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METABOLIC ENGINEERING OF BIOCATALYSTS FOR CARBOXYLIC ACIDS

PRODUCTION
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Abstract: Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace

petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate
primary buﬂding blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and

productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-

performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable

microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering,

like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the

production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on

Saccharomyces cerevisiae and Escherichia coll, as well as the strategies to improve tolerance towards these chemicals.

MINI REVIEW ARTICLE

Introduction

Carboxylic acids can be used as platform chemicals to generate
primary building blocks of industrial chemicals by both enzymatic
and chemical catalysis. For example, free fatty acids can be extracted
from the fermentation medium and catalytically converted into esters
or alkanes (54, 71). As the demand for sustainable energy increases,
production of useful chemicals from renewable feedstocks using
biocatalyst fermentation is more attractive as a replacement for
petroleum-based fuels and chemicals. Currently, several carboxylic
acids have been fermentatively produced (Table I). However
biocatalysts with high product yield, titer and productivity are
desirable in order for fermentative processes to be economically
competitive with petroleum-based processes (2, 34).

Selection-based strain improvement, often enabled by random
mutagenesis, has been very successful for the production of carboxylic
acids (5, 7). However, our ability to produce carboxylic acids and
other fermentation products is often limited by complex cellular
metabolism and regulations (20). Currently, as information is
acquired from new technologies such as high- throughput genomic
sequencing and DNA recombination technology, we have the ability
to overcome these limitations and improve microbial performance by
fine-tuning enzymatic, transport and regulatory functions (8).
Metabolic engineering, defined as “the directed improvement of
production, formation, or cellular properties through the modification
of specitic biochemical reactions or the introduction of new ones with
the use of recombinant DNA rtechnology” plays a key role in
improving strain performance (22, 37).

Here, we describe the use of metabolic engineering, motivated and
guided in part by omics analysis, to enable desirable microbial
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performance for fermentative production of carboxylic acids (Figure
I). We mainly focus on recent progress with Escherichia coli and
Saccharomyces cerevisiae for production of lactic acid, malic acid and
succinic acid. S. cerevisiae is appealing for carboxylic acids production
because it can tolerate low pH. This reduces the need for maintenance
of neutral pH via alkali addition and the low-pH fermentation broth
is less vulnerable to contamination. Moreover, product tolerance can
be another key factor in regards to the performance of developed
strains, so strategies to improve tolerance to carboxylic acids are also
discussed.
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Figure 1. Strain development methods in carboxylic acid production

I. Metabolic Engineering by genetic manipulations

1.1 Improvement of product formation by overexpression of key
pathway enzymes

Increasing the expression of key enzymes in the desired metabolic
pathway, as well as deletion of competing pathways, is often necessary
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Fermentative production of carboxylic acids

Table 1. Production of the carboxylic acids malate, lactate and succinate by E. coli and S. cerevisiae from glucose.

Carboxylic acid Organism Condition Titer Yield Productivity Refs
(g/L) (g/g) g/L/h
S. cerevisiae Aerobic flask 59 0.31 0.19
H (82)
H
H
Malate E. coli Two-stage process 34 1.05 0.47 (85)
Ha‘\l/ﬁ\ﬂ S. cerevisiae Anaerobic, batch 70 n/a 0.93 (72)
H
H
Lactate E. coli Anaerobic, batch 118 0.98 2.88 (24)
HuT\/ﬂ\ S. cerevisiae Shake flask 3.62 0.1 n/a (62)
H
Succinate E. coli Anaerobic, batch 83 0.92 0.88 (32)

n/a — not available

to improve target production. There are many examples of this type
of strategy enabling production of carboxylic acids. In this section,
we review overexpression of both native and heterologous enzymes
contributing to improved succinate production by E. coli and malate
production by S. cerevisiae; Figure 2 shows a simplified overview of
central carbon metabolism in E. coli.

