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LC-MS-BASED METABOLOMICS OF XENOBIOTICAINDUCED TOXICITIES

Chi Chen *", Sangyub Kim ®

Abstract: Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological
systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of
endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major
causes behind development of xenobiotic-induced toxicities (XIT). Therefore, examining the metabolic events associated with XIT
generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment.
Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of
xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the
metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of
metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-
MS) has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis.
In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation,
instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven
investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with
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xenobiotic exposure.
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Introduction

Exposure to exogenous chemicals (xenobiotics) via diet,
environment, or medication is inevitable in all living creatures and
interactions between xenobiotics and a biological system are
bidirectional. On one hand, xenobiotics are actively processed by a
biological system through absorption, distribution, metabolism, and
excretion. On the other hand, a biological system can be significantly
affected by xenobiotics, especially when subjected to a high-dose or
repeated exposure. Among these interactions, metabolic activities,

which include both

metabolism, play central roles in determining the biological

xenobiotic metabolism and endogenous
consequences of xenobiotic exposure, especially in xenobiotic-induced
toxicities (XIT). Numerous toxicological studies have demonstrated
that the formation of reactive metabolites and the disruption of
endogenous metabolism are major contributors to the initiation and
progression of XIT [1, 2]. Therefore, examining metabolic events
elicited by xenobiotic exposure is indispensable for studying the
mechanisms of XIT.

Because XIT-associated metabolic changes occur at gene, protein
(enzyme), and metabolite levels, biochemical and chemical analyses of
genes, proteins, and metabolites are commonly conducted to acquire
mechanistic information on the metabolic activities in XIT.
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Compared to the changes in genes and proteins, which mainly indicate
the potential of physiological changes, changes in metabolites reflect
the real metabolic consequences of XIT due to the fact that
metabolites are the end products of metabolic activities. Traditional
metabolite analysis in toxicological studies is commonly driven by
hypothesis and usually has specific targets. This approach has its merit
n unraveling mechanisms in many toxic events, but has its limitation,
especially in identifying novel and unexpected metabolic activities [3,
4). In XIT, biotransformation of xenobiotic and disruption of
endogenous metabolism, in general, are far more complex than a few
metabolites and pathways examined by targeted metabolite analysis.
Thus, a more comprehensive and non-targeted approach is needed to
obtain the global view of XIT-elicited metabolic events. As a result of
this need, metabolomics has gradually become a preferred analytical
approach to exam the metabolic activities in XIT [5, 6].

Based on high-throughput data acquisition and robust data
analysis, metabolomics is capable of monitoring hundreds of
metabolites simultaneously in a given biological sample and detecting
subtle changes in a large dataset. Technical advances in bioanalysis,
chemometrics, and bioinformatics have made metabolomics an
important component of systems biology, complementing genomics,
transcriptomics and proteomics [7-9]. One of the original incentives
behind the development of metabolomics techniques was to exam the
metabolic events in XIT [10, 11]. However, owing to its clear
advantage over traditional targeted metabolite analysis in complex
biological matrices, applications of metabolomics have been expanded
to all aspects of biological science, including plant and animal biology
[12], microbiology [13], and disease diagnosis [14].

A variety of detection methods have been adopted for metabolite
analysis in metabolomics, including electrochemical array [15, 16],
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infrared spectroscopy [17], nuclear magnetic resonance (NMR), and
mass spectrometry (MS). Among these platforms, MS and NMR are
the most widely used. The pros and cons of using NMR and MS
techniques in metabolomics research have been discussed previously
[18-20]. Compared to MS, NMR has clear advantages in two aspects:
1) its non-destructive nature reduces the need for sample preparation;
2) its indiscriminant nature in detection offers broad coverage and
high-throughput capacity in analyzing diverse chemical species.
However, NMR-based metabolomics is limited by the lack of
sensitivity in detecting Iarge numbers of low-abundance metabolites in
biological matrices and this leads to repetitive identification of several
“usual suspect” metabolites as the key biomarkers in many NMR-
based metabolomics studies [21]. Nevertheless, the advent of NMR
instruments with stronger magnetic fields should increase the
sensitivity of NMR metabolomics [22].

