
 

  

 

 

 

 

 

 

 

 
 
 
 

 
Introduction 
 

In the time since Escherichia coli was first engineered to produce 
ethanol as its major fermentation product [1] and the coining of the 
term “metabolic engineering” in that same year [2,3], a variety of 
microbes have been engineered for the production of a wide range of 
products. These products include, but are not limited to, fuels [4], 
chemicals [5] and neutraceuticals [6]. Here we focus on the use of 
microbial biocatalysts to produce biorenewable fuels and chemicals. 

Metabolic Engineering is defined as “the directed improvement of 
production, formation or cellular properties through the modification 
of specific biochemical reactions or the introduction of new ones with 
the use of recombinant DNA technology” [7]. Straightforward 
expression of a new pathway is often sufficient for production of the 
desired compound. However, an economically viable process requires 
that the target compound be formed at high titer (concentration), 
yield and rate, where the target values for these parameters can 
obviously vary according to the value of the product. Deletion of 
competing pathways and increasing expression of the target pathway 
are standard tools for increasing titer, yield and rate [8]. A variety of 
tools exist for increasing gene and enzyme abundance including the 
use of inducible promoters [9-12], engineering or evolution of the 
promoter and ribosome binding region [13], mutation of 
transcriptional regulators [14], transcript stabilization [15], 
optimization of translation initiation [16], codon optimization 
[17,18] and others [8,19,20].  
 

 
 
 
 
 

 
 

 
  

 

However, pathway function is determined by more than just the 
expression level of the constituent enzymes. The affinity of an enzyme 
for substrate(s) and/or cofactor(s), catalytic efficiency, cofactor 
requirements and allosteric regulation, as well as substrate uptake and 
product export, are all important drivers of flux through the desired 
pathway. Here we describe key examples where knowledge and 
manipulation of these parameters have enabled increased process 
performance in terms of the production of biorenewable fuels and 
chemicals. Note that it is often difficult to determine a priori which 
enzyme is limiting biocatalyst performance. There are several recent 
examples of methods for identifying problematic, or “bottleneck” 
enzymes [21-25]; this topic is not addressed in this review. 

 
Overview of Michaelis-Menten Parameters 
 

The enzymatic conversion of substrate S to product P by enzyme 
E can be represented by the following simplified two-step reaction 
schematic (rxn 1) 

 

 
 

In this model, formation of the enzyme-substrate complex (E-S) 
is reversible, but formation of product P is irreversible. This 
schematic is represented mathematically by the Michaelis-Menten 
equation  
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                                                      Eq 2 

 

cET = cE + cE-S                                         Eq 3 

 

vmax = kcatcET                                                                                                                   Eq 4 

 
In this manner, v reflects the overall velocity (rate) of a given 

reaction as a function of substrate concentration cs, concentration of 
active enzyme cET, Michaelis constant Km, and turnover number kcat. 
Note that cE and cE-S represent the concentration of enzyme in the 
unbound and substrate-bound states, respectively. This formulation 
was first described in 1913 and has recently been translated into 
English and revisited with some interesting insights [26]. 

vmax and Km are the two most-commonly quantified values for a 
particular enzyme-substrate pair, as they can be determined by 
measuring reaction rate v over a range of substrate concentrations. 
When the substrate concentration becomes saturating, the reaction 
velocity will approach vmax. Km is the substrate concentration at which 
the reaction velocity is one half of vmax. Thus, Km reflects the affinity 
of an enzyme for its substrate, with a lower value indicating a stronger 
affinity. kcat, also known as the turnover number, represents the speed 
at which a particular enzyme can convert substrate to product; higher 
values represent a faster-acting enzyme. The theoretical upper limit of 
kcat is generally considered to be in the range of 106 – 107 s-1 [27]. 
The ratio of kcat/Km is often referred to as the ‘specificity constant’ 
and used to compare the activity of a particular enzyme with multiple 
substrates; the theoretical upper limit of kcat/Km is estimated as 108-
109 M-1s-1 [27]. This ratio is also said to reflect an enzyme’s catalytic 
efficiency, though there are concerns about the validity of this term 
[28]. A recent compilation and analysis of data for more than 1,800 
enzymes reported that median values for kcat, Km and kcat/Km are 13.7 
s-1, 130 µM and 125,000 M-1s-1, respectively [27]. 

