
 

  

 

 

 

 

 

 

 

 
 

 
Introduction 
 

The field of industrial biotechnology requires rapid and efficient 
microbial cell factory design and construction for production of fuels, 
chemicals, proteins and pharmaceuticals. Modern strain design 
process starts with the identification of a set of genetic target 
modifications anticipated to improve yield, productivity, robustness 
or other performance relevant features. Subsequently, the whole 
arsenal of analytical techniques available today to characterize the 
transcriptome, metabolome, proteome and other -omes of production 
strains helps to identify opportunities for additional rounds of 
metabolic engineering. However, capabilities for strain design and 
construction have dramatically expanded due to advances in DNA 
synthesis and sequencing, moving from narrow studies focused on a 
few genes to broad and deep searches that seek to optimize traits at 
the genome-scale level (Lewis et al., 2012). Despite these advances, 
our incomplete understanding of the genetic basis of complex cellular 
processes makes target identification a key challenge in strain 
engineering.  

Metabolic engineering, which integrates engineering design with 
systematic and quantitative analysis of metabolic pathways, has as 
central goal to identify gene targets for the optimization of the 
metabolic phenotype with an emphasis on the global state of the cell, 
and not the individual reactions (Tyo et al., 2007; Zommorodi et al., 
2012).  Often  rational  metabolic  engineering  is  complimented by 

  
 
 
 
 
 

 
 

 
  

 
 
 
 

mutagenesis and screening or by evolutionary engineering, where 
selective pressure is applied to confer a desirable phenotype (Oud et 
al., 2012). The problem with microbial strains that have been 
improved by classical mutagenesis or evolutionary processes is that the 
exact genetic modification or resulting genotype that leads to the 
improved phenotype is often not identified or understood. The 
knowledge of the exact genotype of the strains is vitally important for 
further rational metabolic engineering as well as securing intellectual 
property related to production strains. 

Tools from systems biology (Figure 1) have offered new 
opportunities for establishing links between genotype and phenotype 
and, hereby, allow for combinations of random and rational 
approaches to strain improvement (Boyle and Gill, 2012). However, 
what has revolutionized the field is the ability to perform deep 
sequencing of several microbial cell factories with decreasing cost to 
efficiently search genome-wide spaces for genes conferring desired 
phenotypes (Kahvejian et al., 2008; Morozova and Marra, 2008). 
Even though transcriptome, metabolome, proteome or other omics 
have extensively used, often with great success, for the identification 
of relevant genetic changes, whole genome sequencing is superior to 
the other analytical techniques for directly identifying the sequence 
changes that give rise to specific phenotypes. The independency of 
genome sequences from the experimental conditions and the 
possibility to directly and precisely reproduce the identified changes 
in production hosts is one of the key advantages over gene/protein 
expression analysis (Warner et al., 2009). In this review we present 
some of the recent studies that have successfully applied new high-
throughput sequencing technologies for finding the underlying 
molecular mechanisms for a derived or natural phenotype for 
metabolic engineering applications.  

 
Reverse metabolic engineering for industrially important 
metabolic traits 
 

Whereas the conventional ´forward´ metabolic engineering cycle 
starts with a knowledge-based design, which is then tested by 
construction  of  relevant  strains,  the  reverse  metabolic  engineering  
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cycle starts with existing microbial strains with superior phenotypic 
traits compared to reference strains. These strains with better 
phenotypes could either derive from natural sources or may have been 
created through non-targeted strain improvement efforts. In this 
section we will highlight the studies that have paved the way in the 
utilization of whole genome sequencing to screen for genes 
responsible for desired phenotypes and more specifically understand 
the genetic basis of, (a) carbon source utilization, (b) product 
formation, and (c) stress tolerance. 
 

The series of studies published in the past 10 years on laboratory 
adaptation of Escherichia coli to efficiently utilize glycerol, a possible 
alternative carbon feedstock derived from biodiesel processes (Ibarra 
et al., 2002), highlight many of the relevant issues related to 
identifying the genetic basis of industrially interesting phenotypes. 
The initial study by Ibarra et al. (2002) showed that the physiological 
end-points of adaptive laboratory evolution experiments could be 
predicted by genome-scale metabolic models through optimization 

approaches. In order to identify the mechanisms of adaptation evolved 
strains were initially characterized by gene expression profiling (Fong 
et al., 2005), which revealed that while the phenotypes of different 
adaptive lineages were convergent and reproducible, the gene 
expression states were highly divergent and involved large numbers of 
changes from the reference wild type strain.  

