
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Introduction 
 

Exposure to exogenous chemicals (xenobiotics) via diet, 
environment, or medication is inevitable in all living creatures and 
interactions between xenobiotics and a biological system are 
bidirectional. On one hand, xenobiotics are actively processed by a 
biological system through absorption, distribution, metabolism, and 
excretion. On the other hand, a biological system can be significantly 
affected by xenobiotics, especially when subjected to a high-dose or 
repeated exposure. Among these interactions, metabolic activities, 
which include both xenobiotic metabolism and endogenous 
metabolism, play central roles in determining the biological 
consequences of xenobiotic exposure, especially in xenobiotic-induced 
toxicities (XIT). Numerous toxicological studies have demonstrated 
that the formation of reactive metabolites and the disruption of 
endogenous metabolism are major contributors to the initiation and 

progression of XIT [ , 2]. Therefore, examining metabolic events 

elicited by xenobiotic exposure is indispensable for studying the 
mechanisms of XIT.  

Because XIT-associated metabolic changes occur at gene, protein 
(enzyme), and metabolite levels, biochemical and chemical analyses of 
genes, proteins, and metabolites are commonly conducted to acquire 
mechanistic   information   on   the   metabolic   activities   in    XIT.  

 
 
 
 
 
 

 
 
 

Compared to the changes in genes and proteins, which mainly indicate 
the potential of physiological changes, changes in metabolites reflect 
the real metabolic consequences of XIT due to the fact that 
metabolites are the end products of metabolic activities. Traditional 
metabolite analysis in toxicological studies is commonly driven by 
hypothesis and usually has specific targets. This approach has its merit 
in unraveling mechanisms in many toxic events, but has its limitation, 
especially in identifying novel and unexpected metabolic activities [3, 
4]. In XIT, biotransformation of xenobiotic and disruption of 
endogenous metabolism, in general, are far more complex than a few 
metabolites and pathways examined by targeted metabolite analysis. 
Thus, a more comprehensive and non-targeted approach is needed to 
obtain the global view of XIT-elicited metabolic events. As a result of 
this need, metabolomics has gradually become a preferred analytical 
approach to exam the metabolic activities in XIT [5, 6].  

Based on high-throughput data acquisition and robust data 
analysis, metabolomics is capable of monitoring hundreds of 
metabolites simultaneously in a given biological sample and detecting 
subtle changes in a large dataset. Technical advances in bioanalysis, 
chemometrics, and bioinformatics have made metabolomics an 
important component of systems biology, complementing genomics, 
transcriptomics and proteomics [7-9]. One of the original incentives 
behind the development of metabolomics techniques was to exam the 

metabolic events in XIT [ 0, ]. However, owing to its clear 

advantage over traditional targeted metabolite analysis in complex 
biological matrices, applications of metabolomics have been expanded 
to all aspects of biological science, including plant and animal biology 

[ 2], microbiology [ 3], and disease diagnosis [ 4].  

A variety of detection methods have been adopted for metabolite 

analysis in metabolomics, including electrochemical array [ 5, 6], 
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infrared spectroscopy [ 7], nuclear magnetic resonance (NMR), and 

mass spectrometry (MS). Among these platforms, MS and NMR are 
the most widely used. The pros and cons of using NMR and MS 
techniques in metabolomics research have been discussed previously 

[ 8-20]. Compared to MS, NMR has clear advantages in two aspects: 

) its non-destructive nature reduces the need for sample preparation; 

2) its indiscriminant nature in detection offers broad coverage and 
high-throughput capacity in analyzing diverse chemical species. 
However, NMR-based metabolomics is limited by the lack of 
sensitivity in detecting large numbers of low-abundance metabolites in 
biological matrices and this leads to repetitive identification of several 
“usual suspect” metabolites as the key biomarkers in many NMR-

based metabolomics studies [2 ]. Nevertheless, the advent of NMR 

instruments with stronger magnetic fields should increase the 
sensitivity of NMR metabolomics [22]. 

Owing to the rapid progresses in MS instrumentation during the 
past decade, MS has achieved much greater sensitivity than NMR in 
detecting small-molecule metabolites and thus can provide more 
comprehensive information on metabolite profile [23]. However, 
compared to NMR, MS also has several drawbacks, such as the need 
for sample preparation, irrecoverable sample loss during MS analysis, 
biased metabolite detection caused by inconsistent ionization 
efficiency in the MS instruments, and the lack of automatic 
metabolite identification [24]. Therefore, selection of MS or NMR 
for metabolomic investigation is commonly determined by 
consideration of the pros and cons of the technical platforms as well 
as availability of the instruments. 