Under anaerobic conditions, the formation of succinic acid by £.
coli is primarily from the carboxylation of phosphoenolpyruvate
(PEP) into oxaloacetate (OAA). This pathway is encoded by two
enzymes: PEP carboxylase (PEPC, encoded by ppc) and PEP
carboxykinase (PEPCK, encoded by pck). Overexpression of ppc has
been reported to significantly increase succinic acid production from
glucose (50). However, no effect was found by overexpression of the
native PEPCK in E coli (50). Furthermore, overexpression of
PEPCK from Actnobacillus succinogenes, the main CO:-fixing
enzyme in the A. succimogenes succinate production pathway, in E.
coli ppc-deficient mutant strains increased the production of succinic
acid by as much as 6.5-fold (38).

In E coli, PEP may also be converted into pyruvate either by the
phosphotransferase system (PTS) or by pyruvate kinase. In other
organisms, pyruvate can be converted into OAA by pyruvate
carboxylase (PYC) (6, 59), which is not present in £. coli. Therefore,
another way to produce more OAA is by the heterologous expression
of pyruvate carboxylase. The pyc gene from Rhizobium et was
expressed in £, coli, leading to an increase in succinate production
from I.I8gL" to 1.77g L (23). Co-overexpression of genes encoding
PEPC from Sorghum vulgare and PYC from Lactococcus lactis in E.
coli increased the succinic acid yield relative to individual
overexpression of only PEPC or PYC (47).

In succinate production by E col;, NADH availability was
reported to be a Iimiting factor. The fermentative pathway converting
OAA to succinate requires 2 moles of NADH per succinate
produced. However, one mole of glucose can only provide 2 moles of
NADH through the glycolytic pathway. So the maximum theoretical
yield of succinate is one mole per glucose consumed (65). The
improved succinate yield can be accomplished by increasing
availability of NADH. Berrios-Rivera et al heterologously expressed
NADH-forming formate dehydrogenase from Candida boidinii in
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E. coli to generate 4 moles NADH per glucose consumed.
Futhermore, this strategy was improved to produce more than 4
moles of NADH per glucose by combination with a more reduced
carbon source (9). Additionally, a novel pathway with a reduced
stoichiometric NADH/succinate molar ratio has been reported to
increase succinate yield and productivity in £, coli. Three genes (IdhA,
adhE;, ack-pta) involved in central anaerobic pathway and one gene
(iclR) involved in regulation of the glyoxylate pathway under aerobic
conditions were deleted to eliminate competing NADH pathways and
redirect carbon flux through the fermentative pathway and the
glyoxylate pathway. Additionally, pyruvate carboxylase from
Lactococcus lactis was expressed in the above mutant at the same time
to increase the flux from pyruvate to OAA. The resulting strain can
efficiently produce 1.61 moles of succinate per mole glucose, with
only 1.25 mole of NADH needed (65).

Wild-type S cerevisiae can naturally produce low levels of L-
malate as this compound is part of the central metabolic pathways,
such as the TCA cycle. Although four pathways have been identified
in S, cerevisiae for malate formation, the most promising route for
malate production from glucose is from pyruvate followed by
reduction of OAA to malate, resulting in a maximum theoretical yield
of 2 mol of malate per mol of glucose. This pathway involves the
cytosolic enzymes pyruvate carboxylase and malate dehydrogenase
(82). cytosolic  isoenzyme
dehydrogenase (Mdh2p) increased malate production to 12 g L~
(61), but Mdh2p is subject to repression by glucose, both at the

enzyme and transcript level (5I). Furthermore, the strategy for

Overexpression Of the Of malate

cytosolic malate dehydrogenase overexpression was based on
retargeting the peroxisomal isoenzyme encoded by MDH3 to the
cytosol by deletion of the C-terminal peroxisomal targeting sequence.
This strategy increased the malate concentration more than 3-fold in
shake flask
carboxylase (PYC2) did not significantly improve malate production
(82).