When whole genome re-sequencing became affordable, six clones 
from the glycerol evolution studies were re-sequenced and a total of 
13 mutations were identified and their causative roles were verified by 
creating site-directed mutants (Herring et al., 2006). Mutations with 
pleiotropic effects such as those found in the subunits of the RNA 
polymerase were found to be underlying the broad changes in gene 
expression observed previously. Specific mutants from the re-
sequencing study were further characterized at the biochemical level in 
follow-up studies (Conrad et al., 2010; Applebee et al., 2011). For 
example mutations in the rpoC subunit of the RNA polymerase were 
found to alter the kinetics of the transcription process resulting in a 
10-fold decrease in transcriptional pausing (Conrad et al., 2010). In 
parallel, quantitative proteomic profiles of the evolved strains grown 

Figure 1. Optimization of microbial metabolic pathways in industrial biotechnology is focused on physiological parameters, such as maximum specific 
growth rate, substrate consumption rates, product yields and titers, by-product formation, and morphology.  (A) The optimization process relies on the 
host´s natural variation. Physiological characterization of natural variants of the production host could reveal phenotypes of interest (increased product 
formation, tolerance against toxic compounds, elevated concentrations of precursor molecules). Genome wide sequencing of the variants can be used for 
identifying regulatory points responsible for the observed phenotype and subsequently for designing genetic engineering strategies in the form of 
overexpression, deletion or insertion. (B) The optimization through metabolic engineering strategies requires the reconstruction of the genome scale metabolic 
network of the production host. The genome scale metabolic network can be used for developing stoichiometric or kinetic models, which can be applied for 
predicting gene overexpressions, deletions, or non-native pathway reconstructions. Once a metabolic engineering strategy with high-probability of success has 
been identified genetic engineering is performed yielding a modified strain. The modified strain is initially characterized often requiring transcriptome, 
proteome and metabolome measurements, and this analysis should lead to a revised model with improved predictive power. (C) Adaptive evolution is another 
strategy for optimization of metabolic pathways both as a stand-alone method or coupled with rational approaches. The modified strain from a metabolic 
engineering strategy can further undergo directed evolution or other non-targeted approaches to yield an improved phenotype. The evolved mutants with 
desirable phenotypes are characterized by the use of multi-omics while genome re-sequencing reveals the beneficial mutations that can be reintroduced to the 
production host.  
 

Genomic variation of microbial cell factories 

2 

Volume No: 3, Issue: 4, October 2012, e201210012 Computational and Structural Biotechnology Journal | www.csbj.org 



on glycerol were measured, and the profiles were found to be 
consistent with enzyme usage in optimal growth state computations 
using genome scale metabolic models (Lewis et al., 2010). This series 
of studies has demonstrated that physiological endpoints of 
evolutionary adaptation can be predicted by genome-scale metabolic 
models, but the specific molecular mechanisms of adaptation can be 
quite unpredictable.  

In recent years, other studies on adaptation to suboptimal carbon 
sources have been performed in both E. coli and other bacteria. In an 
attempt to investigate the genetic basis of adaptive evolution of E. coli 
on a non-native carbon source, Lee et al. (Lee and Palsson, 2010), 
isolated a mutant able to grow on L-1,2-propanediol (L-1,2-PDO). 
They characterized the evolved E. coli mutant that had a growth rate 
of 0.35 h-1 using L-1,2-PDO as a sole carbon and energy source. 
Using whole-genome sequencing the authors identified all the 
accumulated mutations providing insights into the genetic basis 
underlying microbial evolution for growth on a non-native substrate. 
A SNP found in the fucO gene, which is involved in the first step of 
L-1,2-PDO catabolism in E. coli, appears to have allowed the evolved 
strain to overcome metal-catalyzed inactivation and utilize L-1,2-
PDO.  

Summers and colleagues (Summers et al., 2012) evaluated the 
ability of Geobacter sulfurreducens to adapt for faster growth on 
lactate, a common bioremediation amendment. Serial transfer of 
cultures in a medium with lactate as the sole electron donor yielded 
strains adapted for rapid metabolism of lactate, and whole-genome 
sequencing revealed that all evolved strains had non-synonymous 
SNPs (nsSNPs) in the same gene. With the exception of GSU0514, a 
putative transcriptional regulator, no mutations in other genes were 
detected, demonstrating that a single base-pair change resulting in a 
non-synonymous change in amino acid can markedly influence the 
metabolic phenotype of G. sulfurreducens. The authors verified their 
hypothesis by introducing the single-base-pair mutation into the wild 
type and monitoring the growth on lactate.  

