
 

  

 

 

 

 

 

 

 
1. Introduction 
 
 A key factor in the success of the human race is our inclination to 
exploit nature for our own ends. Even though it has been disastrous 
many times throughout history, we would be nowhere near the current 
height of our civilization the without this trait.  
 One frontier waiting to be conquered is the control over enzyme 
catalysis. Enzymes have intrigued us for as long as they have been 

known because of their formidable complexity and proficiency, 
stemming from a relatively low number of catalyzed chemical 
transformations.[1] It is conceived that if we can take control of these 
’unit operations’ and their structure-function relationships, we will be 
able to design environmentally benign catalysts, yet featuring superior 

efficiency and selectivity compared to those in use today.[2] Another, 
more fundamental aspect is that the successful design of an enzyme is 
a stringent demonstration that the underlying mechanics have been 
understood. Given the increasing interest for industrial biocatalysis 

and the need for highly specific solutions to synthetic problems, the 

expectations on artificial (or de novo) enzymes for the coming 
decades are high.[2]  
 Recent years have seen tremendous advancement in computer-

aided (or computational) enzyme design. The field can be defined as 
the use of in silico methods to understand, model and 
enhance/construct enzyme catalysis. As with all computational 
disciplines, the limits for what can be done are continuously pushed 
forward, from early approaches with limited side-chain rotamer 
optimization,[3-8] to more sophisticated optimization algorithms 
available today.[9-14] In addition, highly interesting crowd-sourcing 
applications have been applied in recent years, such as 
Rosetta@Home[15] and FoldIt.[16,17]  
 A long-standing vision in computational protein design has been 
to automate, i.e. letting an algorithm make most critical decisions, 
much like directed evolution is an automated exploitation of natural 
selection. In the light of the recent successful designs using such 
protocols,[18-21]  it  is  however  sobering  to  note  that each active  
 

 
 
 
 
 

 
 

 

structure is accompanied by a multitude of false positives.[22,23] No 

reported de novo enzyme has significantly outperformed the 
numerous catalytic antibodies elicited in recent decades,[21,22,24] let 
alone wild-type analogs. Moreover, it has recently been reported that 
some de novo designs do not tolerate closer scrutiny[25] and that 
established protocols sometimes fail altogether.[26]  
 This mini review will focus on recent trends in improving de novo 
designs beyond the automation protocols, discussed within the 
framework of contemporary understanding of how enzymes 
work.[27-31] It does not cover all methodologies and results 
published recently; for this purpose, the reader is directed to other 
recent reviews[2, 23, 32-35] (also see ref. 2 and references therein).  

 
2. Automated protein design  
 
 Due to the sheer size of the sequence and conformational space of 
proteins, no computational method is able to assess them exhaustively. 

For example, the number of unique configurations when only 

considering a typical active site is ∼1065.[11] Hence, computational 

design relies on the ability to i) understand where to focus the efforts 

and ii) develop methods that efficiently examines and selects among 
the ’right’ variables. To this end, all automated design protocols so far 

start with an existing protein scaffold and redesigns its sequence 
around some introduced functionality while maintaining a rigid 
backbone (Figure 1a). We will refer to such approaches as ’static’. 
Protocols from the Mayo and Hellinga labs pioneered automated 

design, [3,4,36-38] and the first computational ’designer enzyme’ 
appeared in the early 2000’s.[39] It was followed by an array of 
(re)designed binding proteins and enzymes.[8,18,38,40] Although 
several reports from the Hellinga lab have been challenged[25] and in 
some cases retracted,[41] the numerous reports of de novo functions 
promised a bright future for computational enzyme design.  
 One of the most successful approaches has been to couple the 
structure prediction utilities in the Rosetta design package,[9,42] 
developed by Kuhlman, Baker and coworkers,[10,14,43] with an 
’inside-out’ active site-design initiated by a ’theozyme’[44] 
optimization. Three very impressive enzyme designs were published 
rapidly (the ‘Rosetta enzymes’), catalyzing a retro-aldol reaction,[19] 
a Kemp elimination,[20] and most recently a Diels-Alder 
reaction.[21] The inside-out design method is a clean-cut example of 
the general philosophy described above. It optimizes a minimal model  
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involving the transition state (TS) and a few key interacting residues 
using quantum chemical (QC) methods, and the resulting theozyme is 