Malate transport is also an important strategy to improve malate

experiments. However, —overexpressing — pyruvate

production. S. cerevisiae does not have a membrane transporter for
malate and the diffusion across the plasma membrane is slow (74).
Thus, there has been interest in the use of heterologous transporters.
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Fermentative production of carboxylic acids
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Figure 2. Metabolic pathways for production of lactate, malate and succinate in E. coli. For simplicity, cofactor usage is not shown. Heterologous genes

expression is indicated by a dashed line.

Genes and enzymes:
aceA, isocitrate lyase; aceB, malate synthase; ackA, acetate kinase;

adhE, aldehyde dehydrogenase; crr, glucose-specific phosphotansferase enzyme IIA
component; fumABC, fumarase isoenzymes; frdABCD, fumarate reductase; icd, isocitrate dehydrogenase; IdhA,

lactate dehydrogenase; mdh, malate

dehydrogenase; ppc, phosphoenolpyruvate carbolxylase (PEPC); pck, phosphoenolpyruvate carboxykinase (PEPCK); pyc, pyruvate carboxylase (PYC); pykA and
pykF, pyruvate kinases; pflB, pyruvate-formate lyase; pta, phosphate acetyltransferase; ptsG, PTS system glucose-specific EIICB component; ptsH,
phosphocarrier protein HPr; ptsl, phosphoenolpyruvate-ptotein phosohotransferase; sdh, succinate dehydrogenase.

Expression of the malate transporter SpMAEI from yeast
Schizosaccharomyces pombe was first reported to mediate the import
of malate in S. cerevisiae (75); later studies showed that expression of
SpMAEI also enabled increased malate production (14, 82).
Moreover, simultaneous overexpression of the native pyruvate
carboxylase, cytosolic malate dehydrogenase and SpMAEI in &
cerevisiae generated a high malate-producing strain with titers of 59 ¢

L and a malate yield of 0.42 mol per mol glucose (82).

1.2 Improvement of product formation by inactivation of

competing pathways

Deletion of metabolic pathways that compete with production of
the target compound can be a useful method for redirecting metabolic
flux into the desired pathway.

Anaerobic  production of succinate by E. coli is normally
associated with co-production of acetate, formate, lactate and ethanol.
Preventing the formation of these byproducts would improve
succinate production by both increasing product purity and hopefully
increasing product yield and concentration, though this is challenging
given the constraints of maintaining redox balance and the need for a
net generation of ATP. Deletion of lactate dehydrogenase (/dh)
eliminates the pathway that converts pyruvate to lactate (43).
Formation of the other three byproducts (ethanol, formate and
acetate) is dependent on pyruvate formate lyase, which converts
pyruvate into acetyl-CoA and formate. Although simultaneous
inactivation of the pyruvate-formate lyase (pfIB) and lactate
dehydrogenase (/dhA) resulted in the intended decrease in production
of lactate, acetate and ethanol, unfortunately this double mutant strain
was unable to ferment glucose. However, a spontaneous mutation in
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this ApfIB AldhA strain restored its ability to ferment glucose and
produce succinic acid, acetic acid and ethanol in proportions of 2:1:1I,
which was an improvement relative to the wild-type ratio of 1:2:2
(21).  Furthermore,

fermentation was mapped to the prsG gene encoding a membrane-

the causative mutation restoring glucose

bound, glucose-specific permease in the phosphotransferase system
(PTS). Specifically, inactivation of the prsG gene in the double
mutant strain restored the ability to ferment glucose and increased
succinic acid production (I8). Redox balance is also an important
factor in metabolic engineering and strain development. The double
mutant (ApfIB AldhA) resulted in a NADH/NAD* 2:1 imbalance,
which can limit growth. Singh et al identified a series of genes related
to NADH oxidation: grxB, hyfl; yhcA, argA, ptkB, marA, moak,
ygfT; and nuoC. Overexpression of these genes improved the growth
of a double mutant with reduced NADH/NAD" ratio and improved
succinate production up to 20%
glucose (67).