The study of Hong et al., (Hong et al., 2011) is probably the best 
example of integrating adoptive evolution with systems biology for 
identifying the underlying molecular mechanisms for improved carbon 
source utilization phenotype in a eukaryotic system. The authors 
analyzed the changes in transcriptome, metabolome and genome 
sequence of a yeast strain evolved to rapidly grow on galactose and 
related these changes to the acquired phenotypic properties. The 
genomes of the three mutants that had 24% faster growth rates on 
galactose were sequenced and compared to the reference strain. Even 
though about one third of the SNPs were in coding regions, no 
mutations were detected in galactose regulatory and structural genes 
including PMG2, which is considered based on literature data as the 
most beneficial target for increasing the galactose uptake rate. Only 
genes encoding proteins of the Ras/PKA signaling pathway were 
found to carry mutations in all three evolved mutants, which when 
reconstructed in the wild type resulted to 10% higher specific growth 
rate. By integrating the genomic information of the evolved strains 
with the -omic characterization the authors demonstrated that 
adaptive evolution results in the utilization of unexpected routes to 
accommodate increased galactose flux. 

Using a different approach Otero et al., (Otero et al., 2010) 
performed whole genome sequencing and annotation to identify 
SNPs between the comprehensively annotated reference genome for 
the S288C laboratory strain (www.yeastgenome.org) and 
CEN.PK113-7D, a preferred laboratory strain for industrial 
biotechnology research. Considering only metabolic genes the authors 
detected a total of 85 metabolism-specific non-synonymous SNPs 
distributed across 158 metabolic genes with clear correlations between 
physiology and metabolic pathway enrichment. Specifically the non-

synonymous SNP enrichment in GAL1 and GAL10 was correlated 
with the lower galactose uptake rate of S288c compared to 
CEN.PK113-7D suggesting obvious targets for improving galactose 
respiro-fermentative metabolism in S288c. In a parallel study, 
Nijkamp et al., (2012) uncovered genes in CEN.PK113-7D that are 
absent in S288c and relate to maltose metabolism and biotin 
biosynthesis of CEN.PK113-7D, which led to the surprising 
discovery that CEN.PK113-7D is a biotin prototroph, a phenotypic 
trait potentially interesting for industrial applications. 
 

Madsen et al., (Madsen et al., 2011) applied an array of 
computational tools in order to show that the nsSNPs in the Erg8, 
Erg9 and HFA1 genes that were found in the genome comparison of 
CEN.PK113-7D and S288c (Otero et al., 2011) are responsible for 
higher ergosterol concentration in CEN.PK. The specific biochemical 
mechanisms were linked to alterations in protein structure with direct 
implications in the stability and substrate affinity of the proteins by 
sequence-based analysis of the nsSNPs effects, comparative modeling 
of protein structures, free energy differences and stability analysis of 
native and mutant proteins, and scanning of binding pockets and 
functional residues. The authors utilized the detected metabolic SNPs 
for constructing a production platform of triterpenoids, which 

resulted to a S. cerevisiae strain capable of producing 500% more β-
amyrin than the control strain. 

Comparative genomics strategies for identifying genetic basis of 
increased product formation can be extended to less well-studied 
industrial hosts than yeast or E. coli as demonstrated by the study of 
Andersen et al. (Andersen et al., 2011). This study presented the 
complete genome sequence of the acidogenic Aspergillus niger wild 
type strain (ATCC 1015) and compared it with the genome of an 
industrial enzyme-producing A. niger strain (CBS 513.88).  The 
comparison of the two strains revealed an exceptionally high number 
of SNPs per kilobase, several of which were accumulated in metabolic 
pathways essential to protein synthesis and acid production. In 
connection to protein production the proline, aspartate, asparagine, 
tryptophan and histidine biosynthesis pathways were enriched in 
mutations. Mutations relevant for the production of citric acid were 
found in the TCA cycle, electron transport chain, plasma membrane-
bound ATPase and the GABA shunt.  

