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METABOLOMICS IN THE IDENTIFICATION OF BIOMARKERS OF DIETARY INTAKE
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Abstract: Traditional methods for assessing dietary exposure can be unreliable, with under reporting one of the main problems. In
an attempt to overcome such problems there is increasing interest in identifying biomarkers of dietary intake to provide a more

accurate measurement. Metabolomics is an analytical technique that aims to identify and quantify small metabolites. Recentiy, there

has been an increased interest in the application of metabolomics coupled with statistical analysis for the identification of dietary

biomarkers, with a number of putative biomarkers identified. This minireview focuses on metabolomics based approaches and

highlights some of the key successes.

MINI REVIEW ARTICLE

Introduction

In today’s modern world nutrition research is focused on
improving population and individual health through diet [I].
Nutrition and health related research are beginning to understand that
in addition to their essential functions, nutrients and non-nutrient
components of foods interact with numerous metabolic pathways and
influence health reducing or increasing the risk of disease. Diet is
considered one of the major factors contributing to the rapid increase
in the incidence of metabolic disorders such as obesity, diabetes and
cardiovascular disease [2].

Reliable dietary assessment methods are vital when attempting to
understand the links between diet and chronic disease profiles.
Conventional tools for collecting quantitative information on dietary
exposure such as food diaries, 24-h recalls and food frequency
questionnaires (FFQ) can be unreliable for characterising and
quantifying eating behaviour and are all subject to possible reporting
and other biases [3,4]. In addition, these methods are unreliable for
certain groups such as the obese or elderly people, whose self-reported
energy intakes tend to be underestimated, as assessed by energy
expenditure measurements using the doubly labelled water method
[5,6]. A full critical review of limitations associated with the current
techniques is beyond the scope of the present review and the reader is
referred to the following papers [3,4,7-9].

In an attempt to overcome the problems with measuring dietary
exposure with self-reported methods, nutritional epidemiologists
started examining biomarkers as measures of dietary intake and
nutrient status [10,I1]. The use of dietary biomarkers provides a
more objective and accurate measure of intake in comparison to
traditional questionnaires as they take into account the nutrient
bioavailability and metabolism [12,13]. One of the main applications
of these dietary biomarkers is to use them as reference measurements
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to assess the validity of dietary assessment measures [11,14,15]. So far
ideal biomarkers exist for salt and protein intake (sodium/ nitrogen
measure in a 24 h urine sample) and energy expenditure (double
labelled water technique) [11]. Other biomarkers exist that do not
provide information on the exact dietary intake but which are highly
correlated with intake for example the measurement of serum
cartenoids and vitamin C as biomarkers of fruit and vegetable intake
[16].

The development of robust food biomarkers will help in better
classifying a person’s dietary intake and in turn will improve the
assessment of the relationship between diet and chronic disease [17].
In recent years there has been an increased interest in applying
metabolomics for the discovery of biomarkers of dietary intake. This
review will focus on metabolomics and its use in assessing dietary

biomarkers.
Metabolomic Technologies
Metabolomics  refers to comprehensive and non-selective

analytical chemistry approaches aiming to provide a global description
of all metabolites present in a biofluid at a given time [18-21]. The
two main approaches employed in metabolomics are nuclear magnetic
resonance (NMR) spectroscopy and mass spectroscopy (MS). These
techniques both have their advantages and disadvantages and at
present there is no single analytical technique capable of measuring
and identifying all metabolites in a single sample simultaneously and
therefore comprehensive metabolomic data needs to be assessed by
bringing together data from different platforms [22].

For instance, NMR  spectroscopy uses an untargeted approach
where all molecules are interrogated simultaneously by properties that
they all share (NMR active hydrogen or carbon) [23]. 'H NMR
requires little or no pre-treatment, it is quantitative (absolute), non-
destructive, reproducible and unbiased [24], although is not as
sensitive as MS  techniques. There are a range of MS based
approaches, with the most recent advances leading to the use of
hyphenated
spectroscopy (LC-MS), capillary electrophoresis-mass spectroscopy
(CE-MS) and gas chromatography-mass spectroscopy (GC-MS). The

chromatographic step allows the separation of metabolites before

techniques such as liquid

chromatography-mass
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detection takes place. One of the main advantages of these techniques
is the associated high sensitivity and therefore may detect metabolites
that are present in a concentration below the detection limit of 'H
NMR  spectroscopy. A disadvantage is the necessity for sample
preparation before analysis. GC-MS also requires derivatization,
which lengthens the sample preparation time. As stated above, a
comprehensive overview of the metabolome is achieved by using the
multiple platforms.