Owing to the rapid progresses in MS instrumentation during the
past decade, MS has achieved much greater sensitivity than NMR in
detecting small-molecule metabolites and thus can provide more
comprehensive information on metabolite profiie [23]. However,
compared to NMR, MS also has several drawbacks, such as the need
for sample preparation, irrecoverable sample loss during MS analysis,
biased metabolite detection caused by inconsistent ionization
efficiency in the MS instruments, and the lack of automatic
metabolite identification [24]. Therefore, selection of MS or NMR
for metabolomic investigation  is commonly determined by
consideration of the pros and cons of the technical platforms as well
as availability of the instruments.

The method used to introduce prepared samples into the MS
system significantly affects the results of MS detection. The shot-gun
approach that directly infuses samples into the MS system has been
successfully adopted for analyzing metabolites in tissue and lipid
extracts [25]. Advantages of this approach include the efficiency in
data acquisition and the avoidance of sample dilution during
chromatographic separation. However, disadvantages are also apparent
and include ion suppression in the ionization process and difficulty in
distinguishing ions with the same molecular mass. Therefore, more
commonly, the metabolites in samples are separated by
chromatographic systems prior to MS analysis [26]. According to the
chemical properties of samples, respective separation methods,
including capillary electrophoresis, gas chromatography (GC), or
liquid chromatography (LC) can be selected for metabolomic analysis.
Capillary electrophoresis is highly efficient in separating polar and
charged compounds based on their different migrating velocities in
the electric field, but its low capacity in sample loading and poor
sensitivity on non-polar compounds limit its application in
comprehensive metabolite profiling [27]. GC and LC platforms are
more commonly used for separating metabolites in biological samples.
Compared to LC, GC has an advantage in resolution and
reproducibility of chromatographic separations, which can facilitate
metabolite identification and chemometric analysis. However, due to
the incompatibility of GC columns with water and other polar
solvents, multi-step sample preparation processes including solvent
extraction, drying, and derivatization, are required to make samples
volatile and this can significantly affect integrity of the sample
metabolome [28]. In contrast, LC techniques have much better
compatibility with water-based biofluids and tissue/cell extracts. In
fact, the reduced need for sample preparation and the greater
compatibility of LC with diverse metabolites have promoted its
widespread adoption as the preferred separation tool in metabolomics.
Hence, this review will mainly discuss the technical platform of LC-
MS-based metabolomics and its applications in studying XIT.
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Technical platform of LC-MS based metabolomics

The capacity of LC-MS-based metabolomics for identifying
biomarkers and revealing mechanisms originates from its sophisticated
technical platform. Recent advances in LC-MS-based metabolomics
have been driven by the availability of diverse experimental models
and the development of improved techniques for sample preparation,
LC-MS analysis, data acquisition, and data analysis (Fig. 1).
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Figure 1. The work flow of untargeted LC-MS-based metabolomics.
Samples from diverse sources need to be processed appropriately to make
them compatible with LC-MS analysis. Chemical derivatization can be
performed to facilitate the chromatographic separation of metabolites in
the LC and increase the sensitivity of metabolite detection in the MS
system. Chromatographic and spectral data are acquired by high-
resolution LC-MS. Subsequent data processing, such as centroiding,
deisotoping, filtering, and peak recognition, yields a data matrix
constructed by sample identity, ion identity (RT and m/z), and ion
abundance. Through data transformation and multivariate data analysis, a
multivariate model can be established in which the scores plot illustrates
the principal or latent components of the model as well as sample
classification while the loadings plot presents the contribution of each ion
to sample classification in the model.

Experimental model

Selecting an appropriate experimental model is essential for
acquiring the samples that can best reflect the metabolic changes in
XIT. In vitro models, such as the incubations of xenobiotics with cell
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culture, tissue homogenates, or purified enzymes, can be adopted to
examine hypothesis on xenobiotic-elicited metabolic events associated
by specific tissue, cells, or enzymes. However, to reveal xenobiotic-
induced global metabolic changes in a biological system, animals and
humans are still the best sources for sample collection. Compared to
animals, using humans as experimental subjects has clear advantage in
clinical significance, but has disadvantages in other aspects: 1) in
general, pre-treatment metabolic differences among human subjects
are much greater than differences among experimental animals due to
both internal and external factors, such as genetic polymorphism, age,
and health status; 2) environment, diet, and life style vary greatly in
human subjects, but are under strict control in experimental animals;
3) for XIT, toxic doses can be achieved in animal models, but not in
humans under experimental conditions; 4) tissue samples are
accessible in animal models, but rarely available in humans. Therefore,
in many cases, animals are more robust experimental models for
defining the mechanisms of XIT. Nevertheless, if under sound
experimental design and sufficient number of experimental subjects,
metabolomic investigation of xenobiotic exposure in humans still
provides great opportunities for identifying metabolic biomarkers of
XIT and verifying the observations in animal studies.

