
 

  

 

 

 

 

 

 

 
 
 
 
 
Introduction 
 

Rules relating protein sequence and its three-dimensional 
structure are of special interest for protein structure prediction. 
Protein structures are mainly composed of beta-strands arranged in 
sheets, of helices and of loops and turns connecting them [1-3]. 

Beta-strands composing protein beta-sheets are bound either in 
parallel or in anti-parallel in particular by hydrogen bonds between 
amino acids’ main chain chemical groups [4-6]. Each beta-strand is 
bound to another two strands, except for the edge strands [7, 8]. 
Hydrophobic ordering plays an important role in the arrangement of 
amino acids and of beta-strands within beta-sheets. Hydrophobic side 
chains tend to be located centrally in the beta-sheet [9]. The more 
hydrophobic the beta-strand, the more centrally located is the beta-
strand within the sheet [10]. The observation was found to be 
sufficient to account for beta-strand ordering in half of the beta-
sheets and evidence for hydrophobic ordering was found in three-
quarters of the beta-sheets [10, 11]. The length of beta-strands was 
also observed to be often smaller for edge strands [10]. Another rule 
was noted for four amino acids’ long strands: such beta-strands are 
central only if their hydrophilicity is smaller than 35% [12]. The last 
beta-strand in the protein sequence which is the closest to the protein 
C-terminus, was also found to be generally located at an edge for 
beta-sheets containing three to six strands [13]. Most three-stranded 
beta-sheets were found to be arranged in a sequential and anti-parallel 
order [14]. It was further reported that introduction of the positively 
charged amino acid lysine is sufficient to convert aggregating beta-
strands within multimers into edge strands of monomers [15, 16]. 
Between two beta-sheets, interlocked pairs of beta-strands were 
identified as a common motif of protein structures [17, 18]. 
 

 
 
 
 
 

 
 

 

Protein structures were classified according to their fold [19-23]. 
The protein fold is straightforwardly derived from tertiary structures. 
While tertiary structure prediction from protein sequences remains a 
challenge for most proteins, their secondary structure is generally well 
predicted from their sequence [24-35]. Protein folding from a one-
dimensional polypeptide chain into a three-dimensional compact 
protein globule was widely analyzed experimentally and theoretically 
[36-44]. 

An elementary protein folding step is defined here as the 
formation of a non-covalent bond between two atoms of the protein 
chain, such as a hydrogen bond. In this work, consideration of an 
elementary step of protein folding is shown to provide information on 
the three-dimensional structure from sequences.  

 
Experimental procedures  

 
The programs pdb2 and pdb23 are written in perl. Their entry 

files are single PDB references of protein structures or lists of them 
[45, 46]. The program output files are tables (.xls files). The program 
removes DNA and RNA structures as well as those of peptides and 
proteins of less than 50 amino acids and analyzes only the first 
protein chain given in the DBREF key of the PDB file.  

The program pdb2 uses the protein sequence in the three-letter 
amino acid code as found within the SEQRES key of .ent PDB files. 
From each .ent PDB file, a text .txt file contains the values of DBREF, 
SEQRES characterizing the protein sequences and the number of 
alpha carbon atoms (CA) within the PDB file so as to identify 
missing atoms within the structure. The mass of each atom is taken as 
the number of its nucleons, except for the selenium atom which was 
given the mass of a sulfur atom for the calculations, so as to avoid the 
bias due to selenomethionines deriving from methionine substitutions 
engineered for crystal diffraction studies. The protein sub-sequences 
were noted if their length does not exceed 20 amino acids (cf. results). 
L is the number of amino acids in the protein chain. For integers i 
within the 1 to L range, and j within the i to i+20 range, each 
sequence S(i,j) corresponding to the peptide from amino i to amino 
acid j is taken into account. If its mass M is not a square, the sequence 
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S(i,j) is rejected. If its mass is a square, that is if the value M1/2 equals 
its integer part I(M1/2), then the sequence S is said to be optimized 
for folding (cf. results): S(i,j) = SOF(i,j). For all values of i and j 
associated to a protein, the set of all SOF(i,j) is drawn within a graph 
in red: Figure 3 shows the case of the human transthyretin protein of 
PDB reference 1eta. 

