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Abstract: Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts
among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of

the major chaHenges of modern biomedical research, involving a broad range of experimental and cornputational techniques. Here

we review the current state of RND transporter investigation employing molecular dynarnics simulations providing conformational

samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics

resistance in Escherichia coli and Pseudomonas aeruginosa.

MINI REVIEW ARTICLE

I. INTRODUCTION

1.1. Molecular Dynamics Simulations

While the determination of the three-dimensional structure of a
protein is a landmark on the way to understand its function, one key
element s still missing, and that is the element of motion. Proteins are
in an ongoing state of motion easily exceeding mere thermal
fluctuation and in most cases this conformational dynamics is the
foundation enabling a protein to carry out its physiological function
in the first place [1,2]. Part of the molecular mechanical branch of
modelling techniques [2], molecular dynamics (MD) simulations
numerically investigate the motion of a system of particles under the
influence of internal (interactions between atoms) and external forces
such as temperature or pressure [3] as well as optional additional
forces in steered or targeted MD [4]). A key ingredient of MD
simulations is the potential energy function that relates energy to
structure using harmonic, periodic, Coulomb and Lennard Jones-like
potentials to calculate the forces acting on each particle in the system.
Employing Newton’s second law of motion MD simulation uses this
information to predict each particle’s motion during the next few
femtoseconds. Repeating this step millions of times, a trajectory of all
atoms in the system over time is generated [I-3,5]. Complementing
and extending the nearly static experimental 3D data MD simulations
bring back for a limited time the element of motion, permitting to
cast a glimpse on the dynamics of a (e.g. membrane) protein and its
immediate microenvironment at a level of detail not accessible by any
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experiments today. Moreover, by bringing together a system's
components to study their interplay, MD simulations offer a literally
synthetic approach of investigation instead of dissecting the system to
deduce its functional mechanism.

Since the first MD studies published by Alder and Wainwright
more than 50 years ago [6,7], the first MD simulation of a protein
carried out by McCammon and co-workers 20 years later [8], the first
simulation of a lipid bilayer by Van der Ploeg and Berendsen in 1983
[9], and the first simulation study of a bilayer-embedded membrane
protein by Edholm et al. 17 years ago [10], MD simulations have
benefited enormously from the impressive advances made in computer
and software development, now permitting the investigation of
simulation systems of the size of 10° — 10 atoms on a nanosecond to
millisecond time scale [II-13]. Beyond providing high resolution
conformational samples of proteins and other biomolecules, MD
simulations have also recently been employed as a tool to compare
and categorize proteins, adding internal conformational dynamics as a
third level of protein classification next to amino acid sequence and
protein structure [14].

A key question of any MD simulation is whether the amount of
conformational sampling achieved is adequate for the problem under
investigation. Whereas for small individual molecules appropriately
long simulations can be performed permitting a sufficient sampling of
the available degrees of freedom, for large molecules like proteins only
a partial sampling of conformational space is possible today [15].
However, partial sampling can already yield valuable insights into
protein function providing e.g. a set of configurations near the X-ray
structure, based on which conformational sub-populations comprising
the entire reaction cycle can be determined [11,16-19]. Moreover,
transportation pathways and interaction sites can be elucidated by
analyzing e.g. the dynamics of solvent molecules [20-23]. New
mutagenesis candidates can be identified as they undergo for example
specific distance changes throughout the reaction cycle [16-19,24] or
[111,1620-22].  To

conformational sampling additional forces can be used biasing the

impacting ~ protein  activity enhance
simulation in a steered manner [24-34] or the simulation can be
performed running several independent copies of the same system
differing only in the random seed numbers used in generating the

starting velocities. While stating the respective simulation approaches
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Figure 1. RND efflux pumps comprise three different components (left) assembling into a functional complex (right). Using the proton concentration gradient
over the inner membrane (IM) the inner membrane proton / substrate antiporter (IMA) acts as engine and active transporter of the efflux pump, expelling
substrates (S) out of the cell via the access-regulated efflux duct (ED) in the outer cell membrane (OM). In the assembled pump IMA and ED are coupled by an
inner membrane-anchored adaptor protein (AP), whose actual stochiometry and location in the assembled pump is not known for all RND efflux transporters.
To visualize the structure of the assembled IMA-ED-AP complex we used a docking model based on biochemical cross-linking data [41]. The references in the
figure represent simulation studies of the respective efflux pump component discussed in this review.

employed in the studies presented in this review, we refer the reader to
the original publications for further-going in-depth information and
discussion of the individual methodologies, approximations made and
their adequateness for the questions investigated.