Data Analysis

Metabolomics like other ‘omic’ technologies generates large and
complex datasets and because of this data analysis using multivariate
statistics has become an important part of metabolomics. There are a
number of statistical methods available for metabolomic data, with
principal component analysis (PCA), partial least squares discriminant
analysis (PLS-DA) and orthogonal PLS-DA being the most
commonly used. PCA is probably the best known method, it is an
unsupervised method which assesses the natural grouping of sample
classes and can be used to identify extreme outliers [25].

Despite its widespread use in metabolomics, PCA has a number of
shortcomings. Mainly, PCA does not have an associated probabilistic
model, which makes assessing the fit of PCA to the data difficult,
limiting the scope of its application. In addition PCA can fail to
reveal underlying groups of subjects in the data, thereby providing a
false view of the underlying data structure [26,27]. Probabilistic
principal component and covariates analysis (PPCCA) is a novel
extension of probabilistic principal component analysis (PPCA) [28]
which has recently been introduced to analyse metabolomic data.
PPCCA incorporates covariates into the model and facilitates joint
modelling of metabolomic data and covariates, meaning that the
PPCA model directly models any variation due to the covariates, thus
ensuring that the principal components provide a clear picture of the
underlying data. This method has great potential for use within the
metabolomics field [29].

Supervised techniques require prior knowledge of the class of a
sample and examples frequently employed in metabolomics studies
include, PLS-DA or O-PLS-DA, combining a data filtering step.
PLS-DA provides a way to filter out metabolic information which is
not correlated to the predefined classes and the loadings plots provide
information on the spectral signals associated with the observed
trends giving a means to interpret the metabolic information. Despite
its powerful ability to separate classes, care must be taken during
fitting of PLS-DA to the training detaining datasets, which exaggerate
generalisation ability. Generally, cross-validation or permutation tests
are required to assess the ability of the trained PLS-DA model [30].
For further information on these techniques and other analysis tools
such as random forests (RF) [31], support vector machines (SVM)
[32] and artificial neural networks (ANN) [33], please see the
following recent reviews [34,35].

Metabolomic & Dietary Biomatker Studies

of metabolomics to novel

identify

biomarkers have in general terms taken three approaches (i) specific

Applications dietary
acute intervention to identify food markers (ii) searching for
biomarkers in cohort studies and (iif) analysis of dietary patterns in
conjunction with metabolomic profiles to identify nutritypes and
biomarkers. Approaches (i) and (if) form the basis of the studies
described under biomarkers of specific foods while approach (iii) is

discussed under dietary patterns.
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(i) Biomarkers of specific foods

Over the past few years a number of studies have emerged where
specific acute interventions have been used to identify the presence of
food specific biomarkers or to monitor concentration changes in diet
related metabolites. To date, application of metabolomics has
identified a number of putative biomarkers of intake of certain foods
including salmon, broccoli, wholegrain wheat cereal, raspberry [36],
cruciferous vegetables [37], citrus fruits [17], coffee [38,39], onions
[40] and red meat [41]. An initial literature search identified a
number of biomarkers associated with a broad range of foods (meat,
fish, wholegrains, cocoa etc.). However, for the purpose of this
minireview we focused on the foﬂowing foods for table 1: Meat, Fish,

Vegetables, Citrus Fruits, Coffee and Tea.

