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Abstract

BACKGROUND—Genotype imputation substantially increases available markers for analysis in 

genome-wide association studies (GWAS) by leveraging linkage disequilibrium from a reference 

panel. We sought to (i) investigate the performance of imputation from the August 2010 release of 

the 1000 Genomes Project (1000GP) in an existing GWAS of prostate cancer, (ii) look for novel 

associations with prostate cancer risk, (iii) fine-map known prostate cancer susceptibility regions 

using an approximate Bayesian framework and stepwise regression, and (iv) compare power and 

efficiency of imputation and de novo sequencing.

METHODS—We used 2,782 aggressive prostate cancer cases and 4,458 controls from the NCI 

Breast and Prostate Cancer Cohort Consortium aggressive prostate cancer GWAS to infer 5.8 

million well-imputed autosomal single nucleotide polymorphisms.

RESULTS—Imputation quality, as measured by correlation between imputed and true allele 

counts, was higher among common variants than rare variants. We found no novel prostate cancer 

associations among a subset of 1.2 million well-imputed low-frequency variants. At a genome-
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wide sequencing cost of $2,500, imputation from SNP arrays is a more powerful strategy than 

sequencing for detecting disease associations of SNPs with minor allele frequencies above 1%.

CONCLUSIONS—1000GP imputation provided dense coverage of previously-identified prostate 

cancer susceptibility regions, highlighting its potential as an inexpensive first-pass approach to 

fine-mapping in regions such as 5p15 and 8q24. Our study shows 1000GP imputation can 

accurately identify low-frequency variants and stresses the importance of large sample size when 

studying these variants.
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INTRODUCTION

Prostate cancer is one of the most common chronic diseases afflicting the US and European 

aging male population [1,2]. So far, more than 45 independent common germline variants 

have been robustly associated with prostate cancer risk [3,4]. Since current commercial 

single nucleotide polymorphism (SNP) microarrays are primarily designed to tag genetic 

variants with minor allele frequencies (MAF) greater than 5%, the current signals have only 

explored a fraction of the potential genetic architecture of prostate cancer. New dense SNP 

microarrays can begin to investigate the component of the genetic architecture due to 

variants with MAF between 2 and 5%, but at a substantial financial cost. However, the 

emergence of high performance imputation programs can be applied to previously scanned 

data sets to search for less common variants associated with complex diseases, such as 

prostate cancer.

Recently, data from the 1000 Genomes Project (1000GP) have become publicly available 

[5]. The 1000GP is a large-scale sequencing consortium designed to survey common and 

uncommon human genome variation (to a standard threshold of MAF> 0.5%) by combining 

high and low-coverage sequencing projects. The overall goal of the 1000GP is to 

characterize 95% of currently accessible common variation with MAF greater than 1%, as 

well as to catalogue all coding functional alleles with MAF > 0.1%. Using data from the 

1000GP as a reference panel, it is possible to impute over 11.5 million autosomal single 

nucleotide polymorphisms (SNPs) by utilizing existing SNP microarray data.

Fine mapping studies have attempted to localize signals from prostate cancer susceptibility 

loci by using custom genotyping panels, HapMap imputation, and earlier versions of 

1000GP imputation to improve the coverage of variants around genomic regions of interest 

[6–9]. These studies were successful in localizing association signals, identifying 

statistically independent markers, and suggesting variants for functional analysis. While 

these studies indicated that imputation can be a useful tool for fine mapping, each of these 

studies only focused on a particular susceptibility locus of interest. GWAS leveraging 

1000GP data have begun to appear [10–15], but to our knowledge, imputation of a prostate 

cancer GWAS based on the 1000GP reference panel has yet to be published as a full 

analysis across the entire genome, which would enable an ‘agnostic’ investigation of 
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potential new SNPs associated with prostate cancer. Moreover, the approach can also be 

useful for exploring fine mapping of established loci.