Reducing the metabolic flux to pyruvate is also critical for

in minimal media plus IOg/L

succinic acid production. Triple deletion mutants for three pyruvate-
forming enzymes (ptsG, pykF and pykA) produced 2.05 ¢ L
succinic acid, a more than sevenfold increase over the wild type (0.29
gL (41)

Under aerobic conditions, the most effective way to produce
succinic acid is through the glyoxylate cycle, in which isocitrate is
converted into succinate and glyoxylate by isocitrate lyase (aceA).
Disruption of succinate dehydrogenase (sdh), isocitrate dehydrogenase
(ied), glyoxylate operon aceBAK repressor (1c/R) and acetate pathways
(poxB, ackA-pta) redirected the carbon flux through the glyoxylate
bypass, resulting in production of 5.08 ¢ L' (43mM) succinate in an
aerobic batch fermentation (46). The same strategy was applied in
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yeast: genes encoding succinate (SDHI, SDHZ2) dehydrogenase and
isocitrate dehydrogenase (/DHI, IDPI) were deleted from S
cerevisiae, increasing succinate production from 0.76 g L' to 3.62 g
L1 (62).

Ethanol is often produced as an undesirable byproduct during
carboxylic acid production by yeast. There are two enzymes associated
with ethanol production: pyruvate decarboxylase (PDC) and alcohol
dehydrogenase (ADH). The first attempt to eliminate ethanol
formation was conducted in a lactate-producing strain. The ADHI
gene encoding ADH, which converts acetaldehyde into ethanol, was
deleted. However, the decreased ethanol titer in the adhl-deletion
strain did not result in increased accumulation of lactate (68). While
deletion of all three PDC genes (PDCI, 5 and 6) encoding PDC
isozymes completely eliminated ethanol formation and increased the
accumulation of pyruvate, the mutant strains showed growth defects
when grown on glucose as the sole carbon source. This weakness was
addressed by directed evolution of a PDC knock-out strain using
glucose as sole carbon source (73).

2. Omics analysis

Although genetic manipulation is powerful, its application is
limited to previously-characterized enzymes and regulators. Omics
analysis can provide the global information from disturbed
metabolism and find the potential target genes for problem solving.

2.1 Transcriptome analysis

Transcriptome analysis, either by DNA microarray or sequencing-
based quantification, has proven to be a powerful tool in the
identification of novel target genes for improving strain performance
(20).

One of the successful examples was performed for lactate
production. In order to further improve lactate production by &
cerevisiae, the whole gene expression data was compared between a L-
L-lactate
dehydrogenase and the same strain harboring an empty plasmid. One

lactate-producing  strain that expressed the human
of the most notable differences between the engineered and control
strains was a 28-fold increase in abundance of the L-lactate
cytochrome-c  oxidoreductase encoded by CYB2 gene in the
engineered strain. In S cerevisiae, the function of CYBZ is to oxidize
lactate to pyruvate. Its high expression suggested that some of the
lactate was being assimilated back to pyruvate in the engineered strain
and prevention of this assimilation could increase lactate production.
Subsequent deletion of the CYBZ gene confirmed this hypothesis by
increasing L-lactate production I.5-fold (57).

The usefulness of transcriptome analysis in the identification of
targets for metabolic engineering was further demonstrated by a
microarray-based selection and screening of deletion strains. Lactate
dehydrogenase (LDH) is the enzyme responsible for lactate
production. Gene expression profiles were compared between the L-
lactate producing strain (carrying LDH from human) and its control
strain (carrying the plasmid without LDH). This analysis identified
388 genes with significantly altered abundance in the L-lactate
producing strain. In order to verify the effectiveness of microarray-
based selection, individual deletions for 289 of these genes, as well as
deletions for 56 randomly selected genes, were implemented into the
strain with the plasmid carrying the human LDH gene. The lactate
productivity was compared between these two groups of deletion
strains and a control strain without the human LDH gene.
Significantly altered L-lactate production was observed in 59 of the
deletion strains selected based on the transcriptome data and in none