The method used to introduce prepared samples into the MS 
system significantly affects the results of MS detection. The shot-gun 
approach that directly infuses samples into the MS system has been 
successfully adopted for analyzing metabolites in tissue and lipid 
extracts [25]. Advantages of this approach include the efficiency in 
data acquisition and the avoidance of sample dilution during 
chromatographic separation. However, disadvantages are also apparent 
and include ion suppression in the ionization process and difficulty in 
distinguishing ions with the same molecular mass. Therefore, more 
commonly, the metabolites in samples are separated by 
chromatographic systems prior to MS analysis [26]. According to the 
chemical properties of samples, respective separation methods, 
including capillary electrophoresis, gas chromatography (GC), or 
liquid chromatography (LC) can be selected for metabolomic analysis. 
Capillary electrophoresis is highly efficient in separating polar and 
charged compounds based on their different migrating velocities in 
the electric field, but its low capacity in sample loading and poor 
sensitivity on non-polar compounds limit its application in 
comprehensive metabolite profiling [27]. GC and LC platforms are 
more commonly used for separating metabolites in biological samples. 
Compared to LC, GC has an advantage in resolution and 
reproducibility of chromatographic separations, which can facilitate 
metabolite identification and chemometric analysis. However, due to 
the incompatibility of GC columns with water and other polar 
solvents, multi-step sample preparation processes including solvent 
extraction, drying, and derivatization, are required to make samples 
volatile and this can significantly affect integrity of the sample 
metabolome [28]. In contrast, LC techniques have much better 
compatibility with water-based biofluids and tissue/cell extracts. In 
fact, the reduced need for sample preparation and the greater 
compatibility of LC with diverse metabolites have promoted its 
widespread adoption as the preferred separation tool in metabolomics. 
Hence, this review will mainly discuss the technical platform of LC-
MS-based metabolomics and its applications in studying XIT.  

 

Technical platform of LC-MS based metabolomics 
 
The capacity of LC-MS-based metabolomics for identifying 

biomarkers and revealing mechanisms originates from its sophisticated 
technical platform. Recent advances in LC-MS-based metabolomics 
have been driven by the availability of diverse experimental models 
and the development of improved techniques for sample preparation, 

LC-MS analysis, data acquisition, and data analysis (Fig. ).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Selecting an appropriate experimental model is essential for 
acquiring the samples that can best reflect the metabolic changes in 
XIT. In vitro models, such as the incubations of xenobiotics with cell 

Figure 1. The work flow of untargeted LC-MS-based metabolomics. 
Samples from diverse sources need to be processed appropriately to make 
them compatible with LC-MS analysis. Chemical derivatization can be 
performed to facilitate the chromatographic separation of metabolites in 
the LC and increase the sensitivity of metabolite detection in the MS 
system. Chromatographic and spectral data are acquired by high-
resolution LC-MS. Subsequent data processing, such as centroiding, 
deisotoping, filtering, and peak recognition, yields a data matrix 
constructed by sample identity, ion identity (RT and m/z), and ion 
abundance. Through data transformation and multivariate data analysis, a 
multivariate model can be established in which the scores plot illustrates 
the principal or latent components of the model as well as sample 
classification while the loadings plot presents the contribution of each ion 
to sample classification in the model. 
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culture, tissue homogenates, or purified enzymes, can be adopted to 
examine hypothesis on xenobiotic-elicited metabolic events associated 
by specific tissue, cells, or enzymes. However, to reveal xenobiotic-
induced global metabolic changes in a biological system, animals and 
humans are still the best sources for sample collection.   Compared to 
animals, using humans as experimental subjects has clear advantage in 

clinical significance, but has disadvantages in other aspects: ) in 

general, pre-treatment metabolic differences among human subjects 
are much greater than differences among experimental animals due to 
both internal and external factors, such as genetic polymorphism, age, 
and health status; 2) environment, diet, and life style vary greatly in 
human subjects, but are under strict control in experimental animals; 
3) for XIT, toxic doses can be achieved in animal models, but not in 
humans under experimental conditions; 4) tissue samples are 
accessible in animal models, but rarely available in humans. Therefore, 
in many cases, animals are more robust experimental models for 
defining the mechanisms of XIT. Nevertheless, if under sound 
experimental design and sufficient number of experimental subjects, 
metabolomic investigation of xenobiotic exposure in humans still 
provides great opportunities for identifying metabolic biomarkers of 
XIT and verifying the observations in animal studies. 
 