Biomarkers of fish intake

Many metabolomic studies have reported high levels of
trimethylamine-N-oxide (TMAQ) in urine samples following fish
consumption 24 h prior to sample collection [36,55,65]. Lloyd and
colleagues specifically searched for biomarkers of salmon in a study
where subjects (7=24) consumed a breakfast with either one of four
test foods, salmon being one of the test foods, 6 times over an 8
month period. Postprandial urine samples were collected at 3
different time points (1.5-, 3-, and 4.5-h) and analysed by flow
infusion electrospray-ionisation mass spectrometry, followed by
supervised data ana[ysis in order to identify signals resulting from
consumption of each test food. A combination of TMAO and I-
methylhistidine found to be
consumption with higher levels found after consuming the fish when

compared to the standard breakfast [36].

were associated with salmon

Biomarkers of meat intake

Meat intake is an important contributor to dietary protein in
omnivorous populations and therefore has a potential impact on a
range of nutritional and health outcomes [66]. As a result numerous
studies, both metabolomics and non-metabolomics based, throughout
the years have proposed the following metabolites as biomarkers of
meat intake; creatinine, creatine, carnitine, carnosine, taurine, -
methylhistidine and 3-methylhistidine and TMAO. A fully dietary-
controlled study was analyzed by Stella and colleagues using 'H
NMR  spectroscopy in combination with multivariate statistical
analysis to characterize the effects of three diets; ‘vegetarian’, ‘low
meat’ and ‘high meat’ [41]. Twelve healthy male participants (24-74
years) consumed each of these diets in a randomized order for
continuous 15-day periods with an intervening wash out period
between each diet of 7 days duration. Three consecutive urine samples
were collected from days 10-12 during each intervention period. The
following metabolites were found to be increased in the high meat
consumption period; creatine, carnitine, acetyl-carnithine and TMAO.
Creatine is known to be influenced by a number of factors such as
muscle mass hence its reliability as a biomarker needs to be further
investigated. With respect to carnitine, the dietary matrix is known to
have an influence on excretion so its use as a quantitative biomarker
may be limited.

3-methylhistidine and I-methylhistidine have also been proposed
as biomarkers of dietary intake [42,47,67]. A recent study
investigated both of these metabolites in conjunction with taurine and
creatinine as biomarkers of meat intake [42]. This targeted analysis of
urine samples following consumption of increasing amounts of red
meat indicated that both 3-methylhistidine and I-methylhistidine are
good markers of red meat intake but also highlighted that I-
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methylhistidine may be more useful as its excretion is independent of
muscle mass and catabolism.

Previous metabolomic studies have shown TMAO to be elevated
after consumption of high-meat diets [24,41], although it has also
been reported to be found in higher levels after fish consumption
[36], indicating that TMAQO may be used as a dietary biomarker of
protein as opposed to a specific food i.e. meat/fish. A recent study
assessing the effect of high or low protein diets found that the
TMAO signal in the NMR spectra of urine was highly correlated to
daily urinary nitrogen excretion (r=0.89) and thereby consumed

protein [68].

Biomarkers of fruit and vegetable intake

In recent years two groups have independently identified proline
betaine as a marker of citrus fruit consumption [17,59]. Heinzmann
performed an acute intervention involving 8 volunteers where they
consumed a standardised breakfast, lunch and dinner meal from day O
until lunch on day 3. In addition to the standard dinner a
supplementary mixed-fruit meal (apple, orange, grapefruit and grapes)
was introduced on the evening of day 2. Urine was collected 4
times/day from the morning of day I until the evening of day 3. 'H
NMR and PLS-DA analysis identified the urinary excretion of
proline betaine as a biomarker of citrus fruit intake. Following on
from this the authors quantified the relative concentrations of proline
betaine in citrus products and evaluated the urinary excretion profile
after orange juice consumption. Finally, validation was carried out on
the biomarker proline betaine by using urinary NMR spectra from
participants of the INTERMAP UK cohort [69]. A receiver
operating characteristic (ROC) curve resulted with an AUC of 92.3%
with a sensitivity and specificity of 90.6% and 86.3% respectively.

In the study performed by Lloyd and colleagues proline betaine
was identified as a biomarker of citrus intake using an acute breakfast
challenge. Acute exposure of volunteers to orange juice resulted in the
appearance of proline betaine and a number of biotransformed
products in postprandial urine samples. In addition, a process of
validation showed sensitivities of 80.8-92.2% and specificities of
74.2-94.1% for elevated levels of proline betaine in those volunteers
who reported a high consumption [59].

