Skip to main content
. 2012 Oct 22;2:e201209008. doi: 10.5936/csbj.201209008

Table 3.

Summarizing the computational tools for structure-based focused library generation

Approach Name Description Case study examples URL
Ligand binding site 3DLigandSite [59] The web server identifies ligand binding site via MSA and clustering algorithm. Target T0483 in CASP8 http://www.sbg.bio.ic.ac.uk/∼3dligandsite/
ProBiS [60, 61] The web server detects binding site using MSA and characterizes it using local structural pairwise alignment. Biotin carboxylase, TATA binding protein [60], D-alanine–D-alanine ligase, Protein kinases C [61] http://probis.cmm.ki.si/
ProBiS-database [64] The database provides structurally similar protein binding site using ProBiS algorithm. Cytochrome c [64] http://probis.cmm.ki.si/?what=database
SiteComp [62] The web server characterizes ligand binding site using molecular interaction descriptors. Cyclooxygenase, adenylate kinase [62] http://scbx.mssm.edu/sitecomp/sitecomp-web/Input.html
TRITON [65, 66] The method facilitates to model mutant, dock ligand in the protein and calculates reaction pathways for the characterization of protein-ligand interactions using Semi-empirical quantum-mechanics approach. PA-IIL lectin and its mutants [65] http://www.ncbr.muni.cz/triton/description.html

Protein interaction PIC [68] The web server calculates the molecular interactions using published criteria. - http://pic.mbu.iisc.ernet.in/job.html
COCOMAPS [69] The web server analyzes and visualizes interfaces in biological complexes using intermolecular contact maps based on distance or physicochemical properties. Hen egg lysozyme interaction with two antibodies [69] https://www.molnac.unisa.it/BioTools/cocomaps/

Residue depth and stability DEPTH [70] The web server predicts binding cavity and mutational effect on protein stability using residue depth and solvent accessible surface area. West Nile Virus NS2B/NS3 protease [70] http://mspc.bii.a-star.edu.sg/tankp/intro.html
SRIde [71] The web server predicts the contribution of residues in protein stability using interactions with its spatial neighbors and their evolutionary conservation. TIM-barrel proteins [103] http://sride.enzim.hu/

Protein surface and interface Patch finder plus [72] The web server identifies large positively charged electrostatic patches on protein surface using Poisson Boltzmann electrostatic potential. DNA binding domain of TATA binding protein [72] http://pfp.technion.ac.il/
ConPlex [73] The web server performs evolutionary conservation analysis of the protein complex. Rho–RhoGAP complex [73] http://sbi.postech.ac.kr/ConPlex/

Protein flexibility RosettaBackrub [81] The web server performs flexible backbone modeling using Backrub [104] method to design tolerated protein sequences. hGH-hGHr interface [105] https://kortemmelab.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=index
tCONCOORD [83] The method generates conformation ensemble and transitions using geometrical constrains based prediction of protein conformational flexibility. Osmoprotection protein [83] http://wwwuser.gwdg.de/~dseelig/tconcoord.html
FlexPred [84] The web server predicts residue flexibility in the protein using SVM approach. Human PrP [106] http://flexpred.rit.albany.edu/
ElNemo [92] The web server predicts large amplitude motions in the protein using NMA. HIV-1 protease, E. coli membrane channel protein TolC http://igs-server.cnrs-mrs.fr/elnemo/index.html
WEBnm@ [93] Calcium ATPase [93] http://apps.cbu.uib.no/webnma/home
FlexServ [94] The web server determines and analyzes protein flexibility using coarse-grained modeling approach. - http://mmb.pcb.ub.es/FlexServ/input.php
HINGEprot [95] The web server detects hinge region in the protein using both GNM and ANM. Calmodulin protein, hemoglobin [95] http://www.prc.boun.edu.tr/appserv/prc/hingeprot/
DynDom3D [98] The web server predicts domain motions using conformational changes in the protein. Hemoglobin, 70S ribosome [98] http://fizz.cmp.uea.ac.uk/dyndom/3D/