
 

  

 

 

 

 

 

 
 
 
 

 
Introduction 
 

A fundamental tenet in the study of chemistry is the direct 
relationship between structure, and chemical and physical properties.  
In the field of molecular biology, this relationship becomes structure 
and function [1].  For proteins, structure plays a key role in catalysis, 
messaging, activation, and disease states [1-2].  In protein structures, 
what is particularly interesting is that both rigidity and flexibility are 
critical properties, often both being needed to fulfil functional 
requirements [2].  Proteins are synthesised as linear polypeptides that 
fold into compact three dimensional conformations consisting of a 
large number of inter-residue close-contacts.  They bind with other 
folded proteins and/or small molecules, often adapting to the shape 
and electrostatic requirements of these complexes.  It is the intrinsic 
complexity of the three dimensional conformations of proteins, and 
the important role that proteins play in living organisms, that lead 
many scientists to study them. 

In textbooks, protein structures are described at their different 
levels of complexity: primary, secondary, tertiary, and quaternary 
structure [1-2].  In this article, the focus is on details of three 
dimensional (3D) structure.  In practice, the way that scientists 
understand and work with 3D structures is closely determined by how 
they are represented in a computer.  Figure 1 illustrates some examples 
of different representations of 3D protein structure.  For protein 
crystallographers, for example, a protein structure is the atomic model 
that best represents observed electron density intensities.  Atom level 
details are typically viewed and explored, overlayed with electron 
density maps.  The quality of the electron density measurements and 
the fit to the atomic model, particularly for key atoms and residues of 
interest, provide the critical information needed to correctly interpret 
the data [3].   

For computational chemists working in pharmaceutical research, 
the typical approach is to use a more detailed all atom representation 

 
 
 
 
 
 

 
 

of just the binding site region; usually including hydrogen atoms 
directed toward their hydrogen bonding partners.  An in-depth 
analysis of the fine-details of specific non-covalent protein-ligand 
interactions, of local molecular surface shape and electrostatic profile, 
the role of specific water molecules, etc, provides a vast array of new 
information for understanding ligand binding [4]. 

For scientists working in structural bioinformatics, the typical 
view is often a less detailed schematic representation of 3D structure, 
highlighting the alpha helices, beta sheets, and loops.  Despite the 
lower detail, this level of analysis provides the best insight into overall 
topology and stability.  Furthermore, comparing and contrasting 
schematic representations helps with the elucidation of function and 
functional relationships; leads to powerful classification schemes; and 
provides insights into evolutionary relationships [5]. 

This article describes another approach for representing and 
investigating 3D protein structures, one that has grown rapidly over 
the last ten years, both in use and scope: the network approach.  More 
specifically, it explores methods that model protein structure as a 
network of nodes (typically aminoacid residues) and edges (close-
contacts between residues) and use a small world network analysis to 
account for key aspects of structure and function.  This type of 
analysis changes the focus from individual residues and individual 
interactions to local connectedness and the connectedness of the 
whole protein.  The change allows non-additivity effects and non-
local effects to be incorporated into modelling.  An example network 
view for a protein is shown in Figure 1c.  

The aim of this paper is to review the different ways that small 
world network concepts have been used as the foundation for 
building new computational models to study protein structure and 
function, and to extend and improve existing modelling approaches.  
The focus is on cheminformatics and bioinformatics, describing when 
and how network descriptors have been combined with standard 
properties to account for the contributions of non-local and global 
effects.  A brief introduction to networks and different network types, 
and the main descriptors used to explore them, is provided.  A short 
historical perspective on small world networks is also included.  Since 
the focus is on molecular structure, in the main part of this review the 
literature is divided according to whether the research is on single 
proteins, protein-ligand binding, or protein-protein binding. 

CSBJ 

Abstract: Small world network concepts provide many new opportunities to investigate the complex three dimensional structures of 
protein molecules.  This mini-review explores the published literature on using small-world network approaches to study protein 
structure, with emphasis on the different combinations of descriptors that have been tested, on studies involving ligand binding in 
protein-ligand complexes, and on protein-protein complexes.  The benefits and success of small world network approaches, which 
change the focus from specific interactions to the local environment, even to non-local phenomenon, are described.  The purpose is 
to show the different ways that small world network concepts have been used for building new computational models for studying 
protein structure and function, and for extending and improving existing modelling approaches. 