Using the program pdb23 for any beta-sheet named (sheetID), 
the number (V) of SOF of the protein chain is given for each amino 
acid (AA) in the three-letter code in the downloadable output file 
together with the mean number (Vm) of SOF per strand which is 
averaged over all amino acids of the beta-strand. To eliminate SOF 
sequences of length 1 corresponding to the unique amino acid 
cysteine, the SOF length was taken as (j-i) with its values in the range 
i+1 to j. Only beta-sheets with more than three beta-strands are taken 
into account (cf. discussion); beta-strands that are three or less amino 
acids long, are not considered within this analysis. Beta-sheets which 
do not contain edge strands such as those in beta-barrel structures 
have been excluded from this study. 

Both programs can be used at the addresses 
(http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::pdb2) and 
(http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::pdb23).   

The first training set of 29 structures (cf. supplementary 
material) was constituted by choosing one protein structure per fold 
in the SCOP database [22]. The two non-redundant test lists 
consisting of 83 protein structures from the PDB containing at least 
one open beta-sheet with more than three strands (cf. supplementary 
material) were established using the program check.pl by removal of 
proteins containing engineered substitutions within protein domains 
(except for the engineering of methionine to selenomethionine 
mutations whose impact for the calculation is described above). 
Proteins with similar functions and from similar organisms were also 
removed from the test sets. The all-alpha proteins found were further 
eliminated as they did not contain an edge strand within a beta-sheet. 
Protein homology within the test set was evaluated using the program 
Pisces [47]. The protein structures were visualized from pdbxxxx.ent 
PDB files using the software Pymol by highlighting their ribbon 
characterized by the amino acids’ alpha carbons. 

 
Results  

 
A mechanical system consisting of a folding entity is modelled as 

a sphere (Figure 1). The reference frame is fixed with respect to the 
rotating folding entity so that its kinetic energy equals zero in this 
frame. A chemical group folding onto the folding entity is defined as 
the folding unit and is represented by a small sphere of mass m and 
velocity X. After folding, the folding entity is a larger sphere of mass 
M and velocity Y.   

The kinetic energy of the folding unit is noted mX2/2. After 
folding, the kinetic energy of the larger folding entity is MY2/2. The 
internal energy released during folding is noted Ui. The difference in 
energy due to the breaking and the formation of bonds such as 
hydrogen bonds during the folding step is noted Ep. Energy 
conservation during the folding step can then be written as in 
equation (1): 
 
       

                                                        (1) 
 

 with E = Ui + Ep 
 

Equation (1) is of special interest when considered over the field 
of rational numbers Q: for any given value of E, equation (1) has an 

infinite number of solutions in X and Y if (m/M) is a square (cf. 
Appendix). The folding of a mass m which is a square is further 
considered: for energy conservation to be ensured during the 
elementary folding step while having an infinite number of solutions 
in X and Y, it is sufficient for M to be a square. This condition 
prompted us to investigate the corresponding peptide sequences 
which are thereby optimized for folding. According to this model, if 
equation (1) has no solution in X and Y, then energy is not conserved 
during the elementary folding step and folding cannot proceed. Sets 
of protein sub-sequences with optimal folding properties (SOF) can 
be defined for any protein sequence. According to the elementary 
protein folding step (Figure 1), symmetry is gained during folding, as 
the small sphere of mass m on the surface of the folding entity yields 
a sphere after folding: the inequivalent group of mass m becomes 
equivalent to the other parts of the entity after folding. This 
formalism is used in this study to predict edge strands in protein beta-
sheets (Figure 2). 
 