Sample preparation

To maximize the information available for LC-MS analysis,
sample preparation has to be designed and performed based on the
chemical and biochemical properties of the particular biological
matrix of the samples (Fig. 2). Dramatic metabolic changes are usually
associated with XIT and it is not uncommon for many XIT-
associated metabolites to be vulnerable to further metabolic changes
until the potential for change is terminated. Potential post-coﬂection
alterations include enzyme-mediated biochemical reactions and
degradation due to unfavorable environmental conditions (high
temperatures) or bacterial contamination. To reduce or avoid these
changes prior to metabolomic analysis, rapid freezing in liquid
nitrogen or quenching treatments are widely used for tissue and cell
culture samples [29], while bactericides and cold traps are frequently
used for urine collections.

Without appropriate processing, biological samples, including
urine, blood, tissue, and cell culture, are not suitable for LC-MS
analysis due to the biomatrices of these samples [30]. Sample
processing aims to preserve integrity of the sample metabolome and
also facilitate the detection of metabolites [31]. Basic sample
processing procedures, such as removing proteins and particles, are
required for all samples, while specific procedures are adopted
according to the physical and chemical properties of samples as well
as the aims of metabolomic analysis. For urine samples, the
interference of its inorganic salt content with LC-MS analysis can be
abated by dilution or solid phase extraction. Serum contains both
water-soluble metabolites and large quantities of lipid species.
Therefore, besides stringent protein removal, phase separation
methods, such as Bligh’s [32] for hydrophilic and lipophilic faction in
serum, should be considered before LC-MS analysis.  Subcellular
fractionation of tissue and cell culture samples prior to phase
separation can be conducted to identify distribution and changes of
metabolites within specific intracellular organelles or compartments
such as mitochondria and the cytosol. In multiple-step sample
processing, adding internal standard is recommended to account for
the experimental variances across samples.

Making samples more compatible for LC-MS analysis is not the
only aim of sample preparation. Enhancing the sensitivity of
metabolite detection is the other important aim of sample
preparation. Metabolite concentration in samples and ionization
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efficiency in MS are two major factors determining the sensitivity of
metabolite detection in LC-MS analysis. Low-abundance metabolites
in samples can be concentrated by condensation, solvent extraction, or
column extraction. However, for many metabolites, the barriers for
their detection in LC-MS analysis are not their concentrations in
samples, but their non-optimal performance in LC and MS systems,
such as poor retention in LC column and insufficient ionization in
MS [32]. To enhance the chromatographic and spectroscopic
performance of these metabolites, one effective approach is to
conduct chemical derivatization (Fig. 1). Chemical derivatization has
been widely used in GC-MS analysis to improve separation,
detectability and sensitivity of metabolite detection. The application
of chemical derivatization in LC-MS analysis has greatly expanded in
the recent years [33]. In general, derivatization reactions are designed
based on the functional groups, such as amino, carboxyl, carbonyl,
and hydroxyl moieties in the metabolites. Increased hydrophobicity
and chargeability are two desired effects of chemical derivatization
[34]. For example, amino acids are commonly derivatized by dansyl
chloride [35]. The detection of organic acids is significantly enhanced
through esterification of carboxyl group with amines, hydrazines, or
alcohol, while detection of aldehydes and ketones is assisted by the
formation of Schiff bases after derivatization reactions [36, 37].
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Figure 2. Metabolic events in XIT and potential targets of LC-MS-based
metabolomics. Biotransformation of xenobiotics and xenobiotic-induced
metabolic changes occur simultaneously during the initiation and
progression of XIT. LC-MS-based metabolomics is not only able to identify
the metabolites generated or affected by these events (exploratory
investigation), but also capable of revealing the biochemical mechanisms
underlying these events when combined with other experimental models
and biochemical analyses (hypothesis-driven investigation).