then fitted into a suitable active site, which is repacked with the 

Rosetta program. The idea relies on the finding that native proteins 
have nearly optimal sequences for their structure,[43] so that 
accommodating a new function can be done in a self-consistent way. 
 However, an enzyme needs to be exquisitely tuned in every part, 

not just the active site residues, to be proficient or even active.[45] As 

examplified in Table 1, enzymes straight out of the computer are 

typically quite weak catalysts. But fine-tuning distant residues is (so 

far) a bit to diffuse for computational methods,[45] and coupling 
with directed evolution has proven to be a more successful 

approach.[20,46] Nevertheless, such refined enzymes have at best had 

a factor ∼102 added to their efficiencies (Table 1).  
 Before proceeding with a discussion on how to improve 

prediction and refinement of catalytic power in computational design, 

we will now briefly review how enzyme catalysis is understood. The 
framework will then be used to quantify substrate binding and 

dynamic contributions to the catalytic effect. 

 
3. The underlying theory  
 
 In the famous words of Linus Pauling,[47,48] enzymes work by 
”stabilization of the transition state” of the reaction (relative to the 
solvent). Transition state theory (TST) has acquired additional 

flavors since then,[49] but it is now generally agreed that the bulk of 

the catalytic effect can be attributed to the quasi-thermodynamic 
transition state (TS) stabilization.[28] This is good news for the 
computational enzyme designer, since the ’extra-thermodynamic’[28] 

terms (re-crossing, tunneling and non-equilibrium effects) are 
arguably too subtle to be incorporated in computational predictions 
(yet).  

   TS stabilization is understood as higher affinity for the TS of the 
enzyme with respect to the solvent, described by a ’dissociation 
constant’ KTS .[50] This hypothetical TS binding is illustrated in the 

pseudo-thermodynamic cycle in Figure 2 and is defined as  
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with the associated dissociation energy  
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(We allow ourselves to approximate KM with exp[∆Gbind/RT].) The 

catalytic proficiency of enzymes is thus the reciprocal of KTS and can 
in native enzymes be as high as 1024 M-1. [51]  
 Exactly how enzymes achieve their TS stabilization has been, and 
still is, widely debated.[31,52-54] That enzymes selectively bind their 

substrates is well understood[31] and reflected in small values of the 

Michaelis constant (KM). Rate enhancement, defined as kcat/kuncat, 
requires a lower enzymatic reaction barrier (∆G ‡

cat < ∆G ‡
uncat ); if the 

difference is zero, KTS simply equals KM. One way or another, a 

proficient enzyme must therefore allow a reaction path for which 

kcat/kuncat >> 1, equivalent to ∆∆G ‡
cat = ∆G ‡

cat − ∆G ‡
uncat << 0.  

 The discourse regarding the origins of TS stabilization can, in 
simple terms, be said to be about whether they have completely pre-
organized active sites that are evolved to match the TS geometry and 
electrostatics,[31,55] or if they, e.g. by ground state destabilization 
(or entropy trapping),[56] desolvation[57] or dynamic motion,[30] 
increase the fraction of pre-organized states in conformational 
space.[53,54] While it is reasonable to suggest that all contributions 
play a role,[58] it is still disputed which one dominates in a particular 
enzyme.[30,59-61]  

Figure 1. Evolution of enzyme design strategies. Nascent applications are indicated in blue and green and unlikely (or very distant) in red. (a) Approximate 
protocol based on automated and/or rational design followed by experimental validation and screening. Optionally, the designs can be further refined through 
directed evolution. (b) An iterative approach including molecular dynamics for selection and further design. (c) Tentative, automated computational design 
incorporating conformational flexibility and dynamics in the search algorithm. 
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 Regardless of what explanation one prefers, it is instructive for the 

present discussion to define a pre-organized state (S’ or ES’) as any 
substrate conformation that is distorted with respect to the ground 
state (S or ES), so that it lies ’en route’ to the TS on the reaction 
coordinate (Figure 2). Note that ES is a Boltzmann ensemble and 

contains all conformations defined to belong to ES’; the crucial 
delimiter between the two ensembles can be seen as ES not necessarily 
being conformationally similar to the TS while ES’ is. Thus, ∆Gorg > 
0, and  
 

      org                                                    (3) 
 

where ∆G′‡ is the free energy of activation from the pre-organized 

state. We can from Figure 2 define a ’pre-organization constant’ KS′ as  
 

      

 org,uncat

 org,cat
                                                         (4) 

 
and it follows that  
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]                               (5) 