 

Small world network strategies for studying protein structures and 

binding 

Neil R. Taylor a,* 

Volume No: 5, Issue: 6, February 2013, e201302006, http://dx.doi.org/10.5936/csbj.201302006 
 

 

aDesert Scientific Software Pty Ltd, Level 5 Nexus Building, Norwest 

Business Park, 4 Columbia Court, Norwest, NSW, 2153, Australia 

 

* Corresponding author. Tel.: +61 288606466; Fax: +61 296807520 

E-mail address: neil.taylor@desertsci.com 

1 

 



 
 
 
 
 
 
 
 
 

When a system is defined as a network, one is describing it at a 
highly abstract level, reducing it to a collection of simple nodes joined 
to one another by simple edges.  It should be mentioned that the 
terms network and graph can be used inter-changeably, as can 
node/vertex, and also edge/connection/wiring.  Network studies are 
less interested in the attributes of individual nodes and edges, and 
more interested in the properties arising from local and global 
topologies that are the result of the connectedness of the nodes, see 
for example Bollobas [6].  Typically, edges do not have a directional 
component, nor do they have different strengths (networks of these 
types are described as unweighted, undirectional graphs).  Two 
important properties when describing any network are node degree, 
the count of the number of edges a node has, and shortest path length 
- the count of the minimum number of edges needed to be traversed 
to get from one node to another.  Key information can be obtained 
from both the averages and distribution functions of these values over 
an entire network [6]. 

The main network types encountered in the literature are regular, 
random, small-world, and scale-free.  A regular network is a regular 
array of nodes and edges, with high local symmetry - all nodes having 
identical connectivity - in other words, a regular lattice or mesh.  An 
example of this type of network, well known to all scientists, is the 
diamond lattice, the arrangement of atoms and covalent bonds in 
diamond.  A random network is one in which edges occur randomly, 
that is, the rules governing attachment are entirely random (not based 
on node proximity, for instance).  In a random network, most nodes 
have approximately the same number of edges, and node degree has a 
Poisson distribution [6].  A small world network typically arises when 
one very simple rule governs attachment, that rule being "popularity is 
attractive" [7-8].  That is, a new node in the network is more likely to 
form an edge with a node that already has a higher than average 
number of attachments, or with another node that has a short path 
length to such a node.  A scale-free network can be thought of as an 
extreme case of small world behaviour, having a degree distribution 
that follows a power-law distribution.  In a scale free network it can 
be possible to find nodes with degree five to ten log units higher than 

Figure 1. Different representations of 3D protein structure provide different types of understanding. (a) The electron density map for ligand and surrounding 
binding site residues shows a good quality, rigid model. (b) Typical computational chemistry view, showing that protein-ligand binding involves many short 
hydrogen bonds.  (c) A network view of all favourable polar interactions in the binding site region shows how the protein-ligand hydrogen bonds are parts of 
highly connected local environments, which also involve numerous bound water molecules.  (d) Secondary structure view, suited for structural bioinformatics 
analysis.  Protein is Neuraminidase in complex with Zanamivir. Images generated using PyMol (www.pymol.org), PDB Ids 2cml and 1nnc. 
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the average degree [8] - such nodes can never possibly arise in random 
networks.  Hub is the name given to the few nodes with the highest 
number of links. 

Global network descriptors enable different types of networks to 
be distinguished from one another.  Within a graph, local descriptors 
can be used to distinguish the different roles played by different 
nodes, based just on the connections.  The most commonly used local 
network descriptors for nodes are explained in Figure 2. The two 
most commonly used global network descriptors are: characteristic 
path length, L, the average of the shortest path lengths between all 
pairs of nodes (small for random graphs); and clustering coefficient, 
C, the average over all nodes of the fraction of the number of 
connected pairs of neighbours for each node (large for regular 
networks).  Watts and Strogatz [9] showed that the different network 
types have different magnitudes and ratios of L and C: regular 
networks have large L and large C; random networks have small L and 
small C; and small world networks have small L and large C. 

 

 
 
 
  
 
 
 
 
 
 

 
 

 
A number of introductory books have been written on the subject 

of small world networks [10-11].  For readers interested in a more 
detailed coverage of the underlying physics and mathematical aspects, 
Dorogovtsev et al. [8] is recommended.  A comprehensive survey of 
the scientific literature is available in Boccaletti et al. [12], with nearly 
900 references; within the field of medicines research, including 
protein structure networks as discussed herein, see Csermely et al. [13] 
which has more than 1100 cited references.  Surveys, introducing 
more of the available literature on protein structure networks, include 
Boede et al. [14] and also Krishnan et al. [15]. 