Smith et al., (Smith and Liao, 2011) constructed an isobutanol 
producing strain of E. coli using random mutagenesis and selection 
with a toxic valine analog, norvaline. Since higher alcohol biosynthetic 
pathways utilize the 2-keto acids, which are precursors of native 
amino acids, this amino acid anti-metabolite selection strategy could 
be a powerful tool for the construction of higher alcohol producing 
strains. However, the authors demonstrated that not all strains that 
exhibited improved norvaline resistance displayed improved 
isobutanol production. The genomic sequencing of the best producer 
mutant identified 208 total mutations, several of which were found in 
a variety of amino acid biosynthetic pathways. A deleterious mutation 
was identified in rpoS, a master regulator of transcription during the 
cell´s transition to stationary phase. When rpoS wild type allele was 
restored in the mutated strain, it increased the titer of isobutanol 
(21.2 g/L) and resulted in an isobutanol yield equal to 76% of the 
theoretical maximum.  

In a recent study Charusanti et al., (Charusanti et al., 2012) 
showed that evolutionary engineering could be used to depelop 
production hosts for more complex metabolites. The authors 
hypothesized that microorganisms with extensive secondary 
metabolism could adaptively evolve to synthesize novel antibacterial 
molecules if they had to compete against a target pathogen. The 
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authors isolated several Streptomyces clavuligerus strains by adaptively 
evolving multiple colonies to efficiently compete against the 
methicillin resistant Staphylococcus aureus (MRSA) strain N315. 
The method led to identification of a S. clavuligerus strain that 
produces a known antibiotic, holomycin, which is not produced in 
detectable quantities by the wild type strain. Genome re-sequencing 
revealed that the evolved strain had lost pSCL4, a large plasmid 
constituting 21% of the genome content of S. clavuligerus. In 
addition S. clavuligerus acquired several SNPs in genes that have been 
shown to affect secondary metabolite biosynthesis offering a 
mechanistic explanation to the activation of holomycin production in 
the evolved strain. 

Whole genome sequence comparison between two 
Thermoanaerobacter species was used in combination with flux 
analysis and microarray experiments to explain not only why the strain 
X514 produces higher yields of ethanol from xylose compared to the 
39E strain but also to explore other significant differences in the 
physiology of the two strains with respect to ethanol production 
(Hemme et al., 2011). Compared to 39E, X514 was found to have 
additional alcohol dehydrogenases and xylose transporters, 
modifications to pentose metabolism and a completely new vitamin 
B12 biosynthetic pathway. The authors suggested that the employment 
of xylose-specific Xyl transporters in the X514 strain may explain the 
observed greater absolute flux and the ability of the strain to grow at 
lower xylose concentrations than those for growth of 39E, whereas 
the capacity for de novo synthesis of vitamin B12 by X514 appeared to 
be a key factor in maintaining high ethanol yields. 
 

Atsumi et al., (Atsumi et al., 2010) applied a sequential transfer 
method to identify genotype-phenotype relationships in isobutanol 
tolerance. By evolving a rationally engineered isobutanol production 
E. coli strain the authors isolated mutants showing increasing 
tolerance not only to isobutanol but also n-butanol and 2-methyl-1-
butanol. The authors used whole-genome resequencing to identify 
relevant mutations for the tolerant phenotype and detected one SNP, 
25 insertion sequence elements, of which the 22 were contained 
within coding regions, and a large deletion containing 62 genes. They 
systematically repaired each mutation showing that most of the 
mutations did contribute to the overall phenotype and that no single 
repair abolished the tolerance phenotype. Five mutations, acrA, gatY, 
tnaA, yhbJ and marCRAB, and the metabolite glucosamine-6-
phosphate, were found to be primarily responsible for the increased 
isobutanol tolerance. It was also interesting that the isobutanol-
tolerant mutants did not perform better in terms of final titer of 
isobutanol production indicating that strain performance in this case 
was not adversely affected by low product tolerance. 

The analysis of the diploid genome of the efficient industrial fuel-
ethanol fermentative and highly ethanol tolerant S. cerevisiae CAT-1 
strain uncovered important sequence and structural variation 
compared to the S288c reference strain (Babrzadeh et al., 2012). 
IRA1 and IRA2, two genes that act as inhibitors of the Ras-cAMP-
PKA pathway by increasing the rate at which Ras proteins hydrolyze 
GTP, were likely associated with traits for prevalence and persistence 
during ethanol fermentations. However, the phenotypic effects for the 
majority of the identified sequence polymorphisms were unknown 
and require the sequencing of additional bioethanol yeast for 
correlating genome sequence data to phenotypic differences.  