To maximize the information available for LC-MS analysis, 
sample preparation has to be designed and performed based on the 
chemical and biochemical properties of the particular biological 
matrix of the samples (Fig. 2). Dramatic metabolic changes are usually 
associated with XIT and it is not uncommon for many XIT-
associated metabolites to be vulnerable to further metabolic changes 
until the potential for change is terminated.  Potential post-collection 
alterations include enzyme-mediated biochemical reactions and 
degradation due to unfavorable environmental conditions (high 
temperatures) or bacterial contamination. To reduce or avoid these 
changes prior to metabolomic analysis, rapid freezing in liquid 
nitrogen or quenching treatments are widely used for tissue and cell 
culture samples [29], while bactericides and cold traps are frequently 
used for urine collections.  

Without appropriate processing, biological samples, including 
urine, blood, tissue, and cell culture, are not suitable for LC-MS 
analysis due to the biomatrices of these samples [30]. Sample 
processing aims to preserve integrity of the sample metabolome and 

also facilitate the detection of metabolites [3 ].  Basic sample 

processing procedures, such as removing proteins and particles, are 
required for all samples, while specific procedures are adopted 
according to the physical and chemical properties of samples as well 
as the aims of metabolomic analysis. For urine samples, the 
interference of its inorganic salt content with LC-MS analysis can be 
abated by dilution or solid phase extraction. Serum contains both 
water-soluble metabolites and large quantities of lipid species. 
Therefore, besides stringent protein removal, phase separation 
methods, such as Bligh’s [32] for hydrophilic and lipophilic faction in 
serum, should be considered before LC-MS analysis.  Subcellular 
fractionation of tissue and cell culture samples prior to phase 
separation can be conducted to identify distribution and changes of 
metabolites within specific intracellular organelles or compartments 
such as mitochondria and the cytosol. In multiple-step sample 
processing, adding internal standard is recommended to account for 
the experimental variances across samples. 

Making samples more compatible for LC-MS analysis is not the 
only aim of sample preparation. Enhancing the sensitivity of 
metabolite detection is the other important aim of sample 
preparation. Metabolite concentration in samples and ionization 

efficiency in MS are two major factors determining the sensitivity of 
metabolite detection in LC-MS analysis.  Low-abundance metabolites 
in samples can be concentrated by condensation, solvent extraction, or 
column extraction. However, for many metabolites, the barriers for 
their detection in LC-MS analysis are not their concentrations in 
samples, but their non-optimal performance in LC and MS systems, 
such as poor retention in LC column and insufficient ionization in 
MS [32]. To enhance the chromatographic and spectroscopic 
performance of these metabolites, one effective approach is to 

conduct chemical derivatization (Fig. ). Chemical derivatization has 

been widely used in GC-MS analysis to improve separation, 
detectability and sensitivity of metabolite detection. The application 
of chemical derivatization in LC-MS analysis has greatly expanded in 
the recent years [33]. In general, derivatization reactions are designed 
based on the functional groups, such as amino, carboxyl, carbonyl, 
and hydroxyl moieties in the metabolites. Increased hydrophobicity 
and chargeability are two desired effects of chemical derivatization 
[34]. For example, amino acids are commonly derivatized by dansyl 
chloride [35]. The detection of organic acids is significantly enhanced 
through esterification of carboxyl group with amines, hydrazines, or 
alcohol, while detection of aldehydes and ketones is assisted by the 
formation of Schiff bases after derivatization reactions [36, 37].  