Our study aimed to use the 1000GP sequencing data to impute loci in the NCI Breast and 

Prostate Cancer Cohort Consortium (BPC3) aggressive prostate cancer genome-wide 

association study (GWAS). Our goals were to (i) evaluate how well the 1000GP reference 

panel could impute new loci in our existing GWAS, (ii) search for novel imputed SNPs 

associated with prostate cancer risk at genome-wide significance levels (5×10−8), (iii) 

further fine map existing prostate cancer loci using the higher SNP density of the 1000GP 

imputation, and (iv) determine optimally powered approaches to investigate disease 

associations with low-frequency genetic variants.

MATERIALS AND METHODS

Genotyping data for our study originated from the BPC3, a collection of 7 prospective 

cohort studies aimed at investigating hormone-related gene variants and environmental 

factors for prostate cancer [16]. The aggressive prostate cancer GWAS includes 2,782 

aggressive prostate cancer cases, defined as either having extra prostatic extension (stage 

C/D) or high histological grade (Gleason score >7), and 4,458 controls of European 

background. Individuals were genotyped on one or more Illumina Infinium Human SNP 

arrays, resulting in a total of 569,767 SNPs that passed quality control filtering [17]. 

Participating subjects provided informed consent, and the institutional review boards from 

each participating center approved the study protocol.

We used the August 4, 2010 release of the 1000GP as the reference panel for imputation. 

The European continental group contains autosomal sequences for 283 individuals of 

European ancestry. Called SNPs were mapped using the Genome Reference Consortium 

Human 37 assembly (GRCh37) and dbSNP version 129. The 283 reference individuals 

represent 90 Utah residents with Northern and Western European ancestry from the Centre 

d'Etude du Polymorphisme Humain collection (CEU), 92 Italians from Toscani, Italy (TSI), 

43 British from England and Scotland (GBR), 36 Finnish in Finland (FIN), 17 Mexicans 

from Los Angeles, California (MXL), and 5 Puerto Ricans in Puerto Rico (PUR). The 

release is a four-way merged set that combines data from the Broad Institute, Boston 

College, University of Michigan, and the National Center for Biotechnology Information 

and was downloaded from the MACH website (www.sph.umich.edu/csg/abecasis/MACH/

download/1000G-2010-08.html) on February 3, 2011.

Our study employed a two-stage imputation approach that was applied separately to each of 

the seven BPC3 cohorts. The first stage consisted of phasing the genotyped data of each 

individual. In this step, alleles from each genetic locus are assigned to their respective 

chromosomal strands of DNA. We carried out phasing in our dataset using the expectation-

maximization algorithm in version 3.3.1 of BEAGLE [18].

In the second stage, expected allelic counts were inferred for each imputed locus from the 

phased data, resulting in a continuous allelic dosage between 0 and 2; this dosage was 

included in subsequent logistic-regression analyses testing for association between each 
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SNP and aggressive prostate cancer. The second-stage imputation used the European 

continental group from the 1,000GP as the reference panel. The minimac program, an 

efficient implementation of the MaCH algorithm [19] designed to work on phased genotypes 

and very large reference panels, was used for imputing in this second stage. Imputation R2 

values were calculated for all imputed SNPs; these estimate the level of success of 

combining local linkage disequilibrium from genotyped BPC3 markers and the reference 

panel to infer probabilistic genotypes at each imputed locus. The imputation R2 compares 

the observed variance of the genotype scores with the expected variance of the genotype 

scores if they were observed without error and can be interpreted as an estimate of the 

squared correlation between the true genotype and the imputed genotype [19].

Association analyses for each genetic locus were carried out using logistic regression as 

implemented in ProbABEL version 0.1-3 [20]. ProbABEL factors in the uncertainty from 

imputed SNPs and carries out a one degree of freedom likelihood ratio test comparing 

whether the effect of each germline variant is significantly different from the null. 