A wide range of powerful and versatile software tools are available 
for researchers interested in using network approaches in their work, 
such as Cytoscape [www.cytoscape.org], NetMiner 
[www.netminer.com], Networkx [networkx.lanl.gov], JUNG 
[jung.sourceforge.net].  See Csermely et al. [13] for many more 
examples.  In the field of protein structure networks, on-line research 
tools are also available, including RING [protein.cribi.unipd.it/ring], 
RINalyzer[www.rinalyzer.de], and Scorpion [www.desertsci.com]. 

Historical perspective 
 
For many years, the study of networks focused on the properties 

of random graphs with normal or Poisson distributions of 
connections between nodes [16-17].  The focus changed in the late 
1990s in parallel with the incredibly rapid growth and development 
of the internet and the world wide web.  Subsequently, the world wide 
web was observed to have: (1) an unexpectedly low average shortest 
path length between any pair of nodes, and (2) a fat-tailed degree 
distribution, that is, the number of connections for some nodes is 
many orders of magnitude higher than the average number [7].  They 
termed these small world networks, and numerous studies have found 
them throughout nature [7,18-22].  Not only have they been 
identified in many different realms in the natural world, but also in 
man-made systems including communications systems, financial 
systems, scientific citations, and throughout numerous human social 
organisations [8].  The reason why small world networks are so 
frequently observed is believed to be due to their stability - stability 
here meaning maintaining integrity and minimising the possibility of 
failure.  This stability is believed to arise from optimised 
communication pathways within these networks, or in other words, 
from short path lengths between all parts of the network.  Since 2002, 
small world network concepts have been incorporated more and more 
into the fields of chemistry and structural biology [13].  The thinking 
behind using the network approach in protein structure analysis is 
that it allows for contributions from non-local effects to be included 
into a model. 

To clarify, there are two completely different fields of research 
involving proteins and networks.  The subject of this paper is the field 
of protein conformation.  The other field, which has been more 
widely investigated and reported, involves communication pathways 
between whole proteins, and commonly referred to as protein 
networks, protein contact networks, or protein-protein interaction 
networks (see Csermely et. al. [13] for an overview).  That field lies 
more within biology, specifically systems biology, than within 
chemistry. 

 
Individual protein domains 

 
Many articles have been published describing protein domains 

using small world network approaches, based on the network of 
proximal aminoacid residues [23-45].  Network analyses of 
aminoacid graphs have been used to tackle many different aspects of 
topology, stability, folding, and communication pathways.  Analysis 
typically involves a comparison of the calculated characteristic path 
length and clustering coefficient against a [comparable] random 
network.  Articles consistently report that protein domains have small 
world network characteristics, or more precisely, have topologies that 
lie somewhere in the middle between the two extremes of random 
networks and scale free networks.  The network of aminoacid 
sidechains cannot be fully scale free due to two important boundary 
conditions.  The first is the limit of packing multiple residues in the 
coordination sphere of a central residue, also known as the excluded 
volume affect; the second involves the numerous constraints imposed 
by the protein backbone, for example, that residue i is covalently 
constrained by residues i-1 and i+1.  Despite these constraints, 
evidence that small world network effects contribute to the structural 
integrity of protein structures is highly persuasive.  Mention is 
sometimes made of the role of evolution: that proteins are the product 
of evolutionary optimisation processes, and that topologies with small 
world network characteristics have been selected due to advantages 
provided for overall stability, robustness, and protection against 

Figure 2. Simple chemical graph showing the three most widely used 
network descriptors for nodes, with the top five values for each.  Node 28 
has the highest degree, that is, the most connections (and is therefore a 
hub).  Node 10 has the highest betweenness, which is a function of the 
fraction of shortest paths through a node (removing this node creates the 
two largest disconnected fragments).  Node 1 has the highest closeness, 
that is, the inverse of the average of the shortest paths to all other nodes.  
This particular graph has a low clustering coefficient - no pair of connected 
nodes is connected to the same third node (no triangles). The 
characteristic path length is low (near 5) though this is not particularly 
meaningful as it is only a very small network. 
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failure of function due to mutations [27].  The point is often made 
that modelling a protein structure as network means modelling as a 
communication system, which provides many opportunities for new 
insights into structure and function [34,42,44]. 