 
 
 
  
 

 

 
 
 
 

 
 
 

 
The longer a sequence with optimal folding properties (SOF), the 

less stable it is upon amino acid substitution during evolution, given 
that the probability for an amino acid mutation to occur increases 
with the sequence length. Conversely, the shorter a SOF, the higher its 
robustness upon mutation. Accordingly, we did not consider SOF 
which are more than twenty consecutive amino acids long (Figure 3).  

mX2

2 2
=

MY2

 + E 

Figure 1. Elementary step for the folding of a small group of mass m onto 
the folding entity to yield a larger folding entity modelled by a sphere of 
mass M. Symmetry is gained during this elementary folding step. 
 

Figure 2. Representation of predicted edge strands in the structure of 
human transthyretin (PDB reference 1eta) [48]. Lines represent virtual 
bonds between the alpha carbons of adjacent amino acids in the protein. 
Two superimposed beta-sheets (blue and green) consisting of four beta-
strands each contain two edge strands (dark blue and dark green) and 
predicted according to the rule. 
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Edge strands are bound to a unique other beta-strand within beta-

sheets while central strands are bound to two other beta-strands, 
thereby highlighting distinct symmetry properties. As the elementary 
folding step changes the symmetry of the system (Figure 1), we 
reasoned that sequences with optimal folding properties (SOF) might 
be correlated with the position of beta-strands within sheets located 
either centrally or on the edge. 

By using a first training set of 29 proteins, a correlation was noted 
between extreme values of the mean number of SOF for a strand (Vm) 
and its location on the edge of sheets of more than three strands. The 
following first rule was then established: the lowest value of Vm 

corresponds to an edge strand for (0  Vm < 0.34). If a Vm value 
does not exist in this range for all strands of the beta-sheet, the 
maximal Vm value predicts an edge strand (Table 1). 

 

A first test set of 83 protein domain structures was made of 
protein structures with at least one open beta-sheet of at least four 
strands of more than three consecutive amino acids. Out of 96 
predictions, 59 edge strands (61.5%) were predicted correctly.  

As all beta-sheets considered in this study are composed of two 
edge strands and of at least two central strands, there is a probability 
of one half or less for the random assignment of an edge strand. In 
order to compute the p value of the test, the probability of failing at 
most k times within n assays (one assay for each protein beta-sheet) 
when the probability of failure is taken as 0.5 was computed using the 
binomial law as in Equation (2): 
 

 
 
                                                                                             (2) 
                            
      

 
where  

 
 
The severity of this statistical test is highlighted by the fact that 

the probability of 0.5 is only exact for four-stranded beta-sheets, 
while it is less for the other beta-sheets of five strands or more 
considered in this work. For the first test set, the p value obtained for 
n = 96 and k = 37 was less than 0.0158 and was therefore 
considered as significant as it is less than 5%.  

To improve the rule, the first test set was then used as the second 
training set in which the 37 structures associated to incorrect 
predictions of edge strands were further analyzed. It was noted that 
the rule is not valid anymore in case a central strand’s end is bound to 
a two-dimensional knot (2D knot, Figure 4); the extreme Vm value is 
then associated to this strand or these strands, but not to an edge 
strand. The two-dimensional knot is defined here as the crossing of 
the polypeptide’s main chain on a two-dimensional representation of 
the protein’s structure along two axes, either the beta-sheet’s axis 

Figure 3. Set of sequences with optimal folding properties (SOF) highlighted in red for human transthyretin whose structure was described (PDB 
reference 1eta) [48]. The amino acid numbers are drawn on the horizontal axis. Each red segment corresponds to a peptide sequence with optimal folding 
properties (SOF). 
 

