
 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
1. Introduction 
 

Recent advances in omics and genetic engineering technologies 
have resulted in novel techniques to interrogate and manipulate 
biological processes at varying levels of detail. The availability of such 
tools to analyze system-wide changes at the biomolecular level of 
genes, proteins and metabolites has created significant opportunities 
to understand cellular functions and to ultimately design processes 
that achieve a desired objective (e.g. metabolic engineering, tissue 
engineering). Such tools have been increasingly used to understand, 
manipulate and model microbial communities for several practical 
applications including biorefineries, bioelectricity generation and 
bioremediation (32, 34). 

Microbial communities are ubiquitous, and microorganisms rarely 
function in isolation in the environment, even though most 
microbiology research is focused around the study of pure culture 
representatives. Hence, it is valuable to investigate the interactions 
between microorganisms so that we can extend our understanding of 
the  physiology   of   pure   culture   representatives  to   communities. 

  
 
 
 
 
 

 
 

 
  

 

Genome sequencing of whole communities in natural environments 
(metagenomics) is now possible (19) and a wealth of sequence data 
has been generated for the community members (17, 23, 43, 48, 52, 
54, 55).  Similarly, proteomic methods developed for single species 
have been extended to communities (metaproteomics) and yielded 
new insights into community interactions and metabolism (6, 29, 36, 
51). 

Extending modeling approaches to microbial communities is 
challenging partly due to the range of metabolic interactions that are 
possible, including competition, cross-feeding, syntrophy and 
mutualism. Additionally, the isolation of individual members of the 
community can be challenging despite advances in physiological 
techniques (3). While genome sequencing can be valuable for initial 
exploration of metabolism, models of community metabolism can 
provide additional information on the metabolic potential and the 
extent of metabolic interactions in microbial communities.  

In this review, we focus on studies that have used genome-scale 
modeling approaches for analyzing and manipulating metabolism in 
microbial communities. We start with a brief introduction to lumped 
models, following which static approaches for genome-scale modeling 
of community metabolism are presented. Then extensions that 
account for community dynamics are discussed and the use of static 
and dynamic models for the design of synthetic communities are 
described. Finally, recent studies on analyzing metabolism in 
metagenomes are summarized and prospects for future research are 
discussed. This reviews aims to provide the reader with an overview of 
how metabolic modeling approaches are being applied for analyzing 
and engineering microbial communities. The reader is referred to 
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other recent reviews (12, 15) for additional information on microbial 
community design, analysis and modeling. 

 
2. Mathematical Models of Metabolism: From Monod to 
Genome-scale  
 

The earliest attempts at developing metabolic models of 
individual microbes involved an unstructured and lumped approach 
which considered only substrate, product and biomass concentrations 
and used classical Monod kinetics based on a single, growth limiting 
substrate. Structured mathematical modeling of cellular metabolism 
that explicitly considered cellular compartments dates to the early 
1980s when one of the first intracellular models of Escherichia coli 
was developed (8). These models were extended by the cybernetic 
modeling approach which accounted for metabolic regulation by 
explicitly considering a cellular objective (7). While cybernetic 
modeling has been gradually extended, and recently new hybrid 
approaches have been developed (46), most studies are focused on 
central metabolism-scale networks. The concept of a cellular objective 
was first proposed in the context of linear programming by Majewski 
and Domach (35), who used the objective of ATP maximization to 
explain overflow metabolism in E. coli. The concept of maximizing a 
cellular objective using linear programming was extended to the 
central metabolic network of E. coli by Varma and Palsson (50), who 
first developed the flux balance analysis approach where the cellular 
objective was assumed to be maximization of growth rate. Tradeoffs 
between the objectives of metabolic efficiency and rates have been 
explored in other papers (38, 39, 42, 45)  and are not discussed 
extensively in this review.  

The advent of genome-sequencing technologies and 
bioinformatics allowed the reconstruction of large-scale metabolic 
networks in model organisms, which paved the way for the extension 
of flux balance analysis to genome-scale metabolic networks (10).  In 
addition, a range of methods to interrogate these large-scale metabolic 
networks using linear optimization techniques collectively known as 
constraint-based modeling were developed (2). These developments 
allowed the construction of the first genome-scale models of 
Escherichia coli (10) and Saccharomyces cerevisiae (14) in the early 
2000s. Subsequently, experimental results from chemostats validated 
many predictions of the E. coli genome-scale model, including the 
optimal growth rate (9) and the end-point of adaptive evolution (13, 
27). These results suggested that the use of a suitably chosen cellular 
objective might be sufficient to overcome the lack of metabolic 
regulation represented in such genome-scale models. However, 
recently it has been shown that a combination of growth 
maximization and minimization of adjustment from a reference 
metabolic state might be a more appropriate objective function for 
capturing the intracellular flux distribution (42). While these 
genome-scale metabolic models have been extensively used to facilitate 
metabolic engineering through the development of novel bilevel 
optimization algorithms, we do not discuss these developments in this 
review and instead refer the interested reader to another review (4).  