Applications of a metabolomics strategy for the identification of
biomarkers of cruciferous vegetable consumption has recently
identified S-methyl-L-cysteine sulphoxide (SMCSO) and metabolic
derivatives as putative biomarkers [37]. Twenty healthy male subjects
(7=20) were recruited to a three period dietary intervention study
with each period lasting 14 days. For phases I and III a low
cruciferous vegetable intake was consumed, whereas phase II consisted
of a high cruciferous vegetable intake. On day 13 of each phase,
following an overnight fast, a time zero spot urine sample was
obtained from each participant in the study. Participants were then
maintained on a standardised diet and urine sample collections were
obtained for the periods 0-10, 10-24 and 24-48 h. Analysis of the
NMR spectra showed clear differentiation between the high and low
cruciferous vegetable consumption and was attributed to SMCSO and
metabolites derived from it.

Other candidate biomarkers for fruit and vegetable intake include
antioxidant vitamins such as vitamin C [70,71] and flavanoids [58],
including quercetin [72]. Mennen er al examined associations
between dietary intakes and the concentrations of selected urinary
polyphenols and metabolites in free living subjects [58]. In this study
13 polyphenols and metabolites were measured in urine samples using
HPLC-ESI-MS-MS along with two day food diaries which estimated
habitual intake. In spot urine samples, significant correlations were
reported for different fruits and beverages and several polyphenol
compounds, for example apple consumption was positively correlated
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to phloretin, grapefruit consumption to naringenin, orange to
hesperetin, citrus fruit consumption to both naringenin and

hesperetin, with r coefficients ranging from 0.31 to 0.57 (P<0.05).

Biomarkers of tea consumption

Tea is a widely consumed beverage and is a major dietary source
of polyphenolic compounds, including phenolic acids and flavanoids.
Several potential biomarkers of exposure to tea derived polyphenols
have been identified [73-75]. These include specific O-methylated
polyphenols derived from in vivo polyphenol metabolism, such as 4-
O-methylgallic acid (4OMGA) [73,76,77]. One such study explored
the relationship of 24 h urinary excretion of 4OMGA with usual
(7=111) and current (7=344) tea intake in human subjects using a
GC-MS approach [75]. The authors found that urinary excretion was
significantly related to both usual tea intake (r 0.50, P<0.001) and
current tea intake (0.57, P<0.001) and that a cut-off concentration
for 4OMGA excretion of 25 ug/mmol creatinine had 82% sensitivity
and 81% specificity for prediction of tea drinking status.

(ii) Dietary patterns and metabolomic profiles of habitual diet
to identify nutritypes and biomarkers

The studies described above have efficiently identified biomarkers
of certain foods. In recent years there has been an interest in dietary
patterns and their use as a method of studying relationships between
diet and disease.

Work in our laboratory applied dietary pattern analysis to 125
subjects for which dietary data was recorded using 3 day food diaries
[43]. The identification of dietary clusters was performed using k-
means clustering and resulted in three cluster groups which were
associated with unique food intakes and differed in aspects of their
nutrient intake profiles. Assessment of the metabolomic profiles
revealed that the cluster groups were reflected in the urinary
metabolomic profiles. Further analysis using PLS-DA identified
metabolites associated with the different dietary patterns. Cluster 3
was defined by high intakes of meat products, white bread, butter and
preserves and had significantly higher levels of O-acetylcarnitine. The
novelty of this work lies in the fact that identification of nutritypes
(i.e. metabolic profiles that reflect dietary intake) has the potential to
aid dietary assessment by unobjectively classifying people into certain
dietary patterns.

Peré-Trepat and colleagues also developed a strategy for assessing
links between dietary data (FFQ) and metabolomic profiles [78]. In
this work dietary patterns were defined by PCA and then re-coded
and regressed against NMR metabolic profiles to obtain loadings and
identify metabolites associated with dietary patterns. While this study
was a method development study it successfully linked dietary
patterns with certain metabolites and further supports the concept of
nutritypes.

Using the KORA (Cooperative Health Research in the Region of
Augsburg) study population, Altmaier ar al identified seven dietary
patterns [79]. Metabolomic analysis was performed on plasma
samples  using  electrospray (ESI)
spectrometry (MS-MS). Statistical analysis revealed that certain

dietary patterns were highly associated with serum metabolite

ionization tandem mass

concentrations.