 
Impact of Michaelis-Menten parameters on biocatalyst 
performance 

 
Km values are especially important at metabolic nodes, where 

multiple enzymes compete for one substrate. When engineering E. 
coli for homoethanol production, Ohta et al [1] introduced pyruvate 
decarboxylase (PDC, Km

pyruvate = 0.4 mM) into an existing pyruvate 
node, where other enzymes (pyruvate formate lyase, Km

pyruvate = 2.0 
mM; lactate dehydrogenase, Km

pyruvate = 7.2 mM) were already 
competing for pyruvate. However, PDC had the lowest Km

pyruvate and 
was able to effectively out-compete the other enzymes, enabling 
production of ethanol at 95% of the theoretical yield without 
deletion of the competing enzymes [1,29]. 

Metabolic cofactors, such as ATP and NAD(P)H can be 
considered among the most highly-connected metabolic nodes. In 
these cases, enzymes with a high affinity (low Km) for these valuable 
metabolites can be problematic for a well-performing strain if these 
enzymes are not involved in product formation. For example, E. coli’s 
YqhD is an NADPH-dependent promiscuous aldehyde reductase that 
normally functions to reduce the toxic aldehydes that are produced by 
lipid peroxidation [30]. It has a Km

NADPH of 0.8 µM [29,31]. 
However, in the presence of exogenous aldehydes, such as the furfural 
that can be relatively abundant in hydrolyzed biomass, YqhD-
mediated furfural reduction results in depletion of the NADPH pool 
[31,32]. This depletion is so extreme that there is insufficient 
NADPH for sulfite reductase (Km

NADPH = 80µM) to produce the 
hydrogen sulfide required for production of cysteine [31,32]. This 

depletion of cysteine results in a lack of growth and therefore a lack 
of product formation. Elimination of this NADPH depletion via 
silencing or removal of yqhD results in increased furfural tolerance, 
both in terms of biocatalyst growth and product formation [31,32].  

A high Km value can be problematic when it results in incomplete 
substrate utilization. A demonstration of this problem is the 
levoglucosan kinase (LGK) enzyme. Levoglucosan is an anhydrosugar 
produced during biomass pyrolysis that can be utilized with the same 
ATP and redox demand as glucose [33]. However, LGK has a 
relatively high Km

levoglucosan of 75 mM [34]. The problem incurred by 
this Km value is reflected by the fact that a substantial amount of 
levoglucosan is left unutilized, resulting in a loss in product formation 
[33]. This problem could potentially be alleviated by modifying the 
enzyme to have a lower Km; examples of this type of modification are 
described below. 

 
Improving Km, kcat and kcat/Km to improve strain performance 

 
As highlighted above, the use of enzymes with appropriate 

Michaelis-Menten parameters can enhance the performance of a 
microbial biocatalyst. The question becomes how to obtain enzymes 
with the appropriate parameters. In some cases, there exist 
characterized isozymes for a given enzymatic reaction. However, in 
many cases it becomes necessary to generate variants of an enzyme in 
order to obtain the desired function. These variants can either be 
generated by evolution [39-42] or through rational design [43,44].  

Chen et al [21] recently provided an excellent example of the how 
improving the Michaelis-Menten parameters of one enzyme can 
improve process performance. Having identified transaldolase (TAL), 
a component of the non-oxidative branch of the pentose phosphate 
pathway, as the enzyme limiting the utilization of pentose sugars by 
ethanol-producing Pichia stipitis, Chen et al set out to generate 
improved variants of this enzyme through directed evolution and 
screening. The most promising variant (Gln263Arg) had a two-fold 
decrease in Km

F6P and 3-fold increase in kcat
F6P, resulting in a 5-fold 

increase in the kcat/Km ratio (Table 1). When the fermentative 
performance of the strain expressing this improved enzyme was 
compared to the strain with the original TAL enzyme, an increase in 
both the xylose consumption rate and ethanol production rate were 
observed (Table 1). 