of the 56 randomly-selected strains (27).
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Regulators controlling the pathway for target production can also
be identified from transcriptome analysis. The Hap2/3/4/5 complex
activates transcription of almost all genes involved in TCA cycle,
oxidative phosphorylation and respiration (55). Hap4p is mainly
responsible for the activation of transcription produced by this
complex (56). Yano et. al. found that HAP4 is related to the
production of malate and succinate in S, cerevisiae (81). A yeast strain
(20G-R39) with high malate and succinate production was isolated
by mutagenesis of its parental strain (K-70I). By comparing the
transcriptome profiles of these two strains, the genes involved in TCA
cycle, oxidative phosphorylation and respiration were found to be
upregulated in strain 20G-R39. Furthermore, a Northern blot
analysis confirmed that //AP4 had increased transcript abundance in
strain 20G-R39 than its parent strain. Subsequent productivity tests
showed that overexpression of /4AP4 resulted in increased production
of malate and succinate.

2.2 Proteomics

Proteomics examines the levels of proteins and their changes
under particular genetic and environmental conditions, providing the
information of complicated biological processes and posttranslational
modifications (25).

The use of pentose sugars, such as xylose, as fermentation
feedstocks remains challenging because many biocatalysts cannot use
it as a carbon source. Although . colf can naturally metabolize xylose
to produce D-lactate, limitations of efficient xylose utilization still
exist. In order to increase the lactate production from xylose, genes
involved in competing pathways (pfIB, adhE and frdA) and an ATP-
dependent xylose transporter (encoded by xy/FGH) were deleted from
wild type E. colif MGI65S to generate strain JUOI. Furthermore, an
adaptive evolution with increasing xylose as the sole carbon source
was performed with JUOI to generate the robust strain JUIS. JUIS
had a 2.7-fold increase in xylose consumption rate and I19-fold
increase in lactate yield relative to wild type E. coli. To identify the
mechanism of the increased xylose utilization, quantitative proteomics
were used to compare the parental strains and the evolved strain. The
results showed increased abundance of most of the enzymes involved
in glycolytic pathways and xylose consumption, suggesting a change in
a xylose transporter for a higher catabolism of xylose. Further
investigation of the evolved strain JUIS using comparative genome
sequencing and phenotypic validations identified garC as a xylose
transporter. In strain JUIS, a point mutation within garC; which
resulted in a change from serine to leucine at position 184, is
responsible for the high xylose consumption phenotype (35). Note
that GatC has been reported as the IIC component of galactitol PTS
system.

Mannheimia succiniciproducens has been reported to produce
relatively large amounts of succinic acid under CO2-rich conditions
(69). In order to elevate the production of succinate, the genes
encoding lactate dehydrogenase, pyruvate-formate lyase,
phosphotransacetylase, and acetate kinase were deleted from strain M.
succiniciproducens MBELSSE; the resulting strain was named LPK7.
Proteomic analysis, performed with both two-dimensional gel
electrophoresis and mass spectrometry, was used to compare LPK7 to
its parent strain MBELSSE in both exponential and stationary phase.
This analysis revealed altered expression of enzymes involved in ATP
formation and consumption, pyruvate metabolism, glycolysis and
amino acid biosynthesis. Additionally, the changes in amino acid
biosynthesis are important to illustrate why LPK7 can produce more
succinic acid than its parent strain. The starting C4-compound for
succinic acid production is oxaloacetate (OAA). Overexpression of

genes catalyzing amino acid biosynthesis from OAA (asd, dapA and
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dapD) and decreased expression of genes catalyzing amino acid

biosynthesis from o-ketoglutarate (gdh, argDD and argG) can explain
this phenotype (40).

2.3 Flux analysis

The distribution of metabolic flux through various metabolic
networks plays a key role in determining biocatalyst behavior.
Understanding the metabolic pathways required for production of the
target compound and controlling the flux through these pathways can
be enormously helpful in strain design and modification (49, 63).
Fluxomics is widely used in metabolic engineering (10, 30, 70), as it
not only provides a general view of the distribution of carbon
throughout the metabolic network, but also quantifies intracellular
metabolite turnover rates for specific metabolic pathways. Hence the
information from comparing metabolic flux between control
regulation and functional regulation can be assessed as guidelines for
manipulating metabolic phenotype (37).