1.2. RND Efflux Pump-mediated Antibiotics Resistance
The discovery,

antibiotics count among the most significant medical advances in

development and clinical exploitation of

history. However, antibiotics lose their efficiency after a period of
months to years [35-37], eventually producing new strains of resistant
bacteria, as the continuous application of antibiotics wipes out the
cells in a bacteria population sensitive to the drug given. At the same
time this effect creates perfect survival conditions for the fraction of
bacteria immune to the pharmaceuticals applied. With old antibiotics
losing their efficiency faster than new ones can be developed [38], a
detailed understanding of the molecular basis of microbial multi-drug
resistance is paramount for modern biomedical research. The main
mechanisms of action underlying antibiotics resistance include the
alteration of the drug, the alteration of the drug target as well the
reduction of antibiotics concentration inside the bacterium by
lowering influx into and/or enhancing the extrusion out of the

organism [39,40].
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A major way by which Gram-negative bacteria achieve an
increased extrusion is through an over-expression of multi-drug efflux
pumps of the resistance nodulation division (RND) protein super
family [42], preventing drug access to the target molecule [43,44].
RND  transporters function as transiently assembled protein
complexes constituting (a) an inner membrane proton / substrate
antiporter, functioning as engine and active transporter of the
assembled pump (figure I, IMA); (b) an access-regulated outer
membrane channel acting as efflux duct for substrate trafficking
(figure 1, ED) and (c) an inner membrane-anchored adaptor protein
(figure I, AP) coupling IMA and ED, enhancing pump activity [45].
Whereas crystal structures have recently become available for all
components of three different but structurally homologue RND
efflux pumps in Escherichia coli (AcrAB-TolC and CusBA-C)
[41,46-57] and Pseudomonas aeruginosa (MexAB-OprM) [41,58-
60], the structure of the assembled pump is unknown. The
visualization of the assembled IMA-AP-ED complex in figure I
shows a docking model based on biochemical cross-linking data [41].
Whereas this model comprises three APs interacting with IMA and
ED, recent studies suggest that MexA and AcrA form a funnel-like
hexamer when binding to their respective EDs [61-63] similar to the
IMA-AP crystal structure of the heavy metal efflux transporter CusBA
[57].
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Figure 2. On a 50 ns time scale WT AcrB displays a TMD-internal water distribution suggesting three alternative routes of proton transfer where the key
residue-comprising core region (CR) is connected to bulk water via one cytoplasmic (X) and three periplasmic water channels (E1-3) merging in single conflux
region (CF) (a). Dynamic and monomer-specific TMD hydration was found in agreement with the location and impact of known point mutations (b) with bulk
water access regulated by four groups of gating residues (c). Adapted from [20], modified.

2. EFFLUX PUMP SIMULATIONS

With the advent of high-resolution crystal structures, computer
simulations have grown into a vivid field of research in investigating
the functional mechanisms of efflux pump-mediated antibiotics
resistance, employing a palette of computational methodologies
including elastic network normal mode analyses [59,64], multiple
basin [65] and MD simulations. In this review we focus on
computational studies of RND efflux transporter components using
molecular dynamics simulations. Reflecting the general structure of an
RND efflux pump (figure 1), we organized the review part in three
sections, summarizing the simulation studies reported for the inner
membrane antiporter (section 2.I), the outer membrane efflux duct

(section 2.2) and the adaptor protein (section 2.3).
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2.1 Inner Membrane Antiporter

