) gives a cFT of 180.5 
pmol/L with a GUM modelling standard uncertainty value 
of 9.25 pmol/L (one standard deviation), or an expanded 
uncertainty of 18.50 pmol/L for a coverage interval of 95.4% 
(two standard deviations).

Monte Carlo Simulation
In contrast to the GUM modelling approach, Table 9 shows 
part of an Excel spreadsheet using Monte Carlo simulation 
to derive a cFT and its associated expanded uncertainty. The 
function used in the simulation is the Sartorius equation with 
the representative values for the respective variables given in 
Table 8.

The mean and standard deviation for the 10,000 simulations 
of cFT in column H provide an estimate of the true value 
and its coverage interval. A visual assessment of the output 
PDF may be obtained by determining the frequency (Excel 
function) of the simulated results in column H using a bin 

size of 5 (for example) and the Excel chart function to plot a 
histogram or smooth curve.

For the 10,000 simulated cFT results described in column H, 
Table 9: 
•	 Mean cFT (mean of the trial cFT results in column H) 

= 180.6 pmol/L (compared to 180.5 pmol/L calculated 
directly from the stated values in row 3 columns B to E (as 
shown in cell H3)).

•	 Combined standard uncertainty for the simulated cFT 
(standard deviation of the trial cFT results in column H) = 
9.23 pmol/L (one standard deviation).

•	 Expanded uncertainty for the simulated cFT = 18.46 
pmol/L (two standard deviations of the cFT results in 
column H) for a coverage interval of 95.4%. This value 
can be compared with the 18.50 pmol/L obtained by the 
GUM modelling approach outlined above. 

•	 Skewness coefficient (calculated using the Excel SKEW 
function for the cFT results in column H) is approximately 
0.025 (ideally this should be zero with 95.4% coverage 
interval of ±0.05 for a normal distribution with 10,000 
observations). 

•	 Excel kurtosis coefficient (calculated using the Excel 
KURT function for the cFT results in column I) is 
approximately 0.031 (ideally this should be zero with a 
95.4% coverage interval of ±0.10 for a normal distribution 
with 10,000 observations). 

•	 As each time the spreadsheet is opened or reset, all 
variables are recalculated (the values entered into cells 
B3, B4, C3, C4, D3, D4, E3 and E4 are the ‘constants’ 
which determine the properties of the respective PDFs). 
Consequently, the actual values for the mean, standard 
deviation, skewness and kurtosis change slightly for each 
set of simulations. With 10,000 simulations, the values 
obtained for the mean and standard deviation always 
appear to provide the same results with a precision to at 
least one decimal place (more than adequate for a cFT 
with an expanded uncertainty of approximately 10% for a 
95.4% coverage interval).

Table 10. Comparison of procedures for calculating cFT uncertainty.

Calculation procedure Measurand value (cFT) 
pmol/L

Standard uncertainty
u(cFT)

Expanded uncertainty
(95.4% coverage)

GUM modelling 180.5 9.25 18.50

MCS method * 180.6 9.23 18.46

*As each MCS generates a new set of values, slight variations in the least significant decimal places are expected from one 
simulation to the next. The values for the MCS method shown (mean standard uncertainty of 9.23 with a standard deviation (s) 
of 0.059) were obtained from 20 simulations of 10,000 trials each.



Farrance I & Frenkel R

60   Clin Biochem Rev 35 (1) 2014

Ta
bl

e 
9.

 c
FT

 M
on

te
 C

ar
lo

 si
m

ul
at

io
n 

(E
xc

el
 sp

re
ad

sh
ee

t r
ep

re
se

nt
at

io
n)

.

A
B

C
D

E
F

G
H

1
In

pu
t q

ua
nt

iti
es

Fo
rm

ul
a

 
O

ut
pu

t

2
T

nm
ol

/L
SH

B
G

 (S
)

nm
ol

/L
24

.0
03

14
0.

04
59

9
cF

T
pm

ol
/L

3
Va

lu
e

12
.2

36
.6

24
.0

03
14

0.
04

59
9

cF
T 

= 
24

.0
03

14
 *

 T
/lo

g(
S)

 −
 0

.0
45

99
 *

T^
2

→
18

0.
5

4
U

nc
er

ta
in

ty
0.

61
1.

83
0.

24
00

31
4

0.
00

04
59

9

5 6
↓

↓
↓

↓
Tr

ia
l r

es
ul

ts

7
Tr

ia
l #

cF
T

8
1

12
.2

59
37

.6
45

24
.1

59
83

6
0.