As part of an engineered pathway for isobutanol production, the 
Lactococcus lactis alcohol dehydrogenase (AdhA) was demonstrated 
as effective for converting isobutyraldehyde to isobutanol, though the 
Km value was higher than other existing enzyme alternatives [45]. 
Screening of nearly 4,000 random variants identified amino acid 
changes that were useful in lowering the Km. Three of these changes 
were engineered into a final mutant termed RE1 [35]. RE1 showed a 
10-fold decrease in Km, 4-fold increase in kcat and thus 40-fold 
increase in kcat/Km and enabled a nearly 2-fold increase in isobutanol 
titer (Table 1).  
 

Cofactor requirements 
 

The above example of YqhD-mediated drainage of NADPH 
highlights the importance of this valuable cofactor. Relative to the 
glycolysis-associated NADH, NADPH can be relatively scarce. 
Therefore pathway designs in which NADPH is required for 
production of the target compound can suffer from a lack of 
NADPH availability. One method for dealing with this problem is to 
use transhydrogenase enzymes to intercovert NADH and NADPH 
[32,35,46-49]. Another method is to exchange NADPH-dependent 
enzyme  activity  for  NADH-dependent  enzyme  activity,  either  by  
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selecting an appropriate isozyme or by modifying the NADPH-
dependent enzyme. This exchange of NADPH/NADH dependency 
was recently reviewed [50] and a few key examples are described here. 

The reduction of furfural to the less-inhibitory furfuryl alcohol is 
performed by the NADPH-dependent aldehyde reductase YqhD in 
wild-type E. coli [31]. Deletion or silencing of yqhD increases 
tolerance of approximately 1.0 g/L of furfural by sparing NADPH 
for biosynthesis [31]. However, this results in a lack of detoxification 
of furfural to furfuryl alcohol. Wang et al [37] addressed this 
problem by increasing expression of the NADH-dependent furfural 
reductase FucO, enabling a 50% increase in furfural tolerance. Note 
that the Km

furfural of FucO is 0.4 mM, enabling it to outcompete 
YqhD’s  m

furfural of 9 mM [31,37] (Table 1), further highlighting the 
importance of using enzymes with appropriate Km values. 

Watanabe et al [36] used an enzyme modification approach to 
switch the P. stipitis xylose reductase (PsXR) enzyme from a 
preference for NADPH to a preference for NADH (Table 1). This 
cofactor switching was motivated by the goal to maintain redox 
balance with the NAD+-dependent xylitol dehydrogenase, the 
enzyme which is immediately downstream of PsXR in the conversion 
of xylose to ethanol. The original enzyme had a 10-fold higher 
Km

NADH relative to Km
NADPH, reflecting a 10-fold lower affinity for 

NADH, though the kcat
NADH was about 30% lower than kcat

NADPH. By 
contrast, the evolved enzyme had a 10-fold lower Km

NADH relative to 

Km
NADPH and a 25-fold lower kcat

NADPH relative to kcat
NADH. This 

combination of changes in Km and kcat means that the evolved enzyme 
has a 3-fold higher (kcat/Km)NADH relative to (kcat/Km)NADPH, relative to 
the original enzyme’s 20-fold higher (kcat/Km)NADPH relative to 
(kcat/Km)NADH. Simply put, the original enzyme’s preference for 
NADPH was evolved to a preference for NADH, where this 
preference is reflected in the Km, kcat and kcat/Km values. Use of this 
evolved PsXR enzyme in S. cerevisiae resulted in increased ethanol 
production from xylose and decreased formation of the side product 
xylitol (Table 1) [36]. 