 

 This manipulation effectively divides the activation barrier in two 
parts, where ∆Gorg can be assumed to contain mainly non-electrostatic 

and entropic contributions, whereas ∆G′ ‡ mainly contains the charge-
transfer associated with the chemical step.[62]  
 From an experimental perspective it may seem pointless to 

consider such a ‘micro-history’[28,63] of the reaction coordinate, 
since the only observables are KM and kcat , but it is a useful 
computational tool to characterize the enzyme. And, as will be argued 
below, to design better ones. The introduction of an intermediate 
state does not dismiss any of the various theories regarding the origins 

of enzyme catalysis. Indeed, a very proficient native enzyme can be 
regarded as having an ES’ ≈ ES due to a pre-organized active site, in 
which case ∆Gorg,cat ≈ 0[60] and the extended model reduces to the 

usual one. That is, ∆G ‡
cat ≃ ∆G ′‡cat and contains solely electrostatic 

contributions[31] while all pre-organization effects are captured in 
∆Gbind. 
 However, in designer enzymes the match might not be so ideal, 
even with the appropriate catalytic groups in place. Such a situation 
will render a larger ∆Gorg,cat, and kcat/kuncat will be small even with 
seemingly ideal interactions in the TS. In this case, the enzyme might 
be improved by ’pulling down’ ES’ towards ES, thereby lowering the 

barrier, whereas in a structure with insufficient electrostatic pre-

organization, the effort must focus on placement of the catalytic 
residues to lower [ETS]‡ .  

 
4. Where automated design fails  
 

How do these mechanistic considerations influence computational 
design strategies? Since the most direct design approach is to optimize 
an active site around a computed TS model or perhaps TS hybrid, the 
designer enzyme should ideally be fairly good at binding the 
substrate(s) in their pre-organized conformations (ES’) as well, with a 
consequently low ∆Gorg,cat penalty. In other words, optimizing TS 
binding should in principle yield adequate pre-arrangement as well. It 

Figure 2. Schematic description of general enzyme catalysis (represented by one substrate and only the rate-determining step). The thermodynamic 
relationships in the bottom panel has been adapted from Wolfenden.[27] Fictitious equilibria are indicated in red. 
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has been pointed out that it is essentially the same strategy as 
employed when raising catalytic antibodies against haptens.[38] 
 As mentioned, such an approach essentially assumes that the 

design retains its structural integrity with respect to the scaffold, or at 
least that the region around the active site is rigid. Herein lies, the 
author argues, an important reason why computational design 

algorithms rarely exceed a rate enhancement of ∼106 (Table 1),[22] 
and why the success rate is in fact very low.[21,26] The dynamic 
nature of enzymes includes both backbone and side-chain movements, 
and although it is a good approximation to assume that the backbone 

remains rigid with respect to ∼10 introduced mutations, even a small 

distortion can severely affect the positioning of catalytic residues. A 
related problem is that backbone movements are slow on the 
molecular time scale, and they are therefore seldom captured in 
standard MD simulations.  
 Several studies have investigated the Rosetta enzymes,[46,64-67] 
and most of their conclusions point in the same direction: 
Unaccounted protein dynamics leads to a unsatisfying description of 
enzyme-substrate interactions and the ability to pre-organize into the 
target TS, which results in an over-optimistic prediction of activity. In 
other words, the static nature of the design process fails to predict the 
actual Boltzmann distribution of ES conformations. In addition, 
Warshel and coworkers have pointed out that the extensively studied 

Kemp Eliminases attain a significant part of their catalytic effect by 
bringing the substrate close to the catalytic base, whereas actual TS 

stabilization is poor and extremely difficult to achieve due to a small 

difference in charge distribution compared to the ground state.[66]  
 It should be noted that the automated computational protocols 
do a fairly good job at predicting the (albeit simple) reaction 
mechanism and stereoselectivity, but do not manage very well to 
separate actives from inactives.[19-21] Thus, selection is a major 
challenge for automated protein design.[22] The problem of picking 
out a few structures from an immense ensemble is in principle 
equivalent to what troubles other disciplines in computational 

chemistry: calculating small energy differences between large systems.  