Flux balance analysis (FBA) predicted an optimal metabolic
pathway in £, colf for succinic acid production. It was found that the
pyruvate carboxylation pathway should be wused rather than
phosphoenolpyruvate carboxylation pathway (42). Based on the
genome-scale E. coli stoichiometric model iJR904 and applied in
silico optimization, the estimated maximal succinate yield was 1.6 mol
succinate/mol glucose. Then a combination of i silico optimization
and metabolic flux analysis identified three potential target genes for
improving succinic acid production, including the glucose
phosphotransferase transport system (PTS), pyruvate carboxylase, and
the glyoxylate shunt. Genetic modification of these targets enabled
higher succinate yields: 1.29 mol succinate,/mol glucose, relative to
the 0.15 mol/mol observed with the parent strain (76). Moreover, a
powerful combination of genetic inventory and flux balance analysis
has been demonstrated. Specifically, it was desirable to compare the
central carbon metabolism of the succinate producer Mannherimia
succiniciproducens to E. coli in order to find candidate genes for
increased succinate production. Metabolic pathways that exist in £
coli but not in M. succiniciproducens were considered to drive
metabolic flux away from succinic acid formation. Five genes,
including prsG (component of the phosphotransferase system),
pykAF (pyruvate kinases), mgo (malat:quinone oxidoreductase),
sdhABCD (succinate dehydrogenase), and aceBA (glyoxylate shunt
enzymes), were found in £. coli but not in M. succiniciproducens and
were selected as potential target genes for deletion. A flux balance
analysis based on a genome-scale metabolic model of £. colr was used
to select the optimal gene deletion combinations, and predicted
deletion of prsG and pykAF was promising, where the prsG and
pykAF deletion strains had a 100-fold higher succinate production
rate than the wild type strain (41).

B3C-based metabolic flux analysis is also a useful way to investigate
metabolism i vivo (63, 78). The purpose of "“C-labeling is to
investigate the operation of central metabolic pathways using labeled
distribution of these labeled carbons
downstream metabolites is determined by gas chromatography-mass

precursors.  The within
spectrometry (GC-MS) or nuclear magnetic resonance spectroscopy
(NMR), and additional constraints on the metabolic network are
used to calculate the intracellular flux distribution (15, 19, 37, 70). In
S. cerevisiae, L-malic acid is synthesized from pyruvate followed by
reduction of OAA to malate (60). Genetic modifications which aimed
to drive flux through this pathway were conducted in S cerevisiae,
including overexpression of native pyruvate carboxylase, cytosolic
malate dehydrogenase and malate transporter from
Schizosaccharomyces pombe. After genetic modification, the highest

malate production was obtained with titers up to 59 g liter”. Then,
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a®C-NMR-based metabolic flux analysis performed on the modified
strains demonstrated that the flux distribution was consistent with
involvement of pyruvic oxaloacetic acid pathway (82).

3. Engineering tolerance to product toxicity

Product toxicity is a pervasive problem in the metabolic
engineering of microbial biocatalysts for economically viable
production of biorenewable fuels and chemicals (I, 33, 53, 64).
Specifically, the growth and metabolism of the biocatalyst can be
inhibited at high product concentrations, limiting the amount of
product formed. Historically, this problem is addressed through the
use of metabolic evolution, as described below. However, an
understanding of the mechanism of toxicity can enable rational
engineering efforts to mitigate this problem (II, 33, 77). Omics
analysis, as described above and reverse engineering of evolved strains
can aid in understanding the toxicity mechanism.