The aforementioned studies are based on static metabolic models 
that assume the intracellular and extracellular states are time invariant. 
To overcome this limitation, dynamic extensions of the constraint-
based modeling approach, collectively termed dynamic Flux Balance 
Analysis (dFBA), have been developed. The dFBA approach links the 
steady-state intracellular metabolic flux distribution with the dynamic 
changes in the environment and allows the prediction of microbial 
growth, substrate utilization and product formation dynamics. 
Initially, dFBA was used to model the diauxic growth of E. coli on 
mixtures of multiple substrates (5, 33, 50). More recently, dFBA has 

been extended to fed-batch optimization (24) and in silico metabolic 
engineering (25) of S. cerevisiae cultures. Next, we will focus on how 
genome-scale models of metabolism have been used to investigate 
metabolic interactions in synthetic and natural communities of 
microbes. 
 

3. Static Genome-scale Models of Microbial Communities 
 

Microbial communities often involve species interactions where a 
metabolic by-product of one species is the substrate for other species 
and vice versa. In the environment, carbohydrates from organic matter 
are fermented to hydrogen, acids and alcohols by fermentative 
microbes and these electron donating byproducts are oxidized with 
electron acceptors such as Fe(III), sulfate and CO2 by metal reducers, 
sulfate reducers and methanogens, respectively. Hence, models of 
community metabolism have to account for the environment as a 
separate compartment in addition to the intracellular metabolic 
networks of individual organisms in the community. Most often, 
these interacting partners are assumed to grow together and this 
metabolic interaction is assumed to be at steady state. There have been 
several such “static genome-scale models” of microbial communities 
that are summarized in the next section. 
 

One of the first multi-species metabolic models considered 
mutualistic interactions between the sulfate reducer, Desulfovibrio 
vulgaris, and the methanogen, Methanococcus maripaludis (47). D. 
vulgaris typically uses lactate as a substrate and secretes a mixture of 
formate, hydrogen, acetate and CO2 in the absence of sulfate, while 
M. maripaludis consumes acetate, hydrogen and CO2 to produce 
methane. The study utilized small-scale metabolic models of core 
primary metabolism, with D. vulgaris represented by 86 reactions and 
75 metabolites and M. maripaludis represented by 82 reactions and 
72 metabolites. The authors assumed that all the formate and 
hydrogen secreted by D. vulgaris was completely consumed by M. 
maripaludis and used a community objective that weighted the D. 
vulgaris and M. maripaludis growth rates in a 10:1 ratio. The 
predicted growth and metabolic flux distribution were found to be 
consistent with experimental data, and the simulations suggested that 
hydrogen exchange was essential for mutualistic growth but formate 
was not essential. 

An example of the use of genome-scale models for analyzing 
metabolic interactions in communities is described in Wintermute 
and Silver (2010) (53). The authors considered 46 conditionally 
lethal auxotrophic strains of E. coli and evaluated with co-culture 
experiments the ability of these mutants to sustain growth in 1035 
pairs. They found that in 17% of cases metabolic synergy was 
obtained, where one strain synthesized a metabolite that was essential 
for the second strain and vice-versa to allow both strains to grow in 
the absence of their respective essential metabolite in the media. They 
then used a genome-scale model of E. coli to calculate a co-operation 
metric based on the ratio of the predicted cost of synthesizing the 
donated metabolite for first strain and the growth benefit in the 
second strain from the metabolite received. The calculated co-
operation metrics were found to be consistent with experimentally 
measured improvements in the strain growth rates, suggesting that 
genome-scale metabolic models can be valuable in quantifying the 
fitness costs and benefits of metabolic interactions in microbial 
communities. 