Table 1 lists a subset of articles, demonstrating the broad scope of 
the problems studied, and methods used.  In the earlier articles on 
residue networks for protein domains (and complexes), graphs were 
built using C alphas as the nodes (or C betas) and an edge defined 
when two nodes were within a threshold cutoff, typically in the range 
7.0 to 9.0 Angs.  It is now more common to define edges using a 
higher level of atomic detail - when a pair of heavy atoms is within a 
threshold cutoff, typically in the range 4.0 to 5.0 Angs.  Although this 
method is more consistent with the energetics of atom-atom close-
contacts, it has the drawback of not allowing for through-water 
interactions between residues, or through-metal interactions.  There 
are many different descriptors that can be computed for any network, 
however, on their own, these descriptors do not provide such 
interesting predictions for proteins.  It is when they are combined 
with other structural and sequence properties, or added into existing 
models, that they do become really useful.  The purpose of listing the 
different methods in Table 1 is to provide a comprehensive overview 
of the different cheminformatics and bioinformatics methods that 
have been explored to date, so that these may provide ideas for further 
research. 

 
Active site analysis and protein-ligand binding 

 
The small world network approach has been particularly 

successful in the prediction of binding site residues [27-29,46-50], 
for example, using closeness centrality with solvent accessibility scores 
[27]; combining closeness centrality and phylogenetics [29].  
Betweenness centrality, when averaged over a patch of residues, was 
found to improve the predictive power of a model for identifying 
residues involved in binding RNA [48].  Heme-binding residue 
prediction [49] was shown to work well using standardised network 
descriptors in combination with a sequence profile descriptor and 
several additional structural descriptors, including solvent accessibility, 
measures of local concavity and convexity of the protein surface.  
Interestingly, the clustering coefficient was found to be lower for 
residues that bind heme, that is, they are less packed, suggested to be 
important for allowing for some flexibility in the binding site.  
Network descriptors have also been incorporated into a method for 
predicting DNA-binding residues [50], with a weighted average 
betweenness centrality measure combined with features from 
evolutionary profiles, interface propensity, and side-chain solvent 
accessibility.  In a network study of DHFR [47], the network model 
included the nitrogen and oxygen atoms of the cofactor.  Changes in 
closeness values showed that cofactor binding, specifically at the 
binding site, has a significant affect on the network, and that in the 
complex, most network interactions involved the cofactor. Ligand 
binding sites are unique regions on the surfaces of proteins, and the 
ability of network approaches to successfully identify these regions 
strongly hints at the importance of including network effects into 
modelling. 

A small world network approach has also been used to build a 
quantitative model for predicting ligand binding affinity [51].  In this 
work, the small-world network architecture of protein structure was 
assumed, and a novel set of localised network descriptors developed.  
A reduced graph definition of protein structure was used, with 
separate nodes for each sidechain and mainchain group (including C 
alpha), and included HET groups, metal atoms, and tightly bound 
water molecules.  Network edges were created from all covalent and 

favourable non-covalent interactions between atoms, identified using a 
comprehensive classification scheme.  Network descriptors were 
constructed in such a way as to maximise potential small-world 
network influences, and incorporated all short paths, rather than just 
shortest paths, as in most previous studies.  The network model 
served to increase the affinity contributions of non-covalent 
interactions when the local environment was more highly connected.  
In this work, global descriptors were found not to be generally 
applicable as they were overly sensitive to individual close-contacts.  
In some cases ligand binding affinity was found to track closely with 
ligand molecular weight, and additional descriptors did not 
significantly improve predictions.  In other cases, tight binding clearly 
involved additional factors, and the incorporation of non-local affects 
[via the network model] helped to account for these. 

 
Protein-protein binding 

 
Models based on residue interaction networks have been used in a 

number of studies of protein-protein complexes, see for example [52-
54].  In an exploration of protein-protein interaction sites, conserved 
residues with high betweenness scores, buried upon dimerisation, 
correlated well with experimentally determined hotspot residues [52].  
At the same time, network descriptors for uncomplexed monomers 
were found not to be good predictors for the protein-protein interface 
- the majority of high-betweenness values at the interface are created 
with dimerisation. 