Starting from a single colony of a wild-type Clostridium 
thermocellum strain and using cellobiose or cellulose as the substrate 
for growth Shao et al., (Shao et al., 2011) evolved this strain for 
growth with up to 50g/L ethanol. In an effort to unravel the genetic 

changes associated with ethanol tolerance the authors sequenced the 
genomes of the mutant strains revealing 10 and 39 non-synonymous 
SNPs in the E50A (cellulose) and E50C (cellobiose) strains, 
respectively. Four genes had identical changes in both strains 
including genes involved in arginine biosynthetic pathways and a 
putative glucokinase gene. These mutations might be related to 
minimizing the ethanol inhibitory effect by regulating the steady-state 
levels of the carbamyl intermediates under the threshold for 
spontaneous reaction with ethanol. On the other hand the bi-
functional aldehyde/alcohol dehydrogenase involved in ethanol 
production from acetyl-CoA (adhE) and aspartate carbamoyl 
transferase involved in pyrimidine biosynthesis from carbamoyl 
phosphate (pyrB) were independently mutated in the two strains. 
Using homology-based structural modeling the authors suggested that 
the location of the altered amino acids residues with the protein 
structures of AdhE suggest possible alterations in co-factor specificity, 
catalytic efficiency and/or stability although this needs to be tested 
with further experiments. 

Most of the studies discussed previously only used sequence data 
for a handful of either wild isolates or isolates obtained from 
adaptation or selection studies. With the availability of low cost 
sequencing technologies these types of studies can now be scaled up in 
terms of the number of candidate mutations identified. This type of 
scale-up in sequencing volume is exemplified by the Tenaillon et al. 
(Tenaillon et al., 2012) study that sequenced the genomes of 115 
distinct E. coli isolates obtained from an equal number of 
independent experimental evolutions at an elevated growth 
temperature. The authors identified a total of 1331 mutations, and 
thus characterized a large number of alternative genetic strategies for 
adaptation to higher growth temperature. A common core set of 
mutation targets such as the RNA polymerase was identified although 
the specific mutations tended to be different in each of the isolates. 
The large number of isolates sequenced also allowed using statistical 
methods for identifying putative epistatic interactions between 
mutation targets suggesting which combinations of mutations most 
parsimoniously reconstitute the temperature tolerance phenotype.  

As an alternative to direct sequencing of large numbers of isolates 
described above, Ehrenreich et al., (Ehrenreich et al., 2010) applied a 
novel approach called extreme QTL mapping (X-QTL) to a cross 
between a laboratory strain and a wine strain of S. cerevisiae in order 
to identify the genetic determinants of chemical tolerance in very large 
mapping populations. The X-QTL mapping approach is based on (1) 
creating a very large pool of segregants from a cross, (2) selecting a 
specific segregant population from this pool that is resistant to e.g. 
chemical stress, and (3) bulk estimation of allele frequencies in this 
pool by either microarrays or next generation sequencing. When the 
X-QTL approach was used with 16 different chemical resistance 
traits including ethanol and oxidative stress (paraquat) tolerance, it 
identified between 1 and 24 major genetic loci controlling each trait. 
The study was later extended to 6 pairwise crosses of additional S. 
cerevisiae strains to identify whether observed the genetic complexity 
of traits is mainly dependent on the trait or on the genetic 
background of the parent strains (Ehrenreich et al., 2010). While the 
overall genetic complexity depended on the trait, each additional cross 
also contributed a significant number of additional genetic loci over 
the existing crosses. Taken together the results from the X-QTL 
studies indicate that chemical resistance traits in yeast are controlled 
by a relatively large number of genetic loci (8 to 57) and that both 
rare and common allelic variants contribute to resistance. Additional 
work will be required to verify at the individual SNP level the 
determinants of resistance identified by X-QTL, but the approach 
itself provides a rapid way to comprehensively identify interesting 
genetic variants for practical applications. 
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Discussion 
 

Genotype-to-phenotype relationships relevant for industrial strain 
development can be mapped based on genomic sequence information 
on strains that either have been isolated from natural sources, or have 
been derived by classical mutagenesis, evolutionary engineering or 
crosses between strains. Each source of genetic variation has its own 
upsides and drawbacks with respect to identifying genotype-
phenotype links, which we discuss below.  