Opverall, these studies provide good evidence for the potential of
metabolomics to be used to define a profile of markers that are
reflective of a habitual dietary pattern. Further studies will be
necessary to develop this concept further and establish its robustness
across different populations.
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Table I. Examples of dietary biomarkers identified using metabolomic based approaches

Food Sample Metabolic Approach Biomarker Study
Red Meat Urine lon exchange 1- and 3-methylhistidine [42]
chromatography
Urine "H NMR spectroscopy O-acetylcarnitine, N,N-dimethylglycine [43]
Urine '"H NMR spectroscopy O-acetylcarnitine [44]
Serum and urine  'H NMR spectroscopy Creatine, histidine, urea [45]
Usine 'H NMR spectroscopy Carmtm.e, .Cfeatmme, TMAO, acetyl-carnitine, taurine, 1- and 3- (41]
methylhistidine
Plasma HPLC Carnosine [46]
I h
Urine on exchange Creatinine, taurine, 1- and 3-methylhistidine [47]
chromatography
Cooked Meats Hair LC-MS PhIP [48]
Urine LC-MS-MS PhIP metabolites [49]
Urine GC-MS PhIP [50]
Urine NCI-GC-MS$* PhIP [51]
Urine GC-MS 4'-OH-PhIP [52]
Fish Urine FIE-MS TMAO, anserine , 1- and 3- methylhistidine [36]
Plasma LC-MS-MS Proline-hydroxyproline [53]
Urine '"H NMR spectroscopy TMAO [54-57]
Vegetables
ife
\Clzzzaflz ‘:S Urine 'H NMR spectroscopy SMCSO 137]
Vegetarian diet Urine "H NMR spectroscopy Phenylacetylglutamine and glycine [43]
Urine '"H NMR spectroscopy p-hydroxphenylacetate [41]
Urine "H NMR spectroscopy Hippurate, N-acetyl glycoprotein and succinate [44]
Urine HPLC-ESI-MS-MS Enterolactone and kaempferol [58]
Citrus Fruits Urine "H NMR spectroscopy Proline betaine [17]
Urine FIE-MS proline betaine and conjugates-sulphate [59]
Urine HPLC-ESI-MS-MS Naringenin, hesperetin and sulphonated derivatives of caffeic acid [58]
Coffee Urine HPLC-ESI-MS-MS Chlorogenic acid [58]
Serum ESI-MS-MS Sphingomyelins [38]
Plasma & urine ~ HPLC Urinary dihydrocaffeic acid-3-0-sulphate & feroloyglycine [39]
Plasma LC-MS-MS 3,4-Dimethoxycinnamic acid, 3,4-Dimethoxy dihydrocaffeic acid [60]
Black/Green Tea Urine HPLC-MS-MS Hippuric acid [61]
Usine HPLC-FTMS" and HPLC-  Hippuric acid and a structurally related hydroxybenzoic glycine conjugate, (62]
TOFMS-SPE-NMR* vanilloylglycine, and pyrogallol-2-O-sulfate
Urine '"H NMR spectroscopy Hippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate [63]
Utine 'H NMR spectroscopy al—ggfurlc acid, 1,3-Dihydroxyphenyl-2-O-sulphate and 4-O-methylgallic (64]
Urine HPLC-ESI-MS-MS 4-O-methylgallic acids [58]

? Negative chemical ionization Gas chromatography—mass spectrometry

® accurate mass fragmentation
“Mass-guided SPE-trapping of selected compounds for nuclear magnetic resonance spectroscopy measurements
TMAO: Trimethylamine-N-oxide; PhIP: 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; SMCSO: S-methyl-L-cysteine sulfoxide

Summary and Outlook

Although biomarkers cannot replace traditional dietary assessment
methods, the use of metabolomics in identifying novel and robust
biomarkers of dietary exposure and intake can enhance and validate
such methods. Additionally the use of metabolomics in characterising
habitual dietary exposure and the identification of nutritypes is an
interesting and emerging field with potential applications in nutrition

epidemiology.

Volume No: 4, Issue: 5, January 2013, €201301004

For metabolomics to reach its full potential in this field a number
of challenges need to be addressed. Examples of these challenges
include a requirement for technology advancement to enhance our
metabolite coverage and advancement in the identification of
unknown metabolites to allow novel biomarker discovery. Finally
cooperation across disciplines is required to ensure optimal usage of
dietary biomarkers.
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