Freilich and Ruppin (2011) (16) extended the analysis of 
metabolic interactions to 6,903 species pairs derived from 118 
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bacteria for which genome-scale metabolic models were automatically 
constructed using the Model SEED platform (22). The authors 
provided a conceptual framework for predicting three possible 
interactions depending on how the sum of the growth rates when 
grown together (co-growth) compared with the sum of the growth 
rates when grown separately in the same media. This framework 
included: 1) a no interaction case, where the co-growth rate was the 
same as the sum of the individual growth rates; 2) a competition case, 
where the co-growth rate was lower; and 3) a co-operation case, where 
the co-growth rate was higher. Since these interactions were highly 
condition dependent, methods to modify the media so as to induce 
competition or co-operation were developed. The authors then tested 
the computational predictions of interactions experimentally using 10 
bacterial pairs across three media conditions (original, competition 
inducing and co-operation inducing). The interactions were found to 
be correctly predicted in 65% of the 30 experiments. Finally, the 
authors used ecological data from 2,801 samples collected from 59 
niches and predicted competition and co-operation in these bacterial 
species pairs. They found that mean competition and co-operation 
metrics were higher in these samples than in ecologically non-
associated pairs. Based on these results, the authors suggested that the 
analysis of genome-scale models could be valuable in identifying 
ecological principles that govern metabolic interactions in complex 
natural environments. 

In most studies, the community objective has been assumed to be 
growth rate maximization of the individual microbes. Recently, 
Zomorrodi et al. (2012) (58) formulated a bi-level optimization 
problem (OptCom) that considered a community level objective 
function in addition to the individual species objective function of 
growth rate maximization. Using the OptCom framework, the 
authors were able to modify the community level objective function to 
represent a variety of metabolic interactions including syntrophy, 
cross-talk (bi-directional metabolite exchange), synergism, 
commensalism, parasitism and competition. The framework was then 
used to analyze metabolic interactions in a phototrophic bacterial mat 
and in a synthetic community consisting of Desulfovibrio vulgaris, 
Geobacter sulfurreducens and Clostridium cellulolyticum. The 
predictions of carbon and electron balance were found to be 
consistent with experimental observations. The authors also 
investigated a hypothetical scenario where new species were added to 
this microbial community and methane production was simulated. 
These results suggest the potential for a model-based framework in 
designing synthetic microbial communities for practical applications 
in bioenergy and bioremediation.  

 
4. Dynamic Genome-scale Models of Microbial Communities 
 

While the static models described in the previous section have 
been shown to be valuable for understanding and analyzing metabolic 
interactions in microbial communities, the static approach does not 
allow prediction of the biomass concentrations of the individual 
species or account for time-varying changes in the intracellular and 
extracellular environments. Consequently, static genome-based models 
cannot easily predict the microbial composition in dynamic 
environments. Recently, dynamic flux balance analysis (dFBA) has 
been extended to microbial communities to predict time-varying 
interactions between species and their effects on the microbial 
composition. The extension involves coupling genome-scale metabolic 
models of the individual species, dynamic extracellular mass balances 
on each species, substrate and metabolic byproduct, and uptake 
kinetics for each substrate/species pair. Below several representative 

studies are summarized to illustrate the potential of the dFBA 
approach. 
 

Typically, a diversity of microorganisms compete for resources 
and/or interact cooperatively and these interactions influence the 
microbial composition in the environment. Transient prediction of 
the individual species concentrations requires dynamic models. 
Zhuang et al. (2010) (56) have developed a Dynamic Multi-Species 
Metabolic Modeling framework that integrates genome-scale 
metabolic models within the dFBA framework to predict metabolic 
flux distributions and biomass concentrations of the individual species 
as well as the substrate and product concentrations in the extracellular 
environment. This method allows multiple constraint-based metabolic 
models to share and exchange metabolites with each other and with 
the environment and is capable of dynamically predicting community 
growth and metabolism. The authors used this framework to evaluate 
the outcome of competition between two metal reducers, Rhodoferax 
and Geobacter, in natural and acetate amended environments. In 
agreement with data, the simulations suggested that Geobacter species 
were fast growing, energetically inefficient organisms relative to the 
Rhodoferax species and would dominate the community at high 
acetate availabilities. The Rhodoferax species were predicted to be 
most efficient at utilizing acetate and to be dominant during acetate 
limitation. Salimi et al. (41) used this framework to analyze metabolic 
interactions between Clostridium cellulolyticum and Clostridium 
acetobutylicum. They developed a dynamic genome-scale model of 
the co-culture and used the framework to understand the mechanisms 
behind the enhanced cellulose degradation in the co-culture relative to 
a monoculture of C. cellulolyticum. They varied the strength of 
cellobiose inhibition on cellulose solubilization, and the simulation 
results suggested that the cellobiose inhibition was not the primary 
factor underlying the synergistic enhancement of cellulose 
solubilization in the co-culture. 