 

 
 
 
 
 
 
 
 
 
 

 

The mobile phase and column of the LC system and the ion 

source and mass detector of the MS system (Fig. ) are major 

components of LC-MS analysis that can significantly affect data 
quality. The mobile phase plays a critical role in metabolite separation 
in the LC column and also facilitates metabolite ionization in the MS 
system. In addition to choosing appropriate solvents (such as 
acetonitrile, methanol, water) and solvent gradients based on the 
chemical properties of the samples, the addition of eluent additives to 
suppress unwanted signals or selectively enhance signals of interest can 
greatly increase the ability to detect and the sensitivity to quantify 
particular compounds in a mixture. The two most common types of 

Figure 2. Metabolic events in XIT and potential targets of LC-MS-based 
metabolomics. Biotransformation of xenobiotics and xenobiotic-induced 
metabolic changes occur simultaneously during the initiation and 
progression of XIT. LC-MS-based metabolomics is not only able to identify 
the metabolites generated or affected by these events (exploratory 
investigation), but also capable of revealing the biochemical mechanisms 
underlying these events when combined with other experimental models 
and biochemical analyses (hypothesis-driven investigation).  
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additives are acids and bases (formic acid, ammonium acetate, etc.) to 
alter pH and compounds such as tributylamine and triethylamine to 
form ion pairs [38]. The widespread adoption of ultra-performance 
liquid chromatography (UPLC) in chemical and metabolomic 
analyses is one prominent development in LC separation technology. 
Smaller particle size (sub-2 micron) and higher tolerance to back 
pressure in UPLC systems produce much better resolution in 
chromatographic separation and greater sensitivity for ion detection 

than traditional HPLC [ 9, 39]. In addition, new developments in 

column chemistry provide more choices such as hydrophilic 
interaction liquid chromatography (HILIC) columns for separating 
polar and nonpolar compounds [40]. Nevertheless, reverse phase 
(RP) columns are still the most commonly used for general LC-MS 
metabolite analysis.   

Ionization of analytes is a prerequisite for mass detection in MS 
system. Selection of ionization method, such as electrospray 
ionization (ESI), atmospheric pressure chemical ionization (APCI), 
and the chemical components of mobile phase have major impacts on 
ionization efficiency. With regard to mass detectors, two important 
factors are sensitivity and mass accuracy. Nominal mass MS detectors, 
such as the triple quadrupole MS, can perform highly selective and 
sensitive quantitation of targeted metabolites, while  detectors with 
full scan and accurate mass measurement capacities, such as time-of-

flight (TOF) or Fourier transform MS [4 ], have a clear advantage in 

untargeted metabolomics where simultaneous measurement of  many 

metabolites is required [ 9].  

 

For untargeted metabolomic analysis, chromatographic and 
spectroscopic data generated from LC-MS analysis need to be 
properly processed before being used in multivariate data analysis 

(MDA) (Fig. ). Data processing includes data condensation and 

reduction by centroiding and deisotoping mass spectra; removal of 
noise or background signals; and peak identification by setting 
threshold windows for mass-charge ratio (m/z) and retention time 
(RT) [42]. Furthermore, normalization of MS data against 
parameters of the whole dataset (such as total ion count, median ion 
count) or intensities of internal standards (such as creatinine in urine) 
is commonly conducted to reduce the influence of systematic and 

sample biases (such as dilution or condensation) [ 9]. Thus, each 

unique pair of RT-m/z and its signal intensity become the identity of 
one metabolite. Afterwards, the processed datasets can be either 
directly used for MDA or further statistically transformed and scaled 
according to the properties of data and the purpose of MDA. 

Both unsupervised MDA, such as principal components analysis 
(PCA), or supervised MDA, such as projection to latent structures-
discriminant analysis (PLS-DA) or orthogonal PLS (OPLS), are 
widely used to analyze metabolomic data. Compared to traditional 
statistical methods, such as t-test and ANOVA, MDA can better 
handle and interpret the large datasets generated by LC-MS analysis. 
After MDA, a large portion of examined dataset is represented by the 

principle components (PC) in the multivariate models [ 8]. The 

sample-PC and sample-sample relationships can be visualized in 
scores plot of the established MDA model, in which the spatial 
distance between two samples reflects differences in their chemical 
composition. In metabolomic analysis of XIT, when a clear separation 
between samples from vehicle and samples from xenobiotic treatment 
is observed in the scores plot, the XIT-related metabolites can be 
conveniently identified in the loadings plot through their correlation 

with the PCs that separate two treatments (Fig. ). The chemical 

identities of biomarkers and metabolites are determined by accurate 
mass measurement, elemental composition analysis, MS/MS 

fragmentation and subsequent database searches (such as Human 
Metabolome Database: http://www.hmdb.ca/, Lipid Maps: 
http://www.lipidmaps.org/, METLIN database: 
http://metlin.scripps.edu/). Recent development in bioinformatics 
has further facilitated metabolite annotation in LC-MS-based 
metabolomics studies [43, 44].