The large number of wild-type strains present in the environment 
and in public and private culture collections are an important source 
of natural diversity of industrial phenotypes (van Hylckama Vlieg et 
al., 2006). This biodiversity can now be exploited for industrial 
innovations using genomics and high-throughput technologies. 
Furthermore, genetic markers for complex phenotypes can be 
identified by correlating the gene content to a variable trait (Pretzer et 
al., 2005). These approaches generate genetic markers that can then 
be targeted in miniaturized screening approaches to allow the rapid 
identification of a strain exhibiting the desired properties (Smit et al., 
2004). However, the major disadvantage of such approaches is that 
often natural diversity might not provide us with strains with desired 
properties, simply because such phenotypes are not competitive in 
natural niches. This lack of a dominating and unique phenotype adds 
another level of complexity to the large number of SNPs that is 
usually found between different wild type strains, making hard to 
explain their contribution to a single phenotype. 

Classical strain development relies on generation of genetic 
diversity through mutagenesis using classes of mutagens with different 
modes of action such as radiation, UV rays, chemicals, intercalating 
agents, and other biological agents. The result of a typical mutagenesis 
program is random damage to the DNA through strand breakage, 
transversion, addition, deletion, or substitution of bases and it is 
followed by selection or screening of colonies exhibiting the desired 
phenotypes. Although classical approaches for creating superior 
strains have their niche they suffer for being a slow laborious process 
especially for phenotypes that are dependent on multiple coordinated 
changes at the genetic level (Patnaik, 2008). Furthermore, the 
screening of large combinatorial libraries for successful isolation of 
desired polygenic phenotypes is practically impossible to implement. 
Whereas phenotypic screenings for improved growth or stress 
tolerance can be relatively easily designed, screening for mutants with 
increased product formation is only possible in special cases where 
anti-metabolites can be used. Most mutagenesis strategies also create 
significantly more genetic changes that are actually needed to realize 
the desired phenotype making it difficult to map genotype-to-
phenotype relationships by sequencing. As demonstrated by the 
novaline selection study, random mutagenesis can also generate 
deleterious mutations that significantly reduce strain fitness in 
standard cultivating conditions.  

Evolutionary engineering uses a selection pressure and allows the 
microorganism to evolve naturally in a chemostat, through sequential 
batch propagation, or in plate propagation, and thus it relies on the 
inherent capacity of the cell to introduce adaptive mutations (Sauer, 
2001). Fast generation times, repeatability, the ease of maintaining 
large population sizes, and the ability to store populations for later 
examination are microbes´ characteristics that make them well suited 
for laboratory evolution (Elena and Lenski, 2003). However, without 
automation this method is also laborious and time consuming due to 
extensive cultivations periods that are required for the successful 
selection of the desired phenotypes with the limited natural mutation 
rates that most microbial species exhibit. Furthermore, the 
identification of these mutations that are necessary for conferring a 
particular phenotype is still not straightforward, since neutral 

mutations tend to accumulate therefore a full ´´omic´´ analysis may be 
required to understand the basis for the observed phenotypic 
differences (Bro and Nielsen, 2004). However, for several reasons in 
vivo microbial evolution experiments provide additional power 
compared with reverse genetics approaches that are based on direct-
targeted activation or inactivation of genes. While in the reverse 
genetics the phenotypic screens are based on a ´´ plus (positive) or 
minus (negative) ´´ effect as a result of gene inactivation or 
modification of residues that cause severe alteration in protein 
functionality, evolution experiments can select for mutations with 
more subtle effects providing opportunities for finding novel 
functions or functional domains in genes and proteins. Additionally, 
the temporal order in which mutations arise can be easily established 
in evolutionary engineering studies by sequencing isolates or 
populations at different time points. This information can be 
correlated with temporal order of phenotypic changes allowing 
establishing a putative causative role of specific mutations as well as 
epistatic relationships between mutations. 