LC-MS analysis and data acquisition

The mobile phase and column of the LC system and the ion
source and mass detector of the MS system (Fig. 1) are major
components of LC-MS analysis that can significantly affect data
quality. The mobile phase plays a critical role in metabolite separation
in the LC column and also facilitates metabolite ionization in the MS
system. In addition to choosing appropriate solvents (such as
acetonitrile, methanol, water) and solvent gradients based on the
chemical properties of the samples, the addition of eluent additives to
suppress unwanted signals or selectively enhance signals of interest can
greatly increase the ability to detect and the sensitivity to quantify
particular compounds in a mixture. The two most common types of
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additives are acids and bases (formic acid, ammonium acetate, etc.) to
alter pH and compounds such as tributylamine and triethylamine to
form ion pairs [38]. The widespread adoption of ultra-performance
liquid chromatography (UPLC) in chemical and metabolomic
analyses is one prominent development in LC separation technology.
Smaller particle size (sub-2 micron) and higher tolerance to back
pressure in UPLC systems produce much better resolution in
chromatographic separation and greater sensitivity for ion detection
than traditional HPLC [19, 39]. In addition, new developments in
column chemistry provide more choices such as hydrophilic
interaction liquid chromatography (HILIC) columns for separating
polar and nonpolar compounds [40]. Nevertheless, reverse phase
(RP) columns are still the most commonly used for general LC-MS
metabolite analysis.

Ionization of analytes is a prerequisite for mass detection in MS
system. Selection of ionization method, such as electrospray
ionization (ESI), atmospheric pressure chemical ionization (APCI),
and the chemical components of mobile phase have major impacts on
ionization efficiency. With regard to mass detectors, two important
factors are sensitivity and mass accuracy. Nominal mass MS detectors,
such as the triple quadrupole MS, can perform highly selective and
sensitive quantitation of targeted metabolites, while detectors with
full scan and accurate mass measurement capacities, such as time-of-
flight (TOF) or Fourier transform MS [41], have a clear advantage in
untargeted metabolomics where simultaneous measurement of many

metabolites is required [19].

Data analysis

For untargeted metabolomic analysis, chromatographic and
spectroscopic data generated from LC-MS analysis need to be
properly processed before being used in multivariate data analysis
(MDA) (Fig. 1). Data processing includes data condensation and
reduction by centroiding and deisotoping mass spectra; removal of
noise or background signals; and peak identification by setting
threshold windows for mass-charge ratio (m/z) and retention time
(RT) [42]

parameters of the whole dataset (such as total ion count, median ion

Furthermore, normalization of MS data against

count) or intensities of internal standards (such as creatinine in urine)
is commonly conducted to reduce the influence of systematic and
sample biases (such as dilution or condensation) [19]. Thus, each
unique pair of RT-m/zand its signal intensity become the identity of
one metabolite. Afterwards, the processed datasets can be either
directly used for MDA or further statistically transformed and scaled
according to the properties of data and the purpose of MDA.

Both unsupervised MDA, such as principal components analysis
(PCA), or supervised MDA, such as projection to latent structures-
discriminant analysis (PLS-DA) or orthogonal PLS (OPLS), are
widely used to analyze metabolomic data. Compared to traditional
statistical methods, such as #test and ANOVA, MDA can better
handle and interpret the large datasets generated by LC-MS analysis.
After MDA, a large portion of examined dataset is represented by the
principle components (PC) in the multivariate models [18]. The
sample-PC and sample-sample relationships can be visualized in
scores plot of the established MDA model, in which the spatial
distance between two samples reflects differences in their chemical
composition. In metabolomic analysis of XIT, when a clear separation
between samples from vehicle and samples from xenobiotic treatment
is observed in the scores plot, the XIT-related metabolites can be
conveniently identified in the loadings plot through their correlation
with the PCs that separate two treatments (Fig. 1). The chemical
identities of biomarkers and metabolites are determined by accurate
mass measurement, elemental MS/MS

composition analysis,
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fragmentation and subsequent database searches (such as Human
Metabolome  Database:  http://www.hmdb.ca/, Lipid Maps:
http:/ /www.lipidmaps.org/, METLIN database:
http://metlin.scripps.edu/). Recent development in bioinformatics
has further facilitated metabolite annotation in LC-MS-based
metabolomics studies [43, 44].