Additionally, we included covariates for the first principal components to adjust for potential 

population stratification bias. We calculated principal components using the GLU struct.pca 

program on a set of population informative SNPs [17,21]. These analyses were conducted 

separately for each cohort; locus effect estimates and standard errors from each cohort were 

then imported into METAL (2009-02-03 release) for meta-analysis [22]. For each marker, 

only cohorts with imputation R2 greater than 0.80 were included in the final meta-analysis.

We used complementary approaches to fine-mapping 32 known prostate cancer 

susceptibility regions within the imputed 1000GP data set. First, to identify a set of SNPs 

that is highly likely to contain the causal variant in a region (assuming it is contained in the 

1000GP reference panel), we conducted an approximate Bayesian analysis. This approach 

estimates the posterior probability that a given SNP is a causal variant assuming there is 

only one causal SNP in the region, that it has been either genotyped or imputed, and that 

each SNP in the region is equally likely a priori to be the causal variant. The estimate is a 

simple ratio of the likelihood from the logistic regression for a particular SNP and the sum 

across all likelihoods for individual SNPs in the region [23–25]. Posterior probabilities were 

estimated for all SNPs in windows spanning 1cM upstream and downstream from the most 

highly associated published SNP in the region. Once these posteriors are estimated, the 

highest posterior density set is defined as the smallest set of SNPs such that the total 

posterior density (summed over all SNPs in the set) is above 80%. This approximate 

Bayesian approach can help guide the selection of candidate SNPs for further downstream 

functional and bioinformatics analyses.

In addition, stepwise regression models were used to screen for potentially novel, 

statistically independent signals in published genome-wide significant regions (p < 5 × 

10−8). Multilocus models were iteratively used that conditioned on the top-ranked variants 

to look for independently associated variants. With each consecutive round, the previously 

most significant variant within a region was included as an additional covariate in the model 

and additional signals were assessed for statistical significance. Signals were considered 

statistically independent if they had a false discovery rate [26] less than 5% (accounting for 

the number of SNPs within a 2 cM window). This approach can determine whether there are 
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statistically independent markers in a region. However, the parsimonious, independent set of 

markers chosen via this procedure need not contain any of the causal variants, even if these 

are typed or imputed and analyzed (each marker may be a proxy for many other markers in 

strong linkage disequilibrium, any one of which may be a causal variant).

Power calculations were also conducted to compare differences in power between two 

designs aimed at detecting associations between low-frequency or rare variants and disease; 

imputation using the 1000GP reference panel into a set of samples to be genotyped, or de 

novo sequencing of large numbers of samples. A range of minor allele frequencies from 

0.005 to 0.50 and effect estimates with relative risks ranging from 1.1 to 2.0 were 

investigated across varying sample sizes using a one degree of freedom genotype trend test 

[27]. When calculating sequencing power, we ignored any potential sequencing error and 

assumed all 1000GP loci could be perfectly measured. For imputation power, we took into 

account imputation error by factoring in the imputation R2 distribution as a function of 

minor allele frequency [28,29]. The minor-allele-frequency-specific imputation R2 

distributions were calculated by averaging the empirical distribution of R2 across the seven 

cohorts in the BPC3. All power calculations assume a 1:1 case:control ratio and an alpha 

level of 5×10−8. Additional calculations were carried out to compare the cost to achieve 

80% power when using either 1000GP imputation or whole-genome sequencing approaches. 

A ratio of the cost to genotype plus imputation over the cost to sequence was used as a 

metric to compare cost effectiveness. A ratio greater than one indicates that under the 

specified parameters it is more cost effective to perform whole-genome sequencing, whereas 

if the ratio is less than one 1000GP imputation is favored. Several cost scenarios were 

considered for whole genome sequencing to estimate the effects of sequencing price on 

overall cost-effectiveness.