Engine and active transporter of the assembled efflux pump, the
inner membrane proton / drug antiporter is a homo-trimer whose
individual protomers are organized in three distinctive sections, each
tulfilling different functions (figure 1, IMA). Whereas energy
conversion via proton conduction takes place in the trans-membrane
domain (TMD)), substrate recruitment and transport mainly occur in
the periplasmic porter domain (PD) which in turn is coupled through
the docking domain (DD) to the outer membrane ED (figure 1), or
to the hexameric assembly of APs in the constituted pump. A
characteristic IMA feature is a structural asymmetry among the
monomers, each trapped in a different conformation, interpreted as
reaction cycle intermediates “Loose” / “access” (monomer A),
“Tight” / “binding” (monomer B) and “Open” / “extrusion”
(monomer C) in a peristaltic pump functional mechanism [55,56,66].
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IMA simulation studies published so far have focused on two
questions: How are protons transported (section 2.1.1)? How is
substrate transported (section 2.1.2)? As at the time of writing MD
studies of the heavy metal efflux transporter CusA have not been
reported yet, this section focuses on investigations carried out for

AcrB and MexB.

2.1.1 Proton transport

As proton conduction in proteins occurs along hydrogen-bonded
networks of polar residues and water molecules [67] in a Grotthuss-
like mechanism [68-71], knowledge of the protein-internal water
distribution and interacting residues allows drawing conclusions to
possible pathways of proton conduction [21,22,72-76].

In ActB the protein-internal water distribution is experimentally
unknown and so far five TMD residues have been identified whose
mutation to alanine leads to a function loss of 90% or more [52,77-
80]. Furthermore, for each monomer an intermediate-specific
protonation scenario has been proposed based on the available X-ray
structures [81]. To predict TMD hydration and potential new key
residue candidates Fischer and Kandt performed a series of 6 x 50 ns
independent and unbiased atomistic MD simulations of asymmetric,
wild-type (WT) ActB in a phospholipid / water environment,
simulating each monomer in its currently proposed protonation
scenario [20]. Using the MD trajectories to compute spatial residence
probabilities of TMD-internal water, the authors find that TMD
water is organized in one cytoplasmic and up to three periplasmic
water channels connecting the known five key residues to bulk phase,
suggesting three alternative routes of proton transfer (figure 2a).
Reflecting the different protonation scenarios in each monomer, the
TMD water distribution is reported to be intermediate-specific and
correlating well with the location of 15 experimentally tested residues
[52,77-80] and their respective impact on ActB function (figure 2b).
Using different time resolutions in computing the water densities, the
authors find the water channels dynamic and their bulk water access
regulated by four groups of gating residues in a combination of side
chain re-orientations preceded by intermediate-specific shifts of a-
helices enabling or disabling opening or closure of the gating residues

(figure 2¢).

2.1.2 Substrate transport

Computational studies assessing the question of substrate
transport in the proton/drug antiporter focus on the dynamics of the
porter domain, using unbiased or steered MD in the absence (section

2.1.2.1) or presence of substrate (section 2.1.2.2).

2.1.2.1 IMA dynamics in the absence of substrate

Focusing on PD ground state dynamics in the absence of
substrate, Fischer and Kandt [16] carried out a series of 6 x 100 ns
independent and unbiased atomistic MD simulations of asymmetric
WT ActB in a phospholipid membrane / water environment to
address the question why all 34 currently available AcrB crystal
[47,51-53,55,56,82] similar ~ PD
conformations. Displaying Cot RMSDs below 1 A after superposition

structures exhibit  very
to the simulation starting structure [55], in all crystal structures the
outer access or proximal binding pocker PBP [47,53] is open in
monomers A and B but closed in C, while the inner deep, dlistal or
hydrophobic binding pocker HBP [47,53] is open in B but closed in
A and C. At the same time the exit region of the PD substrate
transport channel (PDx) is closed in monomers A and B but open in
monomer C (figure 3). Observing opening and closing motions of the
PBP in monomers A and B (figure 3a), a predominantly closed HBP