 

 
 

→

5. Searching for matching functionalities  
 
 In order to mitigate some of the problems associated with 

introducing a de novo mechanism in an existing scaffold, an 
alternative strategy could be to search for structures with 
functionalities matching the desired machinery already in place. We 
have been interested in re-designing enzymes containing an ’oxyanion 
hole’ moiety[68] to catalyze the intermolecular Diels-Alder reaction, 
which is virtually unknown in nature[69-71] and therefore highly 
interesting for de novo design.[2] Our work was initially guided by a 
rational design framework (Figure 1a),[72] which can be said to rely 
on the concept of ’catalytic promiscuity’.[73] Catalytic promiscuity is 
in turn a manifest of evolutionary heritage,[23,74,75] where a wide 
array of reactions can be catalyzed by structurally and functionally 
similar enzymes.[23]  
 We recently adapted a ’semi-rational’ approach,[76,77] which 
contains a biased search in the Protein Data Bank (PDB) for 
structures containing the target functionality (an oxyanion hole). The 
search is coupled with a search of a combinatorial substituent library 
for matching substrates, thereby increasing the chance of structural 
complementarity with the active site while keeping the number of 
mutations at a minimum (Figure 1b, green). After a pre-selection, the 
remaining structures are evaluated by molecular docking of TS 
analogs. The results then form the basis for further selection and 
rational mutations. Recently, Nosrati and Houk published a program 
(’SABER’) designed to automatically search the PDB for ’predesigns’ 

having a set of predefined functionalities in place for promiscuous 
catalysis.[78] Their approach is consistent with ours, albeit in a more 
automated fashion. To the author’s knowledge, only the originnal 
proof of principle study has been published to date. One can 
anticipate, however, future de novo designs employing the SABER 
methodology. 

 
6. Including dynamics  
 
 Another key feature of our approach is that we rely on molecular 
dynamics (MD) simulations for evaluation, selection and 

quantification of different variants,[72,76] a practice that has recently 
begun appearing in several other studies (Figure 1b).[21,67,79] We 
refer to this as ‘dynamic design’. 
 The virtue of dynamic design is that it relaxes a static design in 
response to the functionalities introduced, and in addition provides 
both qualitative and quantitative tools to distinguish between systems 
with just a few atoms discrepancy (even though it does not warrant a 
perfect description of reality). It was shown by Kiss et al. that MD-

derived metrics could be used to significantly improve computational 
predictions of active designs[67] of de novo Kemp Eliminases.[20] 
The groups of Mayo, Houk and Hilvert then went on to use MD in 

an iterative protocol[11] to refine an inactive design for the same 
reaction to an active one (HG-3 in Table 1).[79]  
 Despite the use of both QC and MD methods in several dynamic 
protocols, few attempts have been made so far to use them for 
quantitative predictions. Warshel and coworkers recently used their 
’empirical valence bond’ (EVB) method to correlate computed ∆G‡

cat 
values with experiment, and argued that this approach can be used for 

screening[80] and refinement purposes.[45] It is the author’s opinion 
that reliable energetic predictions of the designed reaction coordinate 
is the most robust way to improve the predictive power of 
computational enzyme design. 
 We took an early interest in probing the possibility of 
quantitative evaluation using MD and QC. One reason for this being 
that the docking protocol used in the early stages of design is 
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inherently static, like most other protocols employed thus far, and 
does not provide a particularly precise basis for selection of catalytic 
activity. Our studies have lead to a dynamic protocol employing 
standard MD and cluster QC calculations,[76, 77] which for a 
preliminary benchmark test gives encouraging results.  
 To quantify the quality of a particular design, one needs to 
determine KTS (eq. 1), which requires explicit predictions of the 
substrate binding and activation free energies. An estimate of KM can 
be obtained from the MD trajectory while the rate constants in 
principle require ab initio calculations. As seen from Figure 2, ∆G ‡

cat 
must be calculated with respect to ES, but this state is not correctly 
sampled at the QC level if not conformationally very restricted. 
Although QM/MM may be one solution to this problem, we have 