Sequential uptake of hexose and pentose sugars derived from 
cellulosic biomass limits the ability of pure microbial cultures to 
efficiently produce renewable bioproducts. Hanly and Henson (20) 
have utilized the dFBA framework to investigate the capability of 
mixed cultures of substrate-selective microbes to improve the 
utilization of glucose/xylose mixtures and to convert these mixed 
substrates into products such as ethanol.  In the first study, batch co-
culture simulations were performed with  E. coli mutant strains 
ALS1008 and ZSC113, which have been engineered to have glucose 
and xylose only uptake, respectively. The simulations suggested that 
improvements in batch substrate consumption observed in a previous 
experimental study (11) resulted primarily from an increase in 
ZSC113 xylose uptake relative to wild-type E. coli. 

In the same study, the xylose only consuming strain ZSC113 was 
computationally co-cultured with wild-type S. cerevisiae, which can 
only uptake glucose. Under the simplifying assumption that both 
microbes grew optimally at the same pH and temperature, 
simultaneous optimization of the initial ZSC113/S. cerevisiae ratio 
and the oxygenation level through the batch produced an almost two-
fold increase in predicted ethanol productivity compared to pure 
cultures of wild-type E. coli. In a combined 
experimental/computational study of the ZSC113/S. cerevisiae co-
culture system (21), the same authors demonstrated that the two 
genome-scale models could be adapted to suboptimal, common 
temperature and pH simply by adjusting the non-growth associated 
ATP maintenance of each model. The inhibitory effect of ethanol 
produced by S. cerevisiae on ZSC113 xylose uptake was found to be 
the  only  interaction  necessary to include in the co-culture  model  to  
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match measured species, substrate and ethanol concentration profiles. 
Furthermore, the co-culture model successfully predicted initial 
ZSC113/S. cerevisiae ratios that resulted in simultaneous glucose and 
xylose exhaustion for different sugar mixtures. 

 
5. Model-based Engineering of Synthetic Microbial 
Communities 
 

While the studies described in the previous sections are valuable 
for analyzing species interactions, there have been comparatively few 
reports where genome-scale models have been used to identify 
potential strategies for engineering metabolism in communities.  
Typically, engineering communities can involve: 1) engineering the 
metabolism of individual microbes in defined microbial communities; 
2) manipulating the community by adding new microbes (e.g., 
bioaugmentation); and 3) engineering the environment by introducing 
substrates that allow a specific species of interest to dominate (e.g., 
bioremediation) (Figure 1).  Below studies that have used genome-
scale models to identify strategies for engineering communities are 
detailed. 
 

Tzamali et al. (49) analyzed the metabolism of all viable single 
gene deletion mutants of E. coli across 58 different carbon sources 
using a dFBA approach. They computed the maximum concentrations 
of the secreted metabolites for each scenario and used this 
information to define an interaction metric for a pair of mutants 
growing in a single carbon source environment. The metric was 

defined as the largest difference between the maximal byproduct 
concentrations scaled by the maximum concentration of byproduct 
amongst the two strains. The authors then used graph theoretic 
approaches to identify metabolic interaction networks, and propose 
several mutant pairs that could exchange metabolites, and identify 
examples of both commensalistic and cross-talk interactions. 
However, none of the predicted interactions have yet been verified 
experimentally. Nevertheless, such experimental evaluation of 
synthetic co-operation in genetically modified yeast strains has been 
performed (44) and these results indicate the possibility of explicitly 
engineering co-operative interactions in E. coli, S. cerevisiae and other 
organisms for which well curated, genome-scale metabolic models and 
genetic engineering tools are available.  

In addition to in silico engineering of metabolism in individual 
organisms, genome-scale community models can be used to investigate 
the systematic introduction of new species within a particular 
environment. For example, Zomorrodi et al. (58) used their OptCom 
modeling framework to evaluate the effect of introducing a 
methanogen into an existing community and found that methane 
production could be increased if additional hydrogen was present. 
Taken together, these studies demonstrate the value of using genome-
scale metabolic models to engineer metabolic interactions in 
communities. Finally, genome-scale models can be used to manipulate 
the community composition to optimally perform a given task. 
Applying dFBA to a synthetic consortium consisting of the E. coli 
mutant ZSC113 and wild-type S. cerevisiae, Henson and Hanly (21) 
showed that a dynamic community model successfully predicted 
inoculum compositions that produced simultaneous glucose and 
xylose exhaustion for different sugar mixtures in batch culture. 