Carboxylic acids have been reported to be toxic to microbes,
possibly due to membrane disruption and perturbed metabolic
pathway by cytosol acidification (I, 4, 12, 43, 45). Directed
metabolic evolution serves to select for beneficial mutations by
continuously culturing the cells under selective pressure (13). Acetic
acid released from hydrolysis of lignocellulose is a strong inhibitor to
microbes during production of chemicals from plant biomass (58).
Two evolutionary strategies have successfully selected strains with
acetic acid tolerance in S cerevisiae (79). The first strategy was to
culture the yeast cells in increasing concentrations of acetic acid while
maintaining the pH at 4. The second strategy was conducted by
prolonged anaerobic continuous cultivation without pH control. In
this strategy, selective pressure for acetic acid tolerance was generated
by acidification from ammonium assimilation. The evolved strains
from both methods showed improved tolerance to acetic acid after
400 generations.

Transcriptome analysis is another useful tool to identify target
genes for further strain development by comparing the expression
profiles between strains with the acid-adapted and unadapted
phenotype. The mechanism for carboxylic acid-tolerance has been
eXtensively investigated in S cerevisiae from genome-wide response by
transcriptome analysis. Using global phenotypic analysis and
transcriptional proﬁling, many genes related to weak acid resistance in
S. cerevisiae have been identified to be regulated by Msn2p/Msn4p
(66). A transcriptome analysis to investigate carboxylic acid toxicity
(sorbate, acetate, propionate and benzoate) in S. cerevisiae identified
14 genes as up-regulated in response to all acids. Genes related to cell
wall, such as SPII encoding a glycosylphosphatidylinositol-anchored
cell wall protein and YGPI encoding cell wall-related secretory
glycoprotein, and membrane transport process were reported as
overrepresented in this dataset (1), and PdrI2p is also up-regulated in
response to sorbate, propionate and benzoate. PdrI2p transports
weak acid anions from the cytosol by energy-dependent export (28).
Furthermore, transcriptome responses to octanoic acid and decanoic
acid in \S. cerevisiae revealed that the expression of transporters such as
Pdr12p and Tpolp is important for detoxification of octanoic acid
by exporting it out of cells. Decanoic acid resistance involved Tpolp,
genes related to the beta-oxidation pathway and ethyl ester synthesis.
Note that both carboxylic acids activated oxidative stress genes (43).
In addition, transcriptome anaylysis of the acetic acid response in &,
cerevisiae showed that 80% of the acetic acid-activated genes were
directly or indirectly regulated by Haalp. Among these genes, the
deletion of HRKI, which encodes a protein kinase dedicated to the

regulation of membrane transporter activity, resulted in the increased
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acetate accumulation in  acid-stressed cells and  increased
susceptibility to acetic acid (52).

Bacteria can detect environmental stress by sensor proteins, which
are regulated by various transcription factors. A mathematical method,

Network Component Analysis (INCA) based on known connectivity

between transcription factors (TF) and genes, was applied in E. coli

to analyze the dynamics of the activities of various TFs based on
transcriptome profiles. Kao er a/ used NCA of 16 TFs to estimate
transcription factor activities (TFA) during the transition from
glucose to acetate (36). They found that the activities of TFs
regulating genes for amino acid biosynthesis, nucleotide biosynthesis
and carbon source transition were disturbed.

Metabolic flux analysis is also a useful tool in identification of the
mechanism of inhibition. For example, a recent metabolic flux analysis
of E. coli during octanoic acid challenge (Fu et al,, in preparation)
revealed decreased flux through pyruvate dehydrogenase and the TCA
cycle, possibly due to the redox imbalance caused by membrane
damage.

Recently, a combination of directed evolution, transcriptome
analysis and reverse engineering constructed a succinate-tolerant £
coli strain (39). Wild-type £. colf W3110 was continuously cultured
in a gradually increasing concentration of succinate for 9 months, at
which the succinate concentration was 0.592M. The final evolved
strain DSTI60 showed higher tolerance than the wild-type strain
under the same succinate stress: in the presence of 0.592M succinate,
DSTI160 showed a growth rate of 0.20 h', a 10-fold improvement
relative to the wild-type strain value of 0.02 h'. Comparative
profiling by DNA microarray and quantitative PCR  between
DSTI160 and wild type W3I10 showed that genes related to active
transport and biosynthesis of osmoprotectants were upregulated.
Furthermore, expression of }/g/E a putative succinate antiporter, and
betA, for betaine biosynthesis, in non-adapted E. coli increased
growth rate under succinate stress.