Applications of LC-MS based metabolomics of XIT

Metabolic events in XIT encompass biotransformation of
xenobiotic (Xenobiotic metabolism) and xenobiotic-induced metabolic
changes in biological system (Fig. 2). All these metabolic events have
distinctive roles in the initiation and progression of XIT. Compared
to traditional metabolite analysis, the benefits of adopting LC-MS
based metabolomics in studying XIT are mainly based on its
analytical capacity to investigate these events effectively. Metabolomic
investigation of XIT can be defined as exploratory, such as the
identification of new xenobiotic metabolites and biomarkers, or
hypothesis-driven, such as the role of enzymes and pathways in XIT
(Fig. 2). To achieve these aims, adaptation of effective research
approaches is essential in metabolomics studies. In this review,
common approaches used in the LC-MS-based metabolomic
of XIT-associated

metabolic changes are examined and their potential applications in

investigation xenobiotics metabolism  and

resolving practical issues in XIT are illustrated by case studies and
proof-of-concept experiments.

LC-MS-based  metabolomic
metabolism

investigation —of xenobiotic

In XIT, biotransformation serves as a double-edged sword.
Xenobiotics can be either activated or detoxified by biotransformation
reactions catalyzed by xenobiotic metabolizing enzymes (XME) in the
body. The balance between bioactivation and detoxification, in many
cases, may determine the toxic effects of xenobiotics [1]. Therefore,
studying the biotransformation of xenobiotics 11 vivo is essential for
understanding and predicting XIT. Since xenobiotic metabolites,
especially reactive metabolites, usually are not the most abundant
metabolite species in biofluids and tissues, one major challenge in the
study of xenobiotic metabolism is how to efficiently and thoroughly
identify xenobiotic metabolites among thousands of chemical species
in biological samples. Using a radiolabeled xenobiotic to trace its
metabolites is a very effective method due to the sensitivity and
quantitative nature of radiotracing. However, wide application of
radiotracing is hampered by concerns of contamination and health
hazards as well as the time and cost associated with the synthesis of
radiolabeled compounds.

In recent year, mass defect filtering methods have been developed
in the drug metabolism field [45, 46]. Based on high-resolution mass
and  algorithm-based

composition, these metabolite searching methods use the numerical

measurement computation of elemental
values of mass increase or decrease caused by known metabolism
reactions or an artificial mass defect window as the screening filter to
identify metabolites formed by single or multiple reactions. The major
issue with this approach is that the filters do not cover all m vivo
biotransformation reactions, especially the many uncommon reactions
that may cause dramatic mass changes [47]. In addition, results
obtained from mass filtering might be plagued with false-positive
entries. Therefore, metabolomics-guided metabolite profiling offers
an effective alternative that can circumvent drawbacks and limitations
of the abovementioned metabolite identification methods in
xenobiotic metabolism research [19].
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Figure 3. Examples of LC-MS-based metabolomic investigation of metabolic events in XIT. The dashed arrow lines indicate correlations between samples in the
scores plot and ions in the loadings plot of multivariate models. A. Identification of xenobiotic metabolites. Through metabolomic analysis of mouse urine
samples from control, APAP, and [AcetyI-ZHg]-APAP treatments, the unlabeled APAP and deuterated APAP metabolites can be conveniently identified in the
loadings plot. The ions that increased in both APAP and [Acetyl-’Hs;]-APAP treatments are from endogenous metabolism [53]. B. Role of XME in the
biotransformation of xenobiotic. Through the metabolomic analysis of mouse urine samples from PhIP-treated wild-type, Cypla2-null, and CYP1A2-humanized
mice, genotype-dependent PhIP metabolism is illustrated by the distinctive distribution of PhIP metabolites in the loadings plot [56]. C. Kinetics of xenobiotic-
induced changes in endogenous metabolism. Through metabolomic analysis of daily mouse serum samples from a 3-day cocaine treatment, lipid species
correlating with development of cocaine-induced hepatotoxicity in mice can be identified in the loadings plot [61].
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Samples from diverse sources, including urine, serum, feces, tissue
extracts, and in witro incubations, can be used for metabolomic
examination of xenobiotic metabolism. In most cases, pooled urine or
fecal samples collected within a day are more suitable than blood or
tissue samples for profiling xenobiotic metabolites since the majority
of xenobiotic compounds do not accumulate in the body. A
straightforward approach for identifying i  wivo xenobiotic
metabolites is to conduct metabolomic comparison between samples
from vehicle and xenobiotic treatment groups. As xenobiotic and its
metabolites only appear in samples from the xenobiotic treatment, it
is expected that separation between vehicle and xenobiotic treatment
in the metabolomic model should be primarily due to the xenobiotic
and its metabolites (Fig. 2). Therefore, analyzing ions that contribute
to the separation of xenobiotic and vehicle treatments can lead to the
identification of xenobiotic metabolites. Employing this approach,
novel metabolites of therapeutic agents, phytochemicals, and dietary
compounds, including aminoflavone [48], arecoline [49], fenofibrate
[50], melatonin [S1], and cocaine [52], have been identified, and
novel metabolic routes have been characterized.