Cn
i
=

n!

i!(n-i)!
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(which crosses two alpha carbons within the first and last strands and 
minimizes the sum for all the strands of the distances of an alpha 
carbon per strand to the axis; Figure 4B and 4D) or the axis which 
includes the alpha carbon at the strand’s end and which is 
perpendicular to the sheet’s plane defined at proximity of the strand’s 
end by two alpha carbon atoms at positions m and m+2 in the strand 
and by one alpha carbon of the paired amino acid in an adjacent 
strand (Figure 4A and 4C). The 2D knot is within a loop between a 
beta-strand and a helix or between two strands of the sheet considered 
(Figure 4). A 2D knot is not a three-dimensional knot in the 
polypeptide chain.  

 

 
 

 
 
 
 

 
A second test set of 83 protein domain structures was then 

established to verify the improved rule (cf. supplementary material). 
69 topological information predictions were found to be correct 
among the 92 predictions, thereby corresponding to a prediction 
accuracy of 75%. Use of equation (2) yielded a p value smaller than 
8.4x10-7. This upper limit of the probability for at most 23 
prediction failures by random assignments among 92 assays indicates 
the finding’s statistical significance, which is far below the commonly 
accepted standard threshold of 0.05. 

As an amino substitution within an edge strand was shown to 
alter beta-sheet aggregation, a link between protein solubility and 
correct predictions of topological information was further 
investigated. The prediction of protein solubility from their sequence 
had been widely investigated [49-54]. Using the protein solubility 

prediction program Proso II (http://mips.helmholtz-
muenchen.de/prosoII/prosoII.seam), the second test set was found to 
be composed of 44 soluble proteins and 39 insoluble ones. The 
correct topological prediction rate of 75% was not found to be 
significantly different for soluble proteins (78%) and for insoluble 
proteins (74%).  

The protein domains of the second test set were found to be 
distributed over the three major domains which are Bacteria (41 
chains), Eukarya (36 protein chains from Animalia (25), from Fungi 
(5), from Plantae (4) and from Protista (2)) and Archaea (3 chains) 
and include three viral proteins. In this test set, biases were finally 
noted towards human proteins (about one fifth of the protein chains), 
pathogenic micro-organisms (about one sixth of the chains from seven 
species), Escherichia coli proteins (one sixth of the chains) and 
proteins from thermophilic bacteria (one tenth of the chains). The 
second test set with proteins chosen according to different functions 
and organisms was then analyzed by looking for potential sequence 
homology using the culling server Pisces [47]. Accordingly, four pairs 
of sequences were found to have more than 40% identity, namely 
(1na7, 1zog), (1gav, 2ms2), (1nxw, 2pl1), (2boi, 2chh) which are still 
considered as different topological predictions; even though two 
sequences may be highly homologous, their sequence differences can 
yield two distinct and correct topological predictions by identification 
of the two edge strands for example. The topological information 
prediction using the improved rule has a statistical significance which 
remains unaltered. 

 
Discussion  

 
A major challenge in biological chemistry consists of the 

identification of relationships between protein sequences and their 
functions on genomic scales [55, 56]. While knowledge of a protein 
structure does not necessarily imply that a function can be identified 
for the protein, deciphering of protein domain structures remains of 
major interest and can provide clues for potential functions [57]. To 
circumvent expensive and time-consuming experimental techniques 
such as NMR or X-ray diffraction on protein crystals, promising 
approaches rely on computational biology, on the statistical analysis 
of known protein structures as well as on simulations of polypeptide 
chain dynamics [58]. Rules that relate the one-dimensional protein 
sequence and its three-dimensional structure properties were 
identified [9, 11, 16, 59-65]. The link between correlated mutations 
in multiple sequence alignments and interacting amino acids in the 
three-dimensional structure was extensively studied [66, 67]. 
Alignments of more than thousand well-chosen homologous protein 
sequences recently allowed the identification of a sufficiently large 
number of correlated mutations so as to decipher domain structures 
[68-70]. Three-stranded beta-sheets are generally arranged 
sequentially in anti-parallel [14]. These beta-sheets were not 
considered in this work which focussed on larger sheets of more than 
three beta-strands, first because of previously established rules [14], 
second because the statistical analysis carried out above would not be 
as straightforward as in Equation (2) (i.e. in the case of a three-
stranded beta-sheet, the probability to identify an edge strand by 
random assignment is not one half or less) and third because the 
improved rule may not apply to three-stranded beta-sheets which were 
excluded during the analysis of the first training set. 