Several small world network approaches have been developed to 
improve the performance of in silico protein-protein docking [54,55].  
Chang et al. [54] computed network descriptors from two networks, 
one with hydrophobic residues as nodes (Ile, Leu, Val, Phe, Met, Trp, 
Cys, Tyr, Pro, Ala) and one with hydrophilic residues as nodes (Gly, 
Lys, Thr, Ser, Gln, Asn, Glu, Asp, Arg, His).  Edges were created for 
every atom pair within 5.0 Angs of one another (for atoms from two 
different residues).  The two networks themselves were shown to be 
small-world networks.  Clustering coefficient and characteristic path 
length were computed, then combined with other parameters, which 
included terms for vdW interactions (attractive and repulsive), 
solvation, hydrogen bonding, long-range electrostatics (attractive and 
repulsive), constraining side chains rotamers, and a residue-residue 
pair probability metric.  To account for differences in protein size, 
network parameters were standardised by calculating their standard 
deviation from the mean for each protein.  Parameterisation was done 
by maximally separating true docked solutions from decoys.  They 
showed that the addition of the new network terms to the scoring 
function improved the discrimination capabilities of the method.  
Interestingly, they observed that correct docking solutions exhibit 
lower characteristic path lengths than incorrect solutions, suggesting 
that correct solutions better preserve the characteristic path length of 
native protein structures than incorrect solutions. 

Pons et al. [55] achieved improved results using network 
descriptors to help score rigid body protein-protein docking 
solutions.  Apo proteins were modelled as networks, with the C alpha 
atoms of all aminoacids as nodes, and edges when two C alpha atoms 
were within 8.5 Angs (results mostly unchanged if C beta atoms used 
instead). Four different network parameters: degree, closeness, 
betweenness, and clustering coefficient, were investigated to determine 
their utility in protein-protein docking studies.  Best results were 
obtained when combining calculated closeness descriptors with the 
default scoring function [56].  The article is also of interest in that a 
number of diverse influences were explored to determine under which 
conditions the network descriptors work best, including the type of 
complexes, flexibility, complex size, and protein shape. 
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Summary and Outlook 
 
The published literature on using network models to study 

protein structure consistently shows that the structures exhibit small 
world characteristics.  In addition to the experimental support 
provided by analysis of characteristic path length and clustering 
coefficient, further verification is provided by the success of 
incorporating network descriptors into existing models and observing 
better quality predictions. The small world network approach is 
attractive from the conceptual perspective, providing better 
understanding of the stability of protein topology, both in terms of 
overall structural integrity and in terms of robustness against failure of 
function due to mutations.  The network approach is also attractive 
from the modelling perspective, enabling non-local and global affects 
to be incorporated into computational methods. 

In this review it has been shown how small world network 
approaches have successfully contributed to a range of studies 
involving protein structure and function.  The network approach has 
been shown to help investigation of global phenomena, such as 
protein folding, and local phenomena, such as ligand binding and 
protein-protein docking.  The network approach itself is highly 
abstract and so really useful results cannot be achieved by network 
descriptors alone, that is, they need to be combined with other factors: 
for example, with physico-chemical properties and/or sequence 
conservation measures; or added onto existing models.  A list of 
different methods using network descriptors has been included to 
provide new researchers in the field with a better understanding of 
what has been done and possible directions for future research. 

Following recent reported success using descriptors derived from 
network approaches, particularly in protein-ligand binding and 
protein-protein docking, one could expect to see more widespread use 
of network based methods, particularly to augment existing models.  
As algorithms improve and computer hardware becomes more 
powerful, one would expect to see more investigations using weighted 
graphs.  Furthermore, as experience grows using network descriptors 
in work with proteins, one would hope to see a wider range of 
descriptors explored, not limited to the descriptor types used in other 
fields.  Sidechain inter-connectivity in proteins has been fine-tuned by 
constraints imposed by nature, of packing residues that are covalently 
linked to one another, and so the network descriptors that best fit this 
field are probably unlike the descriptors suited to other areas of study.  
The small world network concept seems well suited for investigating 
the role of water molecules in protein stability and binding events 
(which is a current topic of high interest), and for studying protein 
flexibility, which also has important functional implications.  Future 
research will provide a better understanding of the conditions under 
which network approaches work best, and when they should be 
included into research programs. 
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