Volume No: 5, Issue: 6, February 2013, e201302008
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in all monomers (figure 3b) as well as an opening and closing PDx in
monomer C (figure 3¢), Fischer and Kandt proposed that the X-ray
conformations are stabilized by a component absent in the
simulations, suggesting bound but unresolved substrate molecules as
possible explanation. Based on the observed conformational dynamics
the study further suggests that each of the known three reaction cycle
intermediates occurs in at least two variants and the Thr676 loop
independently regulates porter domain access likely playing a key role
in substrate transport. If the proximal binding pocket dynamics have
an inhibiting effect on AcrB pump activity by lowering the life time of
substrate-accessible conformations, the observed dynamics could
provide a structural explanation for the AcrB activity-enhancing effect
of the adaptor protein AcrA [45] stabilizing PCI and PC2

subdomain orientations.

2.1.2.2 IMA dynamics in presence of substrate

The picture extracted from the crystallographic data is an
invaluable starting point to understand substrate-IMA interactions.
However, a complete picture must include the dynamics of all the
parts involved, i.e., transporter, substrate, and solvent. Unfortunately,
experiments aimed at estimating the efflux kinetics are quite complex
and possible so far only for -lactams antibiotics [83,84]. In addition,
despite the strong effect of efflux on the minimum inhibitory
concentrations (MICs) of substrates, it is very difficult to
quantitatively determine the contribution of drug transport among all
factors affecting the susceptibility of a cell to antibiotics [83,84].
Computer simulations are thus an important tool to complement and
interpret experiments on kinetics [85]. A first question concerns the
functional rotation.

plausibility of the By mimicking the

conformational transitions of the AcrB reaction cycle via targeted
molecular dynamics (tMD) [31], Schulz et al. [86] observed in 4
independent simulations a displacement of doxorubicin by 8 A from
the HBP towards PDx. Concurrently, a zipper-like closure of the
HBP was observed, supporting the peristaltic pump mechanism
proposed on the basis of the crystal structures [47,51-53,55,56,82].
Insights into the behaviour of the solvent during the imposed
functional rotation were achieved in additional unbiased [87] and
tMD simulations [88], detecting a directed water flow towards the
PDx. This direction is defined by the conformational changes of PD.
However, Schulz et al. never observed a complete extrusion of
doxorubicin. One possibility to explain this is that the passage of the
drug through PDx might be, at least partially, diffusion-driven, and
thus should occur on a time scale much larger than that captured by
all-atom MD simulations. In addition, the motion of the drug might
further be enhanced by the presence of other substrates. Finally, how
other proteins components absent in the simulations affect transport
needs to be understood better, in the long run leading to eventually
taking into account the entire efflux pump. Similar results were
obtained by Feng and co-workers [87] who investigated the in silico
dynamics of ActB in complex with erythromycin, rifampicin and
minocycline. The authors found that rifampicin and erythromycin,
bound to the A monomer, made a unidirectional peristaltic movement
towards the extrusion funnel of TolC, which was facilitated by water
flux within the channel of AcrB. Minocycline in the B monomer
moved from the distal binding pocket towards the gate of the central
funnel.

A key point to the comprehension of efflux systems regards the
link between affinity and efficient extrusion: how high should a
compound’s affinity to the transporter be to make it a good substrate?
A substrate should remain inside IMA long enough to be extruded
but its affinity should not be too high, otherwise the extrusion might
be overly energy-demanding. Site-directed mutagenesis studies
provided the experimental basis to shed some light on this issue.

Computational and Structural Biotechnology Journal | www.csbj.org
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Figure 3. On a 200 ns time scale WT AcrB’s drug-transporting porter domain is highly flexible, displaying opening and closing motions of the proximal binding
pocket in monomers A and B (a), a closure of the further inward located hydrophobic binding pocket (HBP) in B (b) and an opening and closing of the proposed

exit of the drug transport channel in C (c). Adapted from [16], modified.