RESULTS

The August 2010 release of the 1000GP was used to impute 11,572,501 autosomal loci 

based on SNP genotype data on 2,782 aggressive prostate cancer cases and 4,458 controls 

spread across the 7 BPC3 cohorts. Genotyped SNPs with empirical R2 and leave-one-out R2 

estimates greater than 0.80 had a concordance greater than 99.8%, indicating that the 

imputation R2 is an adequate estimate for the quality of imputed SNPs. The results of the 

imputation R2 are presented in Table 1 for each cohort. While the overall number of subjects 

in each cohort ranges from 418 to 2,161, there were minor differences in the percentage of 

SNPs that reached the same R2 threshold across cohorts. We selected an R2 cutoff value of 

0.80 for all subsequent association analyses, resulting in a total of 5.8 million loci being 

included into our association analyses.

Figure 1 shows the relationship between the MAF of a SNP and the ability of the 1000GP 

reference set to impute the locus. In general, as the MAF increased, the average imputation 

R2 increased. For rare variants (MAF≤0.01), the 1000GP reference panel imputed 237,399 

(6%) of these variants with an R2 value greater than 0.80. For low frequency variants 

(0.01<MAF≤0.05), the number of variants with an R2 greater than 0.80 was 915,708 (43%). 

For common variants (MAF>0.05), the 1000GP reference panel was used to impute 

4,705,850 (85%) of the SNPs with R2 values greater than 0.80. Even though it is more 

Machiela et al. Page 5

Prostate. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difficult to impute rare variants, the data indicate that the distribution of well-imputed SNPs 

(R2≥0.8) as a function of minor allele frequency was skewed toward lower-frequency 

variants (Figure 2). This is a result of the large number of rare variants in the 1000GP panel 

(34% of 1000GP reference panel); even though a smaller proportion of rare variants could 

be imputed well, the absolute number of well-imputed rare variants was larger than the 

number of well-imputed common variants. We also observed that a greater proportion of 

variants were removed from the analysis when we filtered for high imputation R2 (>80%) 

than would be expected if the distribution of 1000GP variants was more uniformly 

distributed over MAF.

Association results from the genotyped analysis and the imputed analysis were combined by 

meta-analysis and plotted in Figure 3. The Manhattan plots for the genotyped data and 

imputed data highlight qualitative differences in marker density between the two association 

analyses. Although no novel loci were found to be associated with prostate cancer risk at 

genome-wide significance levels (p<5×10−8), additional imputed variants in LD with 

previously published loci were observed with p-values of comparable magnitude. These 

results provide a higher resolution association analysis of known prostate cancer regions.

When applying a Bayesian framework to these regions, we found instances where 1000GP 

imputation was of little assistance for highlighting variants for future functional study 

(Figure 4a) and also instances where 1000GP imputation was successful in aiding selection 

of variants for further investigation (Figure 4b). For example, Figure 4a shows the TET2 

region on chromosome 4q24, which is within a 2cM window flanking rs7679673 and 

includes 6,122 SNPs. The minimum p-value in our dataset was 2.15×10−3 for rs2905651, 

which was an imputed variant. After applying the approximate posterior Bayesian 

framework to this region, many variants had posterior probabilities that remained close to 

their prior probabilities, with 3,162 loci (52%) needing to be carried forward for further 

study to reach a posterior probability sum greater than 0.80. The lack of high posterior 

probabilities underscores the large sample sizes needed to narrow the list of potential causal 

variants using an association approach [25]. In this particular case, although this region has 

been shown to be robustly associated with prostate cancer, the evidence for association in 

our data set remains relatively weak. In contrast, for the IRX4 region on chromosome 5p15 

(Figure 4b), the approximate posterior Bayesian framework is useful in selecting variants for 

further analysis. This region is a 2,413 SNP window that spans 2cM around SNP 

rs12653946. Again, an imputed SNP (rs34695572) is the most significantly associated 

variant (p-value= 8.51×10−4). In this region, only 8 SNPs (<1% of the total SNPs in the 

window) were required to reach a posterior probability sum greater than 0.80.