In comparison to the topological information prediction accuracy 
of 75% described above, machine-learning approaches yielded edge 
strand prediction accuracies of 70% and 75.6% using support-vector 
machines [12, 71, 72]. Decision-tree algorithms allowed an 83% 
prediction accuracy to be obtained [12]. It should be of interest to 

Figure 4. Bidimensional representations of polypeptide main chains 
containing 2D knots within loops between two beta-strands (A and B) or 
between a beta-strand and a helix (C and D). A beta-sheet’s axis is 
represented by a small circle (B and D). 
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combine different approaches to possibly improve further the edge 
strand prediction accuracy in protein beta-sheets. Interestingly, the 
notion of quasi-spherical random proteins was put in the context of 
natural proteins and introduced independently of this work [73]. The 
efficiency of the method used here shall be largely improved by 
applying it to several homologous sequences whose three-dimensional 
structures are expected to be similar. 

Equations from classical mechanics are commonly treated over the 
field of real numbers. Using the field of rational numbers has been 
found of interest in different fields of the natural sciences connected 
to classical mechanics [74, 75]. It may constitute the basis for a new 
extension of theoretical chemistry [76]. In the field of genetic coding, 
substitution matrices made also use of discretized parameters such as 
p-adic integers or p-adic rational numbers [77-79]; it is of interest for 
the understanding of why the genetic code is the way it is. 
Importantly, the formalism described herein, i.e. the treatment of 
Eq.(1) was validated within the genetic code [74], providing thereby 
support for its application to proteins. In the field of biological 
chemistry, the genetic code is of special importance because of its 
quasi-universality within living organisms on earth for several billions 
of years [80, 81]. Experimentally, it has been the subject of numerous 
studies so as to develop applications in protein engineering [82-84]. 
Theoretically, Rumer noticed discrete symmetries linked to 
degeneracy in the genetic code [85, 86]. A rationale accounting for 
those discrete symmetries derived from the discrete nature of single-
base mutations which have a major role in protein evolution [78, 79, 
87, 88]. More recently, the codon arrangement in the genetic code 
was found to optimize kinetic energy conservation in polypeptide 
chains by considering the masses of the canonical amino acids: the 
formalism constituted by an equation from classical mechanics treated 
over the field of rational numbers was validated by the statistical 
significance of the codon arrangement within the genetic code [74]. 

The notion of protein sub-sequences with optimal folding 
properties (SOF) was introduced in this work. The elementary 
folding step allows the definition of criteria which are not necessary 
for folding, but which are sufficient to define protein sub-sequences 
with optimal folding properties. Edge strands are noticeable within 
beta-sheets as they are the only strands which pair with a unique other 
beta-strand; central strands generally pair indeed with two other beta-
strands. Beta-barrel structures constitute an exception as they do not 
have edge strands, so that these structures were not considered here. 
The formalism suggested in this study allows the identification of 
sequences which optimize folding within proteins. Prediction of edge 
strands based on the consideration of the elementary folding step and 
of symmetry changes (Figure 1) is consistent with the fact that edge 
strands and central strands differ by their symmetrical properties with 
respect to neighbouring strands in protein beta-sheets. From our 
statistical analysis of hundreds of protein structures, we conclude that 
the formalism associated to the elementary folding step applied to 
given protein sequences allows information on the topology of their 
three-dimensional structure to be extracted.  

It will be of interest to try and apply the same formalism to other 
secondary structure elements such as protein helices. The algorithm 
described herein to get topological information on beta-sheets from 
sequences for thousands of potential protein structure models 
provides a basis for a fast check of their quality. Applications within 
the critical assessment of techniques for protein structure prediction 
(CASP) are envisionned [89]. 
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