04
58

92
cF

T 
= 

24
.0

03
14

 *
 T

/lo
g(

S)
 −

 0
.0

45
99

 *
T^

2
→

18
1.

07

9
2

13
.0

01
35

.0
48

23
.7

65
51

9
0.

04
60

60
→

19
2.

24

10
3

12
.2

09
34

.0
61

23
.9

82
05

7
0.

04
59

90
→

18
4.

24

11
4

11
.4

21
35

.4
72

23
.9

35
67

7
0.

04
54

69
→

17
0.

45

12
5

11
.9

38
37

.2
21

23
.9

81
26

0
0.

04
59

30
→

17
5.

72

13
6

12
.2

61
37

.8
97

23
.9

79
92

9
0.

04
62

28
→

17
9.

30

14
7

12
.0

68
34

.9
34

23
.9

05
89

5
0.

04
64

10
→

18
0.

18

15
8

12
.5

77
38

.4
82

23
.8

73
80

8
0.

04
61

13
→

18
2.

12

16
9

12
.8

78
36

.3
82

24
.2

27
33

1
0.

04
57

21
→

19
2.

31

17
10

12
.2

49
36

.6
56

23
.5

14
16

2
0.

04
58

99
→

17
7.

26

↓
↓

↓
↓

↓
↓

↓

10
00

7
10

00
0

11
.8

96
34

.6
08

24
.1

65
26

7
0.

04
65

22
cF

T 
= 

24
.0

03
14

 *
 T

/lo
g(

S)
 −

 0
.0

45
99

 *
T^

2
→

18
0.

18

Sp
re

ad
sh

ee
t r

ep
re

se
nt

at
io

n 
sh

ow
in

g 
10

,0
00

 si
m

ul
at

io
ns

 o
f c

al
cu

la
te

d 
fr

ee
 te

st
os

te
ro

ne
 (c

FT
) i

n 
co

lu
m

n 
H

, f
or

 q
ua

nt
ity

 v
al

ue
s a

nd
 u

nc
er

ta
in

ty
 e

st
im

at
es

 a
s d

es
cr

ib
ed

 in
 

Ta
bl

e 
8.

 T
he

 c
FT

 si
m

ul
at

io
ns

 in
 c

ol
um

n 
H

 a
re

 d
er

iv
ed

 fr
om

 th
e 

in
pu

t v
ar

ia
bl

es
 in

 c
ol

um
ns

 B
, C

, D
 a

nd
 E

, r
ow

s 8
 to

 1
00

07
: 

•	
C

ol
um

n 
B

 ro
w

s 8
 to

 1
00

07
; (

N
O

R
M

IN
V

(R
A

N
D

()
,$

B
$3

,$
B

$4
))

,
•	

C
ol

um
n 

C
 ro

w
s 8

 to
 1

00
07

; (
N

O
R

M
IN

V
(R

A
N

D
()

,$
C

$3
,$

C
$4

))
,

•	
C

ol
um

n 
D

 ro
w

s 8
 to

 1
00

07
; (

N
O

R
M

IN
V

(R
A

N
D

()
,$

D
$3

,$
D

$4
))

,
•	

C
ol

um
n 

E 
ro

w
s 8

 to
 1

00
07

; (
N

O
R

M
IN

V
(R

A
N

D
()

,$
E$

3,
$E

$4
))

.
Th

e 
ar

ro
w

s (
↓ 

an
d 

→
) p

la
y 

no
 p

ar
t i

n 
th

e 
ca

lc
ul

at
io

ns
; t

he
y 

ha
ve

 b
ee

n 
ad

de
d 

to
 th

e 
ta

bl
e 

fo
r i

llu
st

ra
tiv

e 
pu

rp
os

es
 o

nl
y.



Calculation of Uncertainty in Measurement by MCS
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Even though the above calculations were based on 10,000 
simulations, consistent mean and standard uncertainty values 
for the cFT calculation can also be obtained with as few as 
1000 simulations.

Comparison of GUM Modelling and MCS for cFT Using 
the Sartorius Equation
Even though the GUM modelling approach does not explicitly 
determine a PDF for the output quantity, it is often assumed 
to follow a normal distribution. As discussed previously 
however, MCS will always provide a PDF for the output 
quantity which is consistent with the PDFs of the various 
inputs. However, GUM modelling, assuming a normal output 
distribution, and the MCS procedure described both provide 
equivalent results for the calculation of combined standard 
uncertainty for cFT using the Sartorius equation. Table 10 
summarises the results for both cFT uncertainty calculations.