 
Applications of LC-MS based metabolomics of XIT

 
Metabolic events in XIT encompass biotransformation of 

xenobiotic (xenobiotic metabolism) and xenobiotic-induced metabolic 
changes in biological system (Fig. 2). All these metabolic events have 
distinctive roles in the initiation and progression of XIT. Compared 
to traditional metabolite analysis, the benefits of adopting LC-MS 
based metabolomics in studying XIT are mainly based on its 
analytical capacity to investigate these events effectively. Metabolomic 
investigation of XIT can be defined as exploratory, such as the 
identification of new xenobiotic metabolites and biomarkers, or 
hypothesis-driven, such as the role of enzymes and pathways in XIT 
(Fig. 2). To achieve these aims, adaptation of effective research 
approaches is essential in metabolomics studies. In this review, 
common approaches used in the LC-MS-based metabolomic 
investigation of XIT-associated xenobiotics metabolism and 
metabolic changes are examined and their potential applications in 
resolving practical issues in XIT are illustrated by case studies and 
proof-of-concept experiments. 
 

In XIT, biotransformation serves as a double-edged sword. 
Xenobiotics can be either activated or detoxified by biotransformation 
reactions catalyzed by xenobiotic metabolizing enzymes (XME) in the 
body. The balance between bioactivation and detoxification, in many 

cases, may determine the toxic effects of xenobiotics [ ]. Therefore, 

studying the biotransformation of xenobiotics in vivo is essential for 
understanding and predicting XIT. Since xenobiotic metabolites, 
especially reactive metabolites, usually are not the most abundant 
metabolite species in biofluids and tissues, one major challenge in the 
study of xenobiotic metabolism is how to efficiently and thoroughly 
identify xenobiotic metabolites among thousands of chemical species 
in biological samples. Using a radiolabeled xenobiotic to trace its 
metabolites is a very effective method due to the sensitivity and 
quantitative nature of radiotracing. However, wide application of 
radiotracing is hampered by concerns of contamination and health 
hazards as well as the time and cost associated with the synthesis of 
radiolabeled compounds.  

In recent year, mass defect filtering methods have been developed 
in the drug metabolism field [45, 46]. Based on high-resolution mass 
measurement and algorithm-based computation of elemental 
composition, these metabolite searching methods use the numerical 
values of mass increase or decrease caused by known metabolism 
reactions or an artificial mass defect window as the screening filter to 
identify metabolites formed by single or multiple reactions. The major 
issue with  this approach is that the filters do not cover all in vivo 
biotransformation reactions, especially the many uncommon reactions 
that may cause dramatic mass changes [47]. In addition, results 
obtained from mass filtering might be plagued with false-positive 
entries. Therefore, metabolomics-guided metabolite profiling offers 
an effective alternative that can circumvent drawbacks and limitations 
of the abovementioned metabolite identification methods in 

xenobiotic metabolism research [ 9].  
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Figure 3. Examples of LC-MS-based metabolomic investigation of metabolic events in XIT. The dashed arrow lines indicate correlations between samples in the 
scores plot and ions in the loadings plot of multivariate models. A. Identification of xenobiotic metabolites. Through metabolomic analysis of mouse urine 
samples from control, APAP, and [Acetyl-2H3]-APAP treatments, the unlabeled APAP and deuterated APAP metabolites can be conveniently identified in the 
loadings plot. The ions that increased in both APAP and [Acetyl-2H3]-APAP treatments are from endogenous metabolism [53]. B. Role of XME in the 
biotransformation of xenobiotic. Through the metabolomic analysis of mouse urine samples from PhIP-treated wild-type, Cyp1a2-null, and CYP1A2-humanized 
mice, genotype-dependent PhIP metabolism is illustrated by the distinctive distribution of PhIP metabolites in the loadings plot [56]. C. Kinetics of xenobiotic-
induced changes in endogenous metabolism. Through metabolomic analysis of daily mouse serum samples from a 3-day cocaine treatment, lipid species 
correlating with development of cocaine-induced hepatotoxicity in mice can be identified in the loadings plot [61]. 
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Samples from diverse sources, including urine, serum, feces, tissue 
extracts, and in vitro incubations, can be used for metabolomic 
examination of xenobiotic metabolism. In most cases, pooled urine or 
fecal samples collected within a day are more suitable than blood or 
tissue samples for profiling xenobiotic metabolites since the majority 
of xenobiotic compounds do not accumulate in the body. A 
straightforward approach for identifying in vivo xenobiotic 
metabolites is to conduct metabolomic comparison between samples 
from vehicle and xenobiotic treatment groups. As xenobiotic and its 
metabolites only appear in samples from the xenobiotic treatment, it 
is expected that separation between vehicle and xenobiotic treatment 
in the metabolomic model should be primarily due to the xenobiotic 
and its metabolites (Fig. 2). Therefore, analyzing ions that contribute 
to the separation of xenobiotic and vehicle treatments can lead to the 
identification of xenobiotic metabolites. Employing this approach, 
novel metabolites of therapeutic agents, phytochemicals, and dietary 
compounds, including aminoflavone [48], arecoline [49], fenofibrate 