Ketol-acid reductoisomerase (IlvC) is part of the engineered 
pathway that enables isobutanol production by E. coli. However, the 
NADPH dependence of this enzyme is undesirable. Bastian et al [35] 
used a structural alignment of this enzyme to identify key amino acid 
residues for mutagenesis with the goal of switching to NADH 
dependence. All beneficial mutations identified during the mutant 
screening were recombined in a final library and screened further. The 
best mutant had four mutations, a 3-fold decrease in Km

NADH, 16-fold 
increase in Km

NADPH and 7-fold increase in kcat
NADH (Table 1). The 

combined effect of these mutations was 250-fold increase in 
kcat

NADH/Km
NADH, 200-fold decrease in kcat

NADPH/Km
NADPH and 3-fold 

increase in isobutanol production (Table 1) [35]. This example 
demonstrates the benefit acquired when information regarding the 
enzyme structure and active site is available. 
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Addressing enzyme inhibition (Ki) 
 

The Michaelis-Menten parameters described above all relate to an 
active enzyme, its affinity for the substrate and its speed in forming 
product. However, many enzymes have at least some degree of post-
translational allosteric regulation which serves to fine-tune enzyme 
activity in response to the abundance of key metabolites. This activity 
control occurs in the form of both activation and inhibition; here we 
focus on examples of enzyme inhibition. 

As with the Michaelis-Menten model of enzyme activity, there 
also exist quantitative models for enzyme inhibition. These describe 
both competitive and non-competitive inhibition. In standard cases of 
competitive inhibition the inhibitor (I) competes with the substrate 
for binding to the active site, resulting in the additional reaction (rxn 
2) 
 

 
 
to the simplified schematic described above. This reversible binding is 
described with the inhibition parameter Ki, which reflects the affinity 
of the enzyme for the inhibitor according to 
 

Ki = cEcI/cE-I                                         Eq 5 

 
and the overall velocity v of the reaction is represented by the 
modified Michaelis-Menten equation 

 

 

v
  

 m

vmaxcs
   

ci

 i
  

 

vmax
                          Eq 6 

 
Note that ci is the concentration of the inhibitor. 

 
By contrast, in standard cases of non-competitive inhibition, the 

inhibitor binds to a site distinct from the active site and this binding 
induces a conformational change in the enzyme that decreases 
enzymatic activity. Thus, in addition to Rxn 2, it is possible for the 
inhibitor to bind to the E-S complex; this E-S-I complex can revert to 
E-I by dissociation of the substrate or possibly proceed to product 

formation, though at a much slower rate than the E-S complex in the 
absence of bound inhibitor. This non-competitive inhibition is 
modeled  
 

 

v
  

 m

vmaxcs
   

ci

 i
  

 -
  
  

vmax
             Eq 7 

 
Competitive and non-competitive inhibition can be distinguished 

by the use of Lineweaver-Burk plots, which are not discussed here. 
The relevance of these equations to the current work is the fact that 
enzyme sensitivity to inhibition can be quantified by the parameter Ki, 
where a higher value indicates decreased sensitivity to inhibition.  

This regulatory control of enzyme activity presumably serves to 
balance metabolic flux distribution and can be problematic when one 
desires to produce a single metabolic product at high concentration 
and yield, as this can conflict with the microbial need to balance 
production of biomass constituents. Thus, enzyme inhibition is a 
problem that often needs to be addressed in the fermentative 
production of biorenewable fuels and chemicals. 