Direct metabolomic comparison of vehicle and xenobiotic
treatments facilitates the identification of xenobiotic metabolites,
especially for the treatments that do not significantly affect
metabolism. However, xenobiotics  also

endogenous many

dramatically  alter or disrupt endogenous metabolism  of
carbohydrates, amino acids, and/or lipids. In the metabolomic models
of these treatments, metabolites contributing to the separation of
vehicle and xenobiotic treatment include both xenobiotic metabolites
and the endogenous metabolites responsive to xenobiotic treatment.
To avoid interference from endogenous metabolites, a stable isotope-
based metabolomic approach using xenobiotics labelled with 2H, "*C,
N, or O can be used to facilitate identification of the xenobiotic
metabolites. In practice, equal amount of labeled and unlabeled
xenobiotic are used in the treatments. Since the endogenous
metabolites affected by the labeled or unlabeled xenobiotic treatment
are the same or very similar, metabolites contributing to the separation
of the labeled and unlabeled groups in the metabolomic models are
mainly xenobiotic and its metabolites.

Efficacy of the stable isotope-based approach has been
demonstrated in several studies [53, 54]. For example, in a
metabolomic investigation of acetaminophen biotransformation in
mice, two groups of mice were treated with a hepatotoxic dose of

(APAP) and deuterated APAP,

Separation of urine samples from the two treatments in a

acetaminophen respective]y.

metabolomic model was mainly caused by APAP metabolites and
their labeled counterparts (Fig. 3A). Besides identifying known APAP
metabolites in urine, such as cysteinyl-APAP and APAP glucuronide,
several new biomarkers that are highly correlated with APAP toxicity
were confirmed as APAP metabolites based on the presence of stable
isotope in their structures [53]. Another benefit of this approach is to
separate the endogenous biomarkers from xenobiotic metabolites in
the loadings plot of metabolomic model (Fig. 3A). Furthermore, in a
separate study on ethanol-induced hepatotoxicity in mice, a dramatic
increase of Macetyl taurine (NAT) in urine was observed after
ethanol exposure. However, NAT as a metabolite of ethanol was not
confirmed until a metabolomic comparison of urine samples from
mice fed unlabeled ethanol and mice fed dueterated ethanol ([*He]-
ethanol) was performed [54].

In addition to its use in exploratory investigations of novel
xenobiotic metabolites, LC-MS-based metabolomics can also be
applied to hypothesis-driven investigation of XMEs in XIT when
appropriate experiment models are adopted in the studies (Fig. 2). It
is known that major XMEs, including functionalizing (phase I)
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enzymes and conjugating (phase II) enzymes, have different roles in
the bioactivation and detoxification of xenobiotics [1]. Animal
models containing modified XME genes, such as mutation, knockout,
or humanized models, have become powerful tools for investigating
the role of XMEs in XIT [5S5]. Traditional metabolite analyses of
xenobiotic metabolism in genetically—modified animal models usuaﬂy
focus on a few metabolites that are considered to be the direct
substrates or products of XMEs of interest. However, application of
LC-MS-based metabolomics has enabled a much more comprehensive
characterization of xenobiotic biotransformations in genetically-
modified animal models. For example, the role of CYP1A2 enzymes
in the metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine (PhIP), a widely distributed procarcinogen in the human
diet, was defined through a metabolomic comparison of PhIP
metabolism in wild-type, CyplaZ-null, and CYPIA2-humanized mice
(Fig. 3B). Comprehensive profiling of PhIP metabolites in these three
mouse lines not only confirmed the catalytic activity of CYP1A2 in
PhIP metabolism, but also revealed human-mouse interspecies
differences as well as the involvement of other P450s in PhIP
metabolism [56].