4. Combination of directed evolution and genetic engineering

While genetic manipulation and metabolic evolution are both
while useful on their own, these tools become especially powerful
when used together. Here, we review the examples where these two
strategies have been successful combined to produce malate, succinate
and lactate.

One such example is the alternating use of targeted gene deletion
and growth-based metabolic evolution conducted in E. coli to
improve the production of succinate and malate in mineral salts media
(31). The first component of this strategy was to eliminate formation
of lactate, ethanol and acetate by deleting /dhA, adhE and ackA,
respectively. This left the malate and succinate pathway as the primary
route for NAD® regeneration and ATP production under
fermentative conditions. Then the resulting strain KJOI2 was evolved
in growth-based selection in order to simultaneously select for
improved growth and therefore, improved carboxylic acid production.
The evolved strain was further improved by deleting genes involved in
byproduct formation (focA, pfIB, poxB and mgsA) and growth-based
evolution was again used to generate two strains (KJO60 and KJ073)
with production of 622-733mM succinate, and one robust malate
strain producing 516 mM malate. Moreover, further study in two
robust succinate producing strains KJO60 and KJ073 found two
mutations responsible for their phenotypes. One is a promoter
mutation in pck, leading to increased expression of PEPCK, increased
ATP formation and therefore increased succinate production. The
second mutation was a frameshift mutation within psz/, inactivating

the PTS system. In this case, PTS-mediated glucose uptake was
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replaced by increased expression of galactose permease (ga/P) and
glucokinase (g/k) (84, 806).

The same engineering scheme was also successfully applied for
lactate production (88). Deletion of the pathways for ethanol
(adhLE), acetate (ackA) and the Z mobilis homoethanol pathway from
E. coli KOII generated strain SZI110. This left lactate production as
the only method for NAD™ regeneration during fermentative growth.
Then a growth based -evolution was performed on SZI10, resulting
in strain SZ132. Further deletion of other foreign genes resulted in
lactate-producing strain SZ186. Both SZ132 and SZI86 can produce
667-700 mM lactate in mineral salts medium. Further improvement
from SZI86 by eliminating co-product formation and further
metabolic evolution in mineral salts medium with glucose generated
strain SZ194, with the production of 1.2M lactate from 12% glucose
with addition of ImM betaine as osmoprotectant (87).

S. Summary and Outlook

Developing fermentative processes that can provide biorenewable
sources of bulk chemicals in a manner that is economically
competitive with petroleum-based processes is becoming increasingly
attractive, important and feasible. Here we have highlighted existing
projects that clearly demonstrate that metabolic engineering is a useful
tool in developing these processes. Specifically, we have focused on
existing projects for the production of malate, lactate and succinate.
Previous successes have also been reported for acetate, pyruvate,
hydroxyacids and butanol (3, 16, 17, 29) and many groups are
currently working on production of longer-chain and medium-chain
carboxylic acids (C5 and C6) (44, 80, 83).

Metabolic engineering in the form of overexpression of key
pathway genes, as well as deletion of competing pathways, has proved
quite effective for improving carboxylic acid production. Omics
analysis has also been indispensable in the selection of non-obvious
metabolic engineering targets. Improved tolerance to carboxylic acids
s a key aspect of this area that needs further attention to enable
production of these chemicals at higher titer. It is also clear that the
cell membrane will be a promising target for future metabolic
engineering. Furthermore, efflux pumps which can export the
carboxylic acids outside the cells will be useful for improve the
tolerance. In the future, a combination of synthetic technology with
current metabolic engineering information is expected to engineer a
robust biocatalyst to produce biorenewable chemicals in place of
petroleum.
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