As with the other enzyme properties described above, the problem 
of enzyme inhibition can often be addressed by selecting from existing 
characterized isozymes. For example, Shen et al [51] observed 
relatively low metabolic flux through their engineered 1-butanol and 
1-propanol pathways that was presumably due to inhibition of 
homoserine dehydrogenase (ThrA) by threonine, where threonine is 
an intermediate of the engineered pathway downstream of ThrA. 
Replacement of the native E. coli ThrA with a feedback-resistant 
mutant (ThrAfbr) resulted in a more than 3-fold increase in the final 
titers of 1-butanol and 1-propanol (Table 2) [51]. Similarly, the use 
of feedback-resistant mutants of 3-deoxy-D-arabino-heptulosonate-7-
phosphate (DHAP) synthase (AroG) and chorismate mutase/ 
prephenate dehydrogenase (TyrA) each increased tyrosine production 
more than 10-fold when expressed individually (Table 2) and enabled 
even further increases in production when expressed simultaneously 
(data not shown) [52]. Note that AroG performs the first dedicated 
step of the tyrosine biosynthesis pathway and is inhibited by L-
phenylalanine. TyrA performs the next-to-last step in tyrosine 
biosynthesis and is inhibited by tyrosine. 

E + I (E-I)
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Biomass formation by ethanologenic E. coli KO11 was limited in 

defined growth media due to NADH-mediated inhibition of citrate 
synthase, resulting in limitation of the biomass precursor alpha-
ketoglutarate and limitation of overall growth and therefore product 
formation [53]. Replacement of the native E. coli citrate synthase 
with an NADH-resistant isozyme from Bacillus subtilis resulted in a 
50% increase in growth and ethanol production in the desired growth 
condition [53].  

An alternative approach to replacing an inhibition-sensitive 
enzyme with an inhibition-resistant isozyme is to modify the original 
enzyme so that the inhibition sensitivity is reduced or eliminated. 
This approach was taken by Kim et al [54,55] in regards to pyruvate 
dehydrogenase (PDH). The PDH complex is normally subject to 
inhibition by NADH; presumably this serves to balance generation of 
NADH in glycolysis and the subsequent regeneration of NAD+ 
through fermentative pathways. The lack of PDH activity during 
fermentative growth, when NADH is abundant, has resulted in 
reliance on recombinant expression of the Zymomonas mobilis PET 
pathway for ethanol production by E. coli [29]. However, mutations 
within the dihydrolipoamide dehydrogenase (LPD) subunit of PDH 
reduced this feedback sensitivity approximately 10-fold, resulting in a 
10-fold improvement of ethanol production without dependence on 
the Z. mobilis PET pathway (Table 2).  

 
Appropriate transporters for substrate uptake and product 
export 

Finally, effective pathway flux requires the presence of appropriate 
uptake systems for the desired substrate and effective means of 
excreting or sequestering the product compound. 

Transporters that are discovered when searching for importers can 
also be useful as exporters. The Schizosaccharomyces pombe malate 
transporter Mae1 (SpMae1p) was first demonstrated as useful for 
malate uptake by S. cerevisiae [59], but was also able to support a 10-
fold increase in the malate titer achieved by a malate-producing S. 
cerevisiae [60].   

Product export becomes increasingly important when the target 
compound is inhibitory to the microbial biocatalyst. Here we discuss 
two examples of the selection of appropriate exporters in order to 
improve the microbial production of an inhibitory compound. 
Despite the fact that it is naturally produced by E. coli and is 
necessary for protein translation, the branched-chain amino acid 
valine has long been known to be toxic to E. coli [61]. Thus, Park et 
al’s strain design for valine production included a means to mitigate 
intracellular valine accumulation via overexpression of the ygaZH 
transporter [62]. This strategy increased the valine titer by nearly 
50% (Table 3). The YgaZH transporter is native to E. coli but was 

not previously recognized as a valine transporter; Park et al identified 
it as a potential valine exporter due to its homology with the brnFE 
branched-chain amino acid exporter encoded by Corneybacterium 
glutamicum [62]. 

Many biorenewable compounds are not naturally produced by the 
microbial biocatalyst and thus there is an absence of effective export 
systems. Dunlop et al [63] generated a library of 43 efflux pumps 
from 15 different microbes and selected from the mixture based on 
their ability to increase E. coli’s tolerance of limonene, among other 
biofuels. Introduction of the most useful pump, YP_692684 from 
Alcanivorax borkumensis, enabled an approximately 50% increase in 
limonene titer when expressed in an E. coli strain engineered for 
limonene production. 