LC-MS-based metabolomic investigation of xenobiotic-induced

metabolic changes in biological systems

Disruption of metabolic systems always occurs in XIT. Metabolic
changes can be immediate and direct effects of chemical exposure, or
delayed and side effects of XIT. Characterizing these changes in
metabolic systems  is essential for understanding the molecular
mechanisms of XIT since the disorders in energy and nutrient
metabolism are usually the most prominent phenotypes of XIT.
Targeted metabolite analyses in XIT studies are usually highly
subjective due to their typical focus on suspected metabolites, or
guided by observed changes in gene and protein levels. In contrast,
untargeted metabolomic analysis can simultaneously monitor diverse
metabolic changes in biological systems, and provide guidance for
mechanistic nvestigations at the enzyme, protein, and gene levels
[57].

Choosing an appropriate sample source for metabolomic analysis
is important in order to obtain meaningful information on XIT-
associated metabolic changes because each source has a different
mixture of metabolites which represents the different metabolic
activities associated with the source. Possible sample sources include
biofluids, excreta, tissues, cell pellets, and cell culture media. In animal
experiments, urine and fecal samples reflect the consummate effects of
XIT-induced metabolic activities, while biofluids and tissue samples
reflect the real-time metabolic status in XIT. In addition,
metabolomic analysis of tissue/organ targets of xenobiotics can
identify local or tissue specific effects of xenobiotics on metabolism
while urine and serum can reflect the systemic impact of tissue
toxicity on the whole body.

Similar to the metabolomic investigation of xenobiotic
metabolism, a straightforward approach in the metabolomic
investigation of XIT-induced metabolic changes is to determine
differences between untreated and treated subjects or differences

Based on the
pathophysiological and metabolic phenotypes of XIT, such as fatty

between susceptible and  resistant  subjects.
liver, muscle degradation, and oxidative stress, metabolomic analysis
can be adjusted to focus on specific classes of metabolites, including
lipids, amino acids, and organic acids. For example, changes in the
composition and concentrations of lipid species are observed in many
XIT events. However, the significance of these changes in lipidome is
not well understood. GC-based fatty acid profiling was the most

widely performed lipid analysis, but this assay is insufficient to reflect
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the real biochemical consequences caused by the disruption of lipid
metabolism since bioactive lipid species are usually complex lipids
[58]. Compared to GC-based fatty acid analysis, LC-MS-based
lipidomics has clear advantages in detecting complex lipid species,
which makes it an ideal tool for the simultaneous examination of
diverse lipid species, including XIT-induced changes in lipid
metabolism [59, 60]. In a recent LC-MS-based lipidomics study of
cocaine-induced liver injury, progression of hepatotoxicity in a 3-day
cocaine treatment was closely associated with disruption of serum
lipidome since the time-dependent separation of serum samples in a
MDA model represented the contribution of different Iipid species on
each day of cocaine exposure (Fig. 3C) [61]. Guided by this lipidomic
model and MS-based structural elucidation, accumulation of long-
chain acylcarnitines was defined as a prominent cocaine-induced
metabolic change. Because of the importance of long-chain
acylcarnitines in mitochondrial fatty acid catabolism, this observation
led to the identification of cocaine-induced inhibition of fatty acid
oxidation in the liver. The relevance of this observation to cocaine-
induced hepatotoxicity was further validated by cotreatment with
fenofibrate, which activated peroxisome proliferator-activated receptor
o (PPAR@), a central regulator of fatty acid oxidation, and protected
the mice against toxicity. Furthermore, LC-MS-based lipidomics
revealed that cotreatment with the PPARa ligand reversed cocaine-
induced changes in the lipidome [61]. Besides lipids, chemical-
induced changes in amino acid metabolism, antioxidant turnover, and
carbohydrate metabolism, have also been effectively examined by LC-
MS-based metabolomics [62-64].