Bohnert et al. [89] systematically mutated HBP phenylalanine residues
into alanine and determined the mutants’ susceptibility to various
antimicrobials. Interestingly, the F6I0A point mutation displayed the
most significant impact on the substrates’ MICs, while replacing other
HBP phenylalanines with alanines had smaller and more variable
effects. Puzzling in these results is that F610 does not directly interact
with doxorubicin and minocycline in the crystal structure [S1] and it
is practically not involved in the zipper-like movement of the HBP
residues responsible of the departure of doxorubicin from the pocket
as described above [86]; and doxorubicin displays one of the most
pronounced MIC reductions in the F6IOA mutant [89]. Combining
several computational techniques, Vargiu and co-workers [90]
provided a possible explanation for the role of F610, as in the mutant
the authors found doxorubicin sliding deeply into the binding pocket,
thus increasing the strength of the protein-compound interaction and
making extrusion hardly feasible. Indeed, during subsequent tMD
simulations of the AcrB reaction cycle, in the mutant doxorubicin was
either not extruded from the binding site or displaced along a
direction other than the one associated with extrusion. In WT AcrB
F610 provides the appropriate balance between affinity and energy
requirement to extrude a substrate. The study indicates how subtle
interactions determine the functionality of multidrug transporters,
since decreased transport might not be simplistically correlated to
decreased substrate binding affinity [90].

Using a truncated protein model restricted to the porter and
docking domain, Vargiu and Nikaido simulated AcrB in complex
with substrates, non-substrates, and inhibitors previously docked to

Volume No: 5, Issue: 6, February 2013, 201302008

the HBP [91]. While all substrates tested remained bound to the
HBP, the authors found that non-substrates, predicted by the docking
procedure to bind outside the HBP, remained there during 50 - 80 ns
of unbiased MD. Moreover, the two ActB inhibitors (Phe-Arg-B-
naphthylamide and I-(I-naphtylmethyl)-piperazine), located by
docking runs inside the HBP, tended to leave the pocket at least
partially, straddling the G-rich loop whose flexibility has been
indicated by Yamaguchi and co-workers to be essential for the
functioning of AcrB [53]. Importantly, MD simulations by Feng et al.
[87] confirmed that the mutations of G6I6P and G6I9P could
prevent the movement of the G-loop.

Whereas at the time of writing 34 crystal structures have been
reported for ActB [47,51-53,55,56,82], only one X-ray structure of
the apo protein has been published for its P. Aeruginosa homologue
MexB [60]. With a sequence identity of 69.8% MexB and ActB are
structurally very similar, sharing several conformational key features.
However, in monomer A the proteins differ in their respective PBP
conformation, which is open in AcrB but closed in MexB, hindering
substrates to enter. It is currently unknown whether the different PBP
conformation in ActB and MexB is an effect of the crystallization
procedure, an indication of a different monomer involvement in the
extrusion process, or an evidence supporting the high PBP flexibility
proposed in [16].

Imipenem (IMI) and meropenem (MER) of the carbapenem
compound family have been the most active broad-spectrum
antibiotics against P. aeruginosa infections [93], but resistant strains

have appeared [93-95]. Several studies evaluating compounds’ MICs
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indicated that MexAB-OprM affects the activity of MER, while that
of IMI is essentially insensitive to over-expression of the pump [96-
99]. To identify the molecular basis of the underlying carbapenem—
efflux-pump interactions Collu and co-workers performed docking
and 8 standard 50ns-long MD simulations using a truncated model of
MexB [92]. Configurations assumed by the compounds during the
simulations are reported in figure 4. Whereas MER showed high
affinity to the HBP, assuming there conformations that prelude to
efficient transduction towards the extrusion channel (figure 4¢), IMI
did not bind to the HBP with good affinity, exploring geometries
similar to those reported in AcrB mutants for poorly transducing
substrates (figure 4d) [90]. The authors suggest two main reasons for
these behaviours. First, the bulky and more hydrophobic groups in
MER favour interactions with the aromatic-hydrophobic environment
of HBP, whereas the more flexible and more hydrophilic tail of IMI
does not. Secondly, the interaction with the solvent plays a role.
Despite the compounds are highly solvated in both PBP and HBP, the
water dynamics around MER is significantly different in HBP than in
the bulk solvent. On the contrary, IMI shows the same interactions
with solvent inside the HBP and in the bulk.