The stepwise regression models used to screen for potentially novel, statistically 

independent signals within published genome-wide association regions were unable to find 

variants that had not previously been reported. The models, however, did closely replicate 

known multilocus associations that have previously been published at prostate cancer 

susceptibility regions. For example, Figure 5 highlights five statistically independent signals 

located in the 8q24 region associated with prostate cancer risk. Despite the fact that the 

1000GP imputation included 8 times the variants in the region than available from 

genotyping alone, including 15 rare and 298 low-frequency variants, the added information 
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from imputation did not identify new independent variants in the 8q24 region associated 

with prostate cancer.

Results from power calculations comparing a hypothetical whole-genome sequencing study 

to a hypothetical study that used standard array based genotyping and 1000GP imputation 

are displayed in Figure 6. At all minor allele frequency and relative risk levels sequencing 

has improved power over imputation. This difference is most notable at lower minor allele 

frequencies and relative risks primarily due to the lower imputation R2 values when 

imputing lower MAF variants with the August 2010 release. The cost-effectiveness to obtain 

80% power is also compared for sequencing and imputing (Figure 7). Results are displayed 

for 3 hypothetical pricing schemes that represent current approximate prices and two future 

pricing scenarios. As the cost to sequence decreases, the MAF at which it becomes more 

effective to sequence increases, however, genotyping plus 1000GP imputation remains most 

cost effective for investigating common variants [30].

DISCUSSION

Our study demonstrated that the 1000GP reference panel can be used to successfully impute 

over 5.8 million autosomal loci, of which 1.2 million have estimated MAF < 5%, based on 

existing GWAS data using the first generation of commercial HumanHap Illumina SNP 

microarrays. GWAS sample size and Illumina HumanHap array type had little effect on the 

ability to impute loci; the MAF of the imputed variant was the greatest determinant of 

successful imputation. We observed no new loci associated with prostate cancer risk below 

the threshold of genome-wide significance, but the 1000GP imputation did provide on 

average 10 times the number of variants in a region of interest resulting in a more dense 

resolution of variants around known associated regions with utility for fine mapping. 

Additionally, results from simulated power analyses showed that imputation is currently 

more cost effective than sequencing for SNPs with MAFs of 1-5% across a study of this 

size.

The ability of the 1000GP reference panel to impute over an order of magnitude more SNPs 

from existing genotype data provides a powerful tool for utilizing existing GWAS data to 

explore common and uncommon variants. For common SNPs alone (MAF 5-50%), the 

1000GP panel was successful at imputing 5,560,973 variants from the 569,767 available 

genotyped SNPs. An additional 6,011,528 low-frequency (MAF 1-5%) and rare (MAF <1%) 

variants were imputed from the 1000GP reference panel, allowing for the investigation of 

disease associations with lower-frequency variants that had previously been infeasible. 

However, a majority of these low-frequency variants had low imputation R2 values, with 

only 1,826,551 (30%) having R2 values greater than 0.50 and 1,153,108 (19%) having R2 

values greater than 0.80. This highlights the difficulty of imputing lower-frequency variants 

with the August 2010 European continental reference panel of 283 individuals and our 

sample size of 2,782 cases and 4,458 controls.

The newest release of the 1000GP (Phase I v3, March 2012) has 379 European samples and 

about 39.7 million markers, of which approximately 1.4 million are short indels and large 

deletions. To compare the performance of the added haplotypes and increased number of 
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markers with the August 2010 build, we imputed markers for chromosome 20 using both 

reference panels in a separate CGEMS GWAS of 1,145 breast cancer cases and 1,142 

controls. Results indicate that for an imputation R2 threshold of 0.80 approximately 20% 

more common variants (MAF>0.05) and 50% more low-frequency variants 

(0.01<MAF<0.05) would be available for analysis. The major gain was with rare variants 

(MAF<0.01), where up to 4 times as many well-imputed variants were available. The gains 

from adding information on 1.4 million short insertions and deletions have yet to be 

evaluated [31]. Correlations of imputed SNP dosages with imputation R2>0.3 were high 

between the two releases, with a correlation coefficient of 0.82. While advances are being 

made in 1000GP reference panels for imputation, current imputation of low-frequency and 

rare variants remains far from the quality achieved from sequencing, but does allow 

investigators to utilize existing GWAS data to investigate disease associations with a subset 

of well-imputed low-frequency variants.