As a significant component of biological system, gut flora preform
metabolic reactions that differ from their host, producing both
nutrients and non-nutrients [65]. A broad MS-based metabolomics
study that used GC-MS and LC-MS analyses, of intestinal digesta
from conventional and germ-free mice revealed the significant
contribution of bacterial metabolites to mammalian blood metabolites
[66]. In addition to their known effects in intestinal ailments,
metabolic diseases, and immune diseases [67-69], gut flora can also
affect XIT through indirect regulation of XMEs [70] or direct
interference of xenobiotic metabolism [71, 72]. Because of the
complexity and unpredictability of bacterial metabolism, it is expected
that LC-MS-based metabolomics should be more effective than
traditional metabolite analysis for examining the influences of
xenobiotics on symbiotic gut flora in humans and animals. For
example, LC-MS-based metabolomics of ethanol treatment has shown
that the development of ethanol-induced fatty liver was associated
with increased bacterial metabolites in urine [54]. Expanding the
application of metabolomics in studies of microflora metabolism will
generate more insights into the roles of gut flora in XIT.

Besides its usage in exploratory investigations to identify
biomarkers and new metabolites, LC-MS-based metabolomics can
also be applied to hypothesis-driven investigations of metabolic
pathways in XIT-induced metabolic changes (Fig. 2). Hypotheses of
the roles of specific metabolizing enzymes and regulatory pathways in
XIT can be tested through a combination of metabolomic analysis
with other experimental approaches. For example, animal models that
have different sensitivities to xenobiotic exposure or that are
genetically altered to interfere with XIT can be compared. For
example, dextran sulfate sodium (DSS)-induced acute colitis was
examined by LC-MS-based serum metabolomic analysis. Inhibition of
stearoyl-CoA  desaturase 1 (SCD1), an enzyme responsible for
converting saturated fatty acids to mono-unsaturated fatty acids, was
identified  after
lysophosphatidylcholine to oleoyl lysophosphatidylcholine in  the

observing an increased ratio of stearoyl

serum of DSS-treated mice. The anti-inflammatory role of SCD1 in
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colitis  was further

DSS-induced defined by LC-MS-based
metabolomics and biochemical analyses of the relationship between
SCD1 activity and DSS-induced proinflammatory effects [73].
Examining the roles of metabolizing enzymes and regulatory
pathways in XIT is just one application of LC-MS-based
metabolomics in the hypothesis—driven investigation of XIT-related
metabolic changes. Determining the metabolic routes contributing to
observed metabolic phenotypes or specific changes in small-molecule
biomarkers in XIT, such as the upstream and downstream metabolites
of identified biomarkers, is another potential application of
hypothesis-driven metabolomic investigation (Fig. 2). When a
hypothesis about the source and metabolic route of a biomarker is
proposed, a combination of LC-MS-based metabolomics and stable
isotope tracer can become a powerful analytical tool to test the
hypothesis. The techniques of using stable isotope-labeled glucose,
amino acids, and fatty acids to interrogate the metabolic networks
have been widely used in studying xenobiotic-induced metabolic
changes [74]. The methodology of LC-MS-based untargeted
metabolomics with stable isotope tracer has been improved recently
[75]. Therefore, it is reasonable to believe that application of LC-MS-
based metabolomics and stable isotope tracer will generate more
mechanistic insights into XIT-related metabolic changes in future.

Conclusion

Wide adoption of metabolomics in biomedical research in recent
years has demonstrated its advantages over traditional metabolite
analysis approaches. As a branch of metabolomic techniques, LC-MS-
based metabolomics possesses great promise for becoming the most
commonly used analytical platform to identify novel metabolites and
elucidate metabolic changes due to its versatility and sensitivity. As
illustrated by the case studies in this review, LC-MS-based
metabolomics has merits in unraveling novel information on the
metabolic alterations caused by XIT and the underlying mechanisms
responsible for these alterations. With the development of new LC-
MS  techniques and data methods, LC-MS-based

metabolomics will have more applications in both exploratory and

analysis

hypothesis-driven nvestigations of XIT.
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