[50], melatonin [5 ], and cocaine [52], have been identified, and 

novel metabolic routes have been characterized.  
Direct metabolomic comparison of vehicle and xenobiotic 

treatments facilitates the identification of xenobiotic metabolites, 
especially for the treatments that do not significantly affect 
endogenous metabolism.  However, many xenobiotics also 
dramatically alter or disrupt endogenous metabolism of 
carbohydrates, amino acids, and/or lipids. In the metabolomic models 
of these treatments, metabolites contributing to the separation of 
vehicle and xenobiotic treatment include both xenobiotic metabolites 
and the endogenous metabolites responsive to xenobiotic treatment. 
To avoid interference from endogenous metabolites, a stable isotope-

based metabolomic approach using xenobiotics labelled with 2H, 3C, 
5N, or 8O can be used to facilitate identification of the xenobiotic 

metabolites. In practice, equal amount of labeled and unlabeled 
xenobiotic are used in the treatments. Since the endogenous 
metabolites affected by the labeled or unlabeled xenobiotic treatment 
are the same or very similar, metabolites contributing to the separation 
of the labeled and unlabeled groups in the metabolomic models are 
mainly xenobiotic and its metabolites.  

Efficacy of the stable isotope-based approach has been 
demonstrated in several studies [53, 54]. For example, in a 
metabolomic investigation of acetaminophen biotransformation in 
mice, two groups of mice were treated with a hepatotoxic dose of 
acetaminophen (APAP) and deuterated APAP, respectively. 
Separation of urine samples from the two treatments in a 
metabolomic model was mainly caused by APAP metabolites and 
their labeled counterparts (Fig. 3A). Besides identifying known APAP 
metabolites in urine, such as cysteinyl-APAP and APAP glucuronide, 
several new biomarkers that are highly correlated with APAP toxicity 
were confirmed as APAP metabolites based on the presence of stable 
isotope in their structures [53]. Another benefit of this approach is to 
separate the endogenous biomarkers from xenobiotic metabolites in 
the loadings plot of metabolomic model (Fig. 3A).  Furthermore, in a 
separate study on ethanol-induced hepatotoxicity in mice, a dramatic 
increase of N-acetyl taurine (NAT) in urine was observed after 
ethanol exposure.  However, NAT as a metabolite of ethanol was not 
confirmed until a metabolomic comparison of urine samples from 
mice fed unlabeled ethanol and mice fed dueterated ethanol ([2H6]-
ethanol) was performed [54].  

In addition to its use in exploratory investigations of novel 
xenobiotic metabolites, LC-MS-based metabolomics can also be 
applied to hypothesis-driven investigation of XMEs in XIT when 
appropriate experiment models are adopted in the studies (Fig. 2).  It 
is known that major XMEs, including functionalizing (phase I) 

enzymes and conjugating (phase II) enzymes, have different roles in 

the bioactivation and detoxification of xenobiotics [ ]. Animal 

models containing modified XME genes, such as mutation, knockout, 
or humanized models, have become powerful tools for investigating 
the role of XMEs in XIT [55].  Traditional metabolite analyses of 
xenobiotic metabolism in genetically-modified animal models usually 
focus on a few metabolites that are considered to be the direct 
substrates or products of XMEs of interest. However, application of 
LC-MS-based metabolomics has enabled a much more comprehensive 
characterization of xenobiotic biotransformations in genetically-

modified animal models. For example, the role of CYP A2 enzymes 

in the metabolism of 2-amino- -methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP), a widely distributed procarcinogen in the human 
diet, was defined through a metabolomic comparison of PhIP 

metabolism in wild-type, Cyp a2-null, and CYP A2-humanized mice 

(Fig. 3B). Comprehensive profiling of PhIP metabolites in these three 

mouse lines not only confirmed the catalytic activity of CYP A2 in 

PhIP metabolism, but also revealed human-mouse interspecies 
differences as well as the involvement of other P450s in PhIP 
metabolism [56].  
 