Phe573

e

Figure 4. Configurations assumed by MER and IMI in MexB according to
50ns-long MD simulations. The residues of MexB are in licorice colored
according to the region they belong to (blue, PBP; orange, HBP). Panels a
and b refer to the compounds in PBP, c and d in HBP. The starting
configurations of the carbapenems are represented in green licorice,
those at the end of the simulations in atom-code colored licorice. Arrows
denote the orientation of the compounds in panels a, b, and c. In panel d
we report the shift of IMI. Adapted from [92], modified.

2.2 Outer Membrane Channel

Once recruited by the IMA, the substrate is transported out of the
cell via the ED in the assembled pump (figure I). Essentially
resembling the shape of a hollow cylinder, the ED occurs in at least
two different states, blocking the passage of substrate, e.g. when not
interacting with an IMA, and permitting the trafficking of substrate
for example as part of the assembled RND efflux pump. The
underlying gating mechanism has been the main focus of ED
simulation studies, which at the time of writing have been reported
tor E. coli TolC and P. aeruginosa OprM.

Computational studies of TolC focused on MD simulations
comparing wild type (WT) and mutants in the outer periplasmic
bottleneck region [100,101], WT ground state dynamics [19] as well

as elastic network normal mode analyses exploring possible opening
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mechanisms using TolC and OprM crystal structures [102]. In a 20
ns MD study of WT and Y362F+R367S TolC Vaccaro and co-
workers reported the mutant exhibiting heightened flexibility in the
periplasmic mouth region while for the extracellular loops a gating
function was proposed based on the observed closing motions [101].
In a series of 20 — 30 ns MD simulations of WT, Y362PF+R367E
and Y362F+R367D TolC Schulz and Kleinekathéfer observed WT -
like closed periplasmic mouth conformations stabilized by potassium
ions coordinated by TIS52, DIS3, and E/D367 in the mutant
structures [ 100]. Only when the potassium binding sites were emptied
using an outer electric field a BNII (green rectangle in figure Sa)
opening trend was observed.

Simulating WT TolC (figure 5a) in a series of 9 150 - 300 ns
unbiased and independent atomistic MD runs, Raunest and Kandt
[19] observed free opening and closing motions on extracellular side
(figure 5b), opening and sodium-induced closing motions of the outer
periplasmic bottleneck region [103] (figure Sc, d green) whereas the
inner periplasmic bottleneck [104] remained in a crystal structure-like
closed conformation unless all NaCl was removed from the system
(figure Sc, d, red). In that case a re-opening of the outer bottleneck
occurred, concurrent with a beginning opening trend of the inner
bottleneck. The free opening and closing of the extracellular loops
suggested the absence of a gating mechanism on this side as well as
hinted at the possibility of designing a novel group of TolC-directed
drugs specifically targeting the protein interior. Additionally, the
observed conformational dynamics on the opposite side indicates that
TolC is locked only on periplasmic side in a sodium-dependent
manner. In a similar study Koch et al. [18] sampled the ground state
dynamics of WT OprM in a series of 5 independent, unbiased 200ns
atomistic MD runs. Like TolC, the OprM simulations suggested
unilateral access regulation, with the protein opening and closing
freely towards the extracellular while on periplasmic side only the
Asp416 region is involved in channel gating. Contrary to TolC, no
evidence was found suggesting a Na-dependent lock mechanism in
OprM, although for OptM too new sodium binding sites were
reported.