In our meta-analysis of 2,782 aggressive prostate cancer cases and 4,458 controls, the 

1000GP imputed data did not elucidate any novel loci associated with prostate cancer risk. 

The three genetic loci that were genome-wide significant (p < 5×10−8) were within an 

intergenic region on 8q24.21, a region near TPCN2 on chromosome 11q13.3, and an 

intergenic region on 17q24.3; all of which have been robustly replicated and reported 

elsewhere [8,9,32–36]. The 1000GP imputed data, however, was useful in more densely 

mapping variants at known prostate cancer associated loci. For some loci, using the 1000GP 

imputed data and utilizing an approximate Bayesian framework, we were able to select a 

subset of highly probable potential causal variants for further analysis. In addition, stepwise 

regression models were able to successfully replicate the known multi-locus associations at 

complex regions such as 8q24 as well as 11q13 (results not included) [8,37] found using 

more dense genotyping technologies in fine mapping studies in larger sample sizes, but were 

unable to find novel independent variants within these regions.

Our power to detect a single specific association of a low-frequency variant and prostate 

cancer risk is small due to the requirement of a larger sample size for lower MAFs with 

comparable small effects and the issues of imputation accuracy of low MAF SNPs. For 

example, based on our sample size and the ability of the 1000GP European reference panel 

to impute a variant with MAF of 0.02, we would have <1%, 2%, and 16% power to detect a 

variant with a relative risk of 1.3, 1.5, and 1.7, respectively. However, our power to detect at 

least one locus when there is more than one directly associated variant within the tested 

MAF and risk range substantially increases. For example, under the assumption there are 10 

causal loci with a MAF of 0.02 and a relative risk of 1.7 either in the 1000GP reference 

panel or highly correlated with a variant in the 1000GP panel, our power to detect at least 

one locus is greater than 80 percent. Additionally, if there were 85 associated loci with a 

MAF of 0.02 and relative risk of 1.5, we would have over 80 percent power to detect at least 

one locus. Under these hypothetical assumptions, we can estimate an upper bound as to what 

the expected contribution of low-frequency variants may have on the genetic architecture of 

prostate cancer. Our failure to find any new such loci indicate that low-frequency variants 

associated with prostate cancer may have more subtle effects and may be fewer in number 

than the assumptions made in the above power calculations; for example, their effect sizes 
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may be less than a relative risk of 1.7 and there may be fewer than 85 such loci that 

contribute directly to prostate cancer risk.

Larger studies will be needed to better assess the role that low-frequency and rare variants 

have in the genetic architecture of prostate cancer. Figure 5 gives insight into the sample 

size increase needed to be well-powered to detect some of the effects of low-frequency 

variants. Compared to our sample size of 2,782 cases and 4,458 controls, such sample sizes 

have improved power, but may still require alternative analytical techniques such as “burden 

of rare variant” tests [38–43] in order to provide a comprehensive look into how lower-

frequency variants contribute to disease risk. Additionally, simulations based on the 

imputation R2 values from 1000GP imputation in our study can help maximize the cost 

effectiveness of future studies by guiding investigators to the optimal genotyping approach 

to obtain desired power levels. Currently, imputation is more cost effective when identifying 

associations at MAFs of 1-5%. As the 1000GP reference panel increases in size, this cost 

advantage could improve imputation for SNPs with MAF < 1%, but this is unlikely because 

of the substantial problem of the large fraction of SNPs with MAF < 1% that appear to be 

private to specific ethnicities [5]; this last fact indicates that it will be difficult to use 

reference panels for low MAF SNPs for the near future. However, this cost advantage for 

imputation will be reversed as the cost of sequencing decreases.