utilized that ES’ can be fairly well defined within both MD and QC 
frameworks due to its conformational constraints, and use eq. 3 to 

estimate ∆G ‡
cat. The pre-organized complex can be defined in several 

ways, and we have used the concept of ’near attack conformers’ 
(NACs) championed by Bruice[81, 53] to determine ∆Gorg,cat.[60]  
 

  org,cat ≃   NAC    ln 
 NAC

 total
                      (6) 

 
where NNAC denotes the number of instances in the ensemble obeying 

the criteria defined for a NAC. Hence, we compute ∆G ′‡ cat using a 
cluster model of the active site, and obtain ∆Gorg,cat as a statistical 
average from MD. The uncatalyzed states are determined in a 
traditional way from QC.[72,76,77]  

 The NAC concept is debated[28,54,60,61] and suffers from its 

inherently arbitrary definition,[28] but we argue that it is a useful tool 
to optimize substrate binding in enzyme catalysis. In the notation of 

Figure 2, NAC≡ES’ (or S’), and as pointed out above, the ideal design 
goal is to equate this state with ES. Computational design typically 
produces multiple candidates with essentially identical catalytic 
residues, and in a QC evaluation of the TS stabilization it is 
convenient to use the same (or similar) models to save CPU time. 

They can instead be ranked by augmenting a common ∆G ′‡cat with 
∆Gorg,cat obtained from MD. (This is essentially what is done by Houk 
and coworkers,[46,67] although without estimating energetics.)  
    In addition, this treatment is useful for quantifying the origins of 

catalysis (or lack thereof!). If ES’ and S’ are defined equivalently, the 

electrostatic portion of the TS can be determined by ∆G ′‡cat−∆G ′‡uncat 

(i.e. K′TS in eq. 5; this comparison is similar to the ’caged’ reference 
state used by Frushicheva et al.[45,66]), which can be taken as a 
measure of the quality of the designed catalytic machinery.  
    As a test of the predictive power of this concept, the kinetic 
constants of four active Diels-Alderases published by the Baker group 

were estimated in ref. 77. We used a ’LIE+γSASA’ method to 
calculate binding constants from MD, and employed the theozyme 
reported by Siegel et al. as our cluster model. Despite its crudity, the 
approach predicted KTS within one order of magnitude and ranked 
three of four designs correctly; the largest error was a factor 60 

overestimation for CE6 (≈ 2.4 kcal·mol-1). Predicted in the same way, 
two variants designed using our semi-rational protocol have estimated 

rate enhancements of 5.9·104 and 4.1·106 M, and efficiencies of 

8.6·104 and 9.5·104 s-1M-1 , respectively.[76,77] We have not yet 
been able to express these designs for experimental validation, but 

speculatively, our simulations suggest that the main difference 
between these variants and those published by the Baker group is the 
propensity to form NACs (or ES’). In our designs, we explicitly 
designed for alignment of the (ternary) ES complex to resemble the 
tentative TS, thereby lowering the ∆Gorg,cat penalty. We recorded 
NNAC/Ntotal values of ≤ 0.10 for the Baker variants, versus 0.25–0.50 

for our best designs. 

    Interestingly, the computed ∆G′‡ cat are not so different in these 

examples. In other words, we conclude that K′TS is rather similar, 

whereas KS′ is smaller in our computational designs. This observation 
suggests that the moderate rate enhancements of the Diels-Alderases 
given in Table 1 can be improved by dedicated improvement of 
substrate pre-arrangement. In addition, the treatment reveals the 

difficulty in attaining a large (electrostatic) TS stabilization. We have 

that ∆G′‡uncat − ∆G′‡cat ≤ 3 kcal/mol in our design studies. This can 
possibly be attributed to lack of electrostatic reorganization in the TS, 
similar to the case of Kemp-eliminases.[66]  

    Again, note that partitioning KTS as in eq. 5 is not always justified, 
and must be done with care depending on what one seeks to analyze. 

We have used it as a tool to improve designs suffering from poor 
substrate pre-arrangement and quantitatively compare systems with 
similar active sites. Furthermore, the QC model needs to be large 
enough to capture all essential electrostatics, and the theozyme used 
for evaluating the Baker Diels-Alderases is, strictly