Disruption of metabolic systems always occurs in XIT. Metabolic 
changes can be immediate and direct effects of chemical exposure, or 
delayed and side effects of XIT. Characterizing these changes in 
metabolic systems is essential for understanding the molecular 
mechanisms of XIT since the disorders in energy and nutrient 
metabolism are usually the most prominent phenotypes of XIT. 
Targeted metabolite analyses in XIT studies are usually highly 
subjective due to their typical focus on suspected metabolites, or 
guided by observed changes in gene and protein levels. In contrast, 
untargeted metabolomic analysis can simultaneously monitor diverse 
metabolic changes in biological systems, and provide guidance for 
mechanistic investigations at the enzyme, protein, and gene levels 
[57].  

Choosing an appropriate sample source for metabolomic analysis 
is important in order to obtain meaningful information on XIT-
associated metabolic changes because each source has a different 
mixture of metabolites which represents the different metabolic 
activities associated with the source. Possible sample sources include 
biofluids, excreta, tissues, cell pellets, and cell culture media. In animal 
experiments, urine and fecal samples reflect the consummate effects of 
XIT-induced metabolic activities, while biofluids and tissue samples 
reflect the real-time metabolic status in XIT. In addition, 
metabolomic analysis of tissue/organ targets of xenobiotics can 
identify local or tissue specific effects of xenobiotics on metabolism 
while urine and serum can reflect the systemic impact of tissue 
toxicity on the whole body.  

Similar to the metabolomic investigation of xenobiotic 
metabolism, a straightforward approach in the metabolomic 
investigation of XIT-induced metabolic changes is to determine 
differences between untreated and treated subjects or differences 
between susceptible and resistant subjects. Based on the 
pathophysiological and metabolic phenotypes of XIT, such as fatty 
liver, muscle degradation, and oxidative stress, metabolomic analysis 
can be adjusted to focus on specific classes of metabolites, including 
lipids, amino acids, and organic acids. For example, changes in the 
composition and concentrations of lipid species are observed in many 
XIT events. However, the significance of these changes in lipidome is 
not well understood.  GC-based fatty acid profiling was the most 
widely performed lipid analysis, but this assay is insufficient to reflect 
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the real biochemical consequences caused by the disruption of lipid 
metabolism since bioactive lipid species are usually complex lipids 
[58]. Compared to GC-based fatty acid analysis, LC-MS-based 
lipidomics has clear advantages in detecting complex lipid species, 
which makes it an ideal tool for the simultaneous examination of 
diverse lipid species, including XIT-induced changes in lipid 
metabolism [59, 60]. In a recent LC-MS-based lipidomics study of 
cocaine-induced liver injury, progression of hepatotoxicity in a 3-day 
cocaine treatment was closely associated with disruption of serum 
lipidome since the time-dependent separation of serum samples in a 
MDA model represented the contribution of different lipid species on 

each day of cocaine exposure (Fig. 3C) [6 ]. Guided by this lipidomic 

model and MS-based structural elucidation, accumulation of long-
chain acylcarnitines was defined as a prominent cocaine-induced 
metabolic change. Because of the importance of long-chain 
acylcarnitines in mitochondrial fatty acid catabolism, this observation 
led to the identification of cocaine-induced inhibition of fatty acid 
oxidation in the liver. The relevance of this observation to cocaine-
induced hepatotoxicity was further validated by cotreatment with 
fenofibrate, which activated peroxisome proliferator-activated receptor 

 (PPAR), a central regulator of fatty acid oxidation, and protected 
the mice against toxicity. Furthermore, LC-MS-based lipidomics 

revealed that cotreatment with the PPAR ligand reversed cocaine-

induced changes in the lipidome [6 ]. Besides lipids, chemical-

induced changes in amino acid metabolism, antioxidant turnover, and 
carbohydrate metabolism, have also been effectively examined by LC-
MS-based metabolomics [62-64].   