These three examples highlight the use of native transporters, 
recombinant transporters and engineered/evolved transporters to 
increase production of biorenewable fuels and chemicals. 

 
Summary and Outlook 
 

Here we have highlighted recent examples of how improvement of 
enzyme parameters, as reflected in the Michaelis-Menten-type 
parameters Km, kcat and Ki, can improve the fermentative performance 
of a microbial biocatalyst. Each of the examples that we have 
described represent improved biocatalyst performance in the context 
of production of biorenewable fuels and chemicals. While the 
Michaelis-Menten is a simplified model of enzyme kinetics [26,65-
68], these parameters provide a useful quantification of enzyme 
properties that can be enormously valuable to other researchers when 
selecting enzymes during pathway design. Databases such as 
BRENDA [69] are a useful repository of this type of information. 
However, it is critical that researchers continue to quantify and report 
these parameters for engineered or evolved enzymes so that others can 
make informed choices and use these enzymes when appropriate. 

There are some enzymes that are tantalizing targets for 
improvement in order to increase production of biorenewable fuels 
and chemicals, yet these enzymes remain remarkably intractable to 
such improvement. The most well-known example is photosynthesis 
pathway enzyme Rubisco, which has a low catalytic efficient and poor 
substrate specificity [27,70]. A recent cross-species analysis of the 
evolutionary landscape for Rubisco has provided interesting insight 
into why it has proven so difficult to improve its function [27]. Thus, 
despite the fact that we have described many successful examples of 
improving strain performance by improving enzyme parameters, it 
should be noted that enzyme improvement is not always feasible. 
Note that others have managed to obtain (slightly?) improved 
Rubisco mutants [70,71]. 
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While this work demonstrates the impact that improved enzyme 
properties can have on biocatalysts, it is apparent from the literature 
that additional collaboration between protein engineers and metabolic 
engineers could result in further advances. For example, Campbell et 
al [72] and Machielsen et al [73] have both demonstrated the ability 
to switch the cofactor dependence of alcohol dehydrogenase enzymes 
through rational design. This ability to target specific amino acids 
could possibly reduce the time needed to acquire useful enzymes 
relative to enzyme evolution. Additionally, thorough characterization 
of the resulting mutants adds to our understanding of enzyme design 
rules and could support further advances in protein engineering. 
Collaboration between metabolic engineers and protein engineers 
could ensure that high-impact enzymes are selected for study and that 
the enzyme modification yields not just a useful enzyme, but also 
useful information that could further advance our protein engineering 
capabilities. 

It is interesting to note that while improvement of enzyme 
parameters can improve strain performance, the magnitude of these 
improvements often differs (Table 1). For example, the Q263R 
mutation in the P. stipitis transaldolase resulted in a 5-fold increase in 
its kcat/Km for F6P, but less than a 30% increase in xylose 
consumption and ethanol production [21]. Similarly, multiple 
mutations in the L. lactis alcohol dehydrogenase resulted in a 30-fold 
increase in its kcat/Km for isobutyraldehyde, the final isobutanol titer 
was increased less than 2-fold [35]. This is presumably due to the fact 
that metabolic flux through a given pathway consists of a series of 
enzymatic reactions, with each enzyme have its own set of governing 
parameters. Improvement of the so-called “bottleneck” enzyme wil 
only increase the flux to the limit allowed by the next bottleneck 
enzyme. 

While it makes sense that the fold improvement in enzyme 
parameters will not result in the same fold improvement in strain 
performance, the impact that mitigation of enzyme inhibition can 
have on strain performance is particularly striking (Table 2). Work 
with three of the examples that we have described, DHAP synthase 
[52,56], chorismate mutase [52,57] and dihydrolipoamide 
dehydrogenase [54,55], resulted in a greater than 10-fold increase in 
product titer. While this work considers only a limited set of enzyme 
manipulations, it is tempting to conclude that, generally speaking, 
addressing enzyme inhibition should be a higher priority than 
improving kcat, Km and kcat/Km. 
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