Classical genetics in the form of crosses and QTL analysis has not 
been used extensively in microbial cell factory engineering applications 
both due to lack of familiarity with genetics methods among strain 
engineers and also due to limited resolution of traditional QTL 
mapping techniques. However, modern mapping methods like X-
QTL are significantly faster than classical methods, and coupled with 
next generation sequencing have also potential for base pair-level 
resolution. One of the major benefits in crossing approaches is that 
the starting genetic variation is controlled as the parental strains can 
be genotyped, and mature statistical genetics tools can be used to 
identify and prioritize major variants. Crosses are also the only 
comprehensive and unbiased way to map the phenotypic effects of 
genetic changes between two strains that differ at significant numbers 
of loci. The major drawback is that the approach is limited to sexually 
reproducing microbes and in particular to microbes where haploid 
progeny from a cross can be easily isolated like yeast. Crosses can of 
course also only sample limited genetic variability, as the mutations 
have to be present in one of the parental strains. 

Despite impressive progress in methods for mapping the genetic 
basis of industrially relevant phenotypes, there is still need to speed up 
the process of finding and verifying genotype-metabolic phenotype 
links (Figure 2). The process of evolutionary engineering needs to be 
further automated to allow generating larger numbers of strains with 
variable genotypes but equally optimal phenotypes (Conrad et al., 
2011). Methods for selection of relevant phenotypes by using for 
example biosensors that target specific metabolic precursors of 
interest for a broad category of products like malonyl-CoA or 
mevalonate are also urgently needed (Zhang and Keasling, 2011). 
Further decrease in sequencing cost will also allow increasing the 
number of individual isolates from a single selection experiment that 
can be genotyped. Increased sequencing capacity can of course also be 
applied to genotyping existing large collections of wild isolates for 
relevant production organisms such as yeasts. 

All these developments allow to determining an increasing number 
of genetic variants underlying metabolic phenotypes, but do not help 
in verifying the causative effects of these variants or selecting a subset 
of them for practical use in production strains. Ideally all 
combinations of high confidence mutations linked to phenotypes of 
interest discovered in the genotyping studies would be tested in clean 
wild type backgrounds using high throughput genetic modification 
techniques such as multiplex automated genome engineering (MAGE) 
or other recombineering approaches (Wang et al., 2009). These 
methods are very promising, but currently they are still limited to 
testing only relatively small numbers of simultaneous combinatorial 
mutations (Sandoval et al., 2012) and  it  is unlikely that for example  
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all combinations of all the 1600+ mutations discovered in the E. coli 
temperature adaptation study could be constructed in a reasonable 
time frame. 

With these challenges in mind, bioinformatics methods similar to 
those that are being employed increasingly in modern next generation 
sequencing-based human genetics can also contribute significantly in 
prioritizing genetic changes that need to be experimentally tested. 
These methods include enhanced approaches for predicting effects of 
mutations protein structure or expression based on sequence or 
structural features (Francesconi et al., 2011). Mutations can also be 
prioritized by improved genetic mapping methods that utilize not 
only large collections of individuals for which both genotypes and 
phenotypes have been determined, but also network information in 
the form of metabolic, regulatory and protein interaction networks. 
For well-studied organisms like yeast and E. coli more predictive 
models of e.g. metabolic networks can be used as a scaffold for 
interpreting and prioritizing genotyping data (Lewis et al., 2012). 
The ultimate goal of systems biology is to be able to model the effects 
of mutations in relevant genetic components of the system of interest 
on phenotypic characteristics, and these same approaches can of 
course also be used to identify which mutations of the ones that have 
been discovered by sequencing would be expected to have biggest 
contribution to phenotypes of interest. In order to achieve this goal 
we need methods that combine mechanistic modeling of known 
biochemical processes (Karr et al., 2012; Lerman et al., 2012; Thiele 
et al., 2012; Lee et al., 2012) and statistical modeling of genotype-
phenotype relationships (Jelier et al., 2011). 

Impressively rapid developments in sequencing technologies have 
revolutionized fields like human genetics and epigenetic studies. 
These same developments can also help to revolutionize microbial cell 
factory engineering by providing a more solid and comprehensive 
genetic basis for engineering efforts. However, sequencing alone will 
only provide the starting point for cellular engineering and significant 
advances in synthetic biology techniques, bioinformatics and 
modeling, as well as high-throughput phenotypic screening will be 
needed to realize the potential of increased sequence information.  

 
 
 
 
 
 

 

 

Figure 2. Modern workflow for the identification of new genetic variants for metabolic engineering applications. The sequencing component of this workflow 
is no longer the bottleneck in the process, but all other components have to be made more efficient and the entire process has to be integrated as a routine 
part of all metabolic engineering projects. 
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