As a significant component of biological system, gut flora preform 
metabolic reactions that differ from their host, producing both 
nutrients and non-nutrients [65]. A broad MS-based metabolomics 
study that used GC-MS and LC-MS analyses, of intestinal digesta 
from conventional and germ-free mice revealed the significant 
contribution of bacterial metabolites to mammalian blood metabolites 
[66]. In addition to their known effects in intestinal ailments, 
metabolic diseases, and immune diseases [67-69], gut flora can also 
affect XIT through indirect regulation of XMEs [70] or direct 

interference of xenobiotic metabolism [7 , 72]. Because of the 

complexity and unpredictability of bacterial metabolism, it is expected 
that LC-MS-based metabolomics should be more effective than 
traditional metabolite analysis for examining the influences of 
xenobiotics on symbiotic gut flora in humans and animals. For 
example, LC-MS-based metabolomics of ethanol treatment has shown 
that the development of ethanol-induced fatty liver was associated 
with increased bacterial metabolites in urine [54]. Expanding the 
application of metabolomics in studies of microflora metabolism will 
generate more insights into the roles of gut flora in XIT. 

Besides its usage in exploratory investigations to identify 
biomarkers and new metabolites, LC-MS-based metabolomics can 
also be applied to hypothesis-driven investigations of metabolic 
pathways in XIT-induced metabolic changes (Fig. 2). Hypotheses of 
the roles of specific metabolizing enzymes and regulatory pathways in 
XIT can be tested through a combination of metabolomic analysis 
with other experimental approaches.  For example, animal models that 
have different sensitivities to xenobiotic exposure or that are 
genetically altered to interfere with XIT can be compared. For 
example, dextran sulfate sodium (DSS)-induced acute colitis was 
examined by LC-MS-based serum metabolomic analysis. Inhibition of 

stearoyl-CoA desaturase  (SCD ), an enzyme responsible for 

converting saturated fatty acids to mono-unsaturated fatty acids, was 
identified after observing an increased ratio of stearoyl 
lysophosphatidylcholine to oleoyl lysophosphatidylcholine in the 

serum of DSS-treated mice. The anti-inflammatory role of SCD  in 

DSS-induced colitis was further defined by LC-MS-based 
metabolomics and biochemical analyses of the relationship between 

SCD  activity and DSS-induced proinflammatory effects [73].  

Examining the roles of metabolizing enzymes and regulatory 
pathways in XIT is just one application of LC-MS-based 
metabolomics in the hypothesis-driven investigation of XIT-related 
metabolic changes.  Determining the metabolic routes contributing to 
observed metabolic phenotypes or specific changes in small-molecule 
biomarkers in XIT, such as the upstream and downstream metabolites 
of identified biomarkers, is another potential application of 
hypothesis-driven metabolomic investigation (Fig. 2). When a 
hypothesis about the source and metabolic route of a biomarker is 
proposed, a combination of LC-MS-based metabolomics and stable 
isotope tracer can become a powerful analytical tool to test the 
hypothesis. The techniques of using stable isotope-labeled glucose, 
amino acids, and fatty acids to interrogate the metabolic networks 
have been widely used in studying xenobiotic-induced metabolic 
changes [74]. The methodology of LC-MS-based untargeted 
metabolomics with stable isotope tracer has been improved recently 
[75]. Therefore, it is reasonable to believe that application of LC-MS-
based metabolomics and stable isotope tracer will generate more 
mechanistic insights into XIT-related metabolic changes in future. 

 
Conclusion 

 
Wide adoption of metabolomics in biomedical research in recent 

years has demonstrated its advantages over traditional metabolite 
analysis approaches. As a branch of metabolomic techniques, LC-MS-
based metabolomics possesses great promise for becoming the most 
commonly used analytical platform to identify novel metabolites and 
elucidate metabolic changes due to its versatility and sensitivity. As 
illustrated by the case studies in this review, LC-MS-based 
metabolomics has merits in unraveling novel information on the 
metabolic alterations caused by XIT and the underlying mechanisms 
responsible for these alterations. With the development of new LC-
MS techniques and data analysis methods, LC-MS-based 
metabolomics will have more applications in both exploratory and 
hypothesis-driven investigations of XIT. 
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