Figure 1. Genome-scale models for analyzing and engineering metabolic interactions in microbial communities. 
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Several experimental studies have highlighted the value of 
manipulating the environment through spatial segregation for creation 
of co-operative metabolic interactions (39). For example, Kim et al. 
(28) showed that spatial segregation of a pentachlorophenol (PCP) 
degrader (Sphingobium chlorophenolicum) and a mercuric ion 
reducer (Ralstonia metallidurans) was required to degrade PCP in the 
presence of mercury as S. chlorophenolicum was sensitive to mercuric 
ion.  Following a different approach, Klitgord and Segre (30) have 
used genome-scale metabolic models to identify environmental 
conditions (carbon and nitrogen sources) that result in different 
metabolic interactions (neutral or no interaction, commensalism or 
one way interaction, mutualistic or two way interaction) and test this 
approach on pairs of microorganisms including mutant S. cerevisiae 
and E. coli strains. The predicted interactions can occur in 4.7% of 
11.6 million cases tested. In addition, the authors have applied the 
same methodology to genome-scale models of seven different 
microorganisms and identified media conditions that enabled a range 
of metabolic interactions.  

Currently there are few reported examples of utilizing dynamic 
genome-scale metabolic models for designing the community 
environment. Zhuang et al. (57) have used a dynamic genome-based 
model of a microbial community consisting of Geobacter 
sulfurreducens and Desulfobacter to identify the optimal acetate and 
Fe(III) injection rates to allow sustained uranium bioremediation to 
occur in the environment. For the ZSC113/S. cerevisiae co-culture 
system, Hanly and Henson (21) used genome-scale metabolic models 
to determine the optimal inoculum composition and aerobic-to-
anaerobic switching time for batch ethanol production from 
glucose/xylose mixtures. 

 
6. Summary and Outlook 
 

The studies reviewed in this paper clearly demonstrate the value of 
genome-scale models for understanding and engineering metabolic 
interactions in microbial communities. The availability of such 
rigorous and experimentally validated models will provide the 
opportunity to systematically optimize microbial communities for 
practical applications through the engineering of the individual 
species, addition of new species to existing communities and 
manipulation of the community composition and environment 
(Figure 1). Individual species engineering will require the availability 
of genetic tools for the organism of interest, and this requirement will 
generally limit metabolic engineering to model species. Furthermore, 
detailed physiological data on the response of the community to 
different perturbations will be required to validate the modeled 
interactions. A potential validation approach would be the systematic 
introduction of perturbations such as the addition of a new substrate 
or the introduction/elimination of a community member and 
assessment using systems biology tools. Obtaining such data might 
also necessitate the isolation of individual organisms in environmental 
samples, which may impede genome-scale model construction. The 
characterization of dominant community members can lead to a 
representative model that adequately captures the collective 
metabolism of the more complex community. Another limitation of 
this genome-scale modeling approach is that the models are 
deterministic and cannot capture stochastic processes that may affect 
the outcome of microbial competition.  

While this review has focused on organisms for which an 
annotated genome sequence is available, metabolic network 
reconstructions of metagenomes are increasingly possible. Such 
reconstructions of overall communities have been applied to 

environmental metagenomes and human microbiomes. For example, a 
metabolic network reconstructed from the metagenome of the English 
Channel has been used to define a metric that correlated the presence 
of metabolic enzymes with the metabolic turnover of the associated 
pathways (31).  Additionally, the metabolic networks of three 
dechlorinating metagenomes have been compared and used to identify 
functional redundancies in key metabolic pathways that synthesize co-
factors and amino acids which contribute to the robustness of 
community function (26).  

In the future, we anticipate that such genome-scale models can be 
generalized to more than three species and therefore can be extended 
to the main members of natural communities. In addition, integration 
of these microbial community models with biogeochemical, physical 
processes in ecosystem models will allow improved prediction of 
community responses to environmental perturbations. Game theoretic 
approaches have been proposed to represent both the fitness of the 
individual members and changes in the environment due to microbial 
dynamics (38, 40). The integration of such game theoretic 
descriptions with genome-scale models represents a potential 
opportunity to improve the accuracy of microbial community 
modeling methods. Model-based analyses have also been applied to 
the human gut microbiome. For example, metabolic networks from 
the gut microbiome of 124 individuals were used to identify 
differences in metabolism associated with obesity and inflammatory 
bowel disease (18). It is expected that advances in bioinformatics and 
metabolic network modeling will enable the application of such 
methods for in-depth analyses of the entire gut microbiome (1, 37) 
and for connecting whole body metabolism with the metabolic 
potential of the microbiome.  
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