2.3. Adapror Protein

Though the third component of the efflux systems, the adaptor
protein (figure I, AP) (AcrA for E.coli, MexA for P.aeruginosa), has
also been the object of thorough experimental study, several aspects
remain unclear, especially regarding the interplay among and the
assembling of the three efflux pump components [50,105-111].
Anchored to the inner membrane, APs extend into the periplasm
acting as a central linker between IMA and ED and play a critical role
in the transport event itself. However, the apparently simple question
of how many AP proteins are necessary in the assembled functional
pump has not received a clear-cut answer. Recent studies suggest that
both MexA and AcrA show propensity to form a funnel-like hexamer
when APs bind to the respective EDs [61,62], coinciding with the
stochiometry seen in the crystal structure of the structurally
homologue heavy metal efflux transporter CusA solved in complex
with its AP CusB [57].

At the time of writing two AP MD studies have been published:
one on MexA [112], the other on AcrA [113]. Vaccaro et al. [112]
investigated MexA in the absence of the membrane anchor and
without a large part of the membrane proximal (MP) domain, at that
time not resolved. Principal components analysis of the 25ns-long
MD trajectories identified a hinge-bending motion and a rotation of
the a-helical hairpin relative to the other domains of MexA as the two
dominant motions. According to the root mean square fluctuation of
each residue from its time averaged position the largest fluctuations

Computational and Structural Biotechnology Journal | www.csbj.org
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Figure 5. On a 300 ns time scale WT TolC (a) opens and closes freely on extracellular side (b) and in the region of the outer periplasmic bottleneck BNII at
Glu365 while the inner bottleneck BNI remains closed unless all NaCl is removed from the system (c, d). Adapted from [19], modified.

are for the loop between the two O-helices forming the hairpin, and
for two loops in the B-barrel domain. Interestingly, the first two loops
(ie. the hairpin and one of the two B-domain loops) appear to be
correlated in their motion. Further, the motion of the helicai-hairpin
loop appears to correlate with the C-terminal region. Of interest, this
region has been shown experimentally to be involved in AP / IMA
interactions [114]. These motions indicate considerable flexibility,
which is likely to be exploited in the adaptor function of MexA
during the assembly and opening of functional pores during pump
activity. The simulations offered first interesting insights into the
dynamical role of AP, although the study was limited by short
simulation times, an incomplete AP structure, no membrane
environment and by the fact that only a single MexA protein was
considered. Note that the importance of the MP domain has been
demonstrated by the recently solved crystal structure of MexA, in
which the MP domain adopts two distinct orientations with respect
to the other part of the protein [41].

Performing 20 ns MD simulations of WT and mutant AcrA in
an aqueous environment under different pH conditions, including the
homology-modelled MP but lacking the membrane-anchoring N-
Terminus, Wang and co-workers [113] showed that AcrA flexibility
largely stems from the -hairpin and MP domains, whereas the lipoyl
and PB-barrel domains form a relatively rigid module. The authors
turther reported that both point mutations and pH influence protein
dynamics, with pH S conditions reducing conformational ﬂexibility,
in agreement with electron paramagnetic resonance experiments [115].
Situated in the -barrel domain H285 was identified as regulatory key
of the pH-induced changes in conformational flexibility whose
reduction could be interpreted as favouring intermolecular packing
and reducing the entropy cost of oligomerization. Furthermore, as
AcrA/B binding affinity is pH-dependent [61], periplasmic pH
changes accompanying the drug efflux could also act as a signal
regulating the assembly of the functional AcrAB—TolC complex.

Volume No: 5, Issue: 6, February 2013, 201302008

3. CONCLUDING REMARKS

In this review we provide a survey on the application of atomistic
simulations to study the molecular bases of RND efflux pump-based
antibiotics resistance, summarizing the recent studies investigating the
conformational dynamics of the inner membrane proton/drug
antiporters ActB and MexB, the outer membrane efflux ducts TolC
and OprM as well as the inner membrane-anchored adaptor proteins
AcrA and MexA. With the first relevant simulation study published
merely seven years ago, the computational investigation of efflux
pump-meditated multidrug resistance is still a young field of research
that has only just begun to gain momentum. Nonetheless, some
interesting findings have already been reported and it will be exciting
to see what the future holds for this branch of computational
research, already addressing biological questions on a time and system
complexity scale that would have been considered impossible only a
few years ago.
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