CONCLUSIONS

We have demonstrated that substantially more common and uncommon genetic variants can 

be imputed from existing GWAS datasets by using the August 2010 1000GP reference 

panel. While our imputed dataset was unable to find any novel loci associated with prostate 

cancer risk, we were able to demonstrate how an approximate Bayesian framework could 

select a highly probable subset of markers for additional analysis from an associated region 

of densely imputed SNPs. As our search continues to find additional prostate cancer risk loci 

at ever decreasing minor allele frequencies, it will become increasingly important to compile 

samples from larger, and thus better powered, consortia capable of detecting the contribution 

these low-frequency variants may have on prostate cancer risk.
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FIGURE 1. 
Imputation R2 distribution for rare (MAF ≤ 0.01, solid line), low-frequency (0.01 < MAF ≤ 

0.05, dotted line), and common (MAF > 0.05, dashed line) variants.
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FIGURE 2. 
Minor allele frequency distribution for the 5,858,958 well-imputed (imputation R2≥0.8) 

autosomal SNPs from the August 2010 release of the 1000GP data. The maximum 

frequency is at a MAF of 0.04.
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FIGURE 3. 
Manhattan plots of the genotyped data (569,767 SNPs) and the well-imputed data with R2 

greater than 0.80 (5,858,958 SNPs). Open white points represent previously published loci 

with genome-wide significant associations with prostate cancer risk.
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FIGURE 4. 
Results from 2cm windows around TET2 (A) and IRX4 (B) regions on chromosome 4q24 

and chromosome 5p15, respectively. The top panels show –log10 association p-values for 

each tested variant. The bottom panels display posterior probabilities from the approximate 

posterior Bayesian approach. Genotyped variants are indicated by open circles, imputed 

variants are solid circles, and previously published loci are shown in gray.
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FIGURE 5. 
LocusZoom plots of well-imputed variants from the 8q24 locus. Each panel shows 

statistically independent regions at the locus in order of statistical significance in our data. 

Color coding indicates the local pairwise linkage disequilibrium with our most significant 

variant in the region. Displayed –log10(p-values) are for overall association statistics with 

prostate cancer risk.
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FIGURE 6. 
Estimated power to detect a variant for a range of relative risks and minor allele frequencies. 

Power was estimated for 1000GP imputation (A) and sequencing (B). Darker regions 

indicate areas of high power.
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FIGURE 7. 
Comparison of the cost effectiveness of achieving 80% power by performing genotyping 

plus imputation to the cost effectiveness of sequencing. Above calculations are for a 

hypothetical disease with prevalence 10%, per allele relative risk of 1.3, and alpha of 

5×10−8. A genotyping to sequencing ratio greater than one indicates a scenario where it is 

more cost effective to sequence. Three scenarios of relative pricing are considered. The 

genotyping to sequencing ratio is plotted on a logarithmic scale.
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Table 1

n R2 ≥ 0 R2 > 0.3 R2 > 0.5 R2 > 0.8 R2 > 0.9

ATBC 1,490 11,572,501 (1.00) 7,632,434 (0.66) 7,015,561 (0.61) 5,957,745 (0.51) 5,180,557 (0.45)

CPSII 1,258 11,572,501 (1.00) 7,649,969 (0.66) 6,922,561 (0.60) 5,713,739 (0.49) 4,834,759 (0.42)

EPIC 857 11,572,501 (1.00) 7,715,156 (0.67) 7,041,970 (0.61) 5,931,981 (0.51) 5,114,239 (0.44)

HPFS 418 11,572,501 (1.00) 7,504,336 (0.65) 6,885,596 (0.59) 5,802,486 (0.50) 4,970,764 (0.43)

MEC 503 11,572,501 (1.00) 7,615,594 (0.66) 6,967,897 (0.60) 5,843,127 (0.50) 4,983,357 (0.43)

PHS 553 11,572,501 (1.00) 7,611,015 (0.66) 6,968,790 (0.60) 5,868,505 (0.51) 5,035,674 (0.44)

PLCO 2,161 11,572,501 (1.00) 7,810,713 (0.67) 7,076,176 (0.61) 5,895,120 (0.51) 5,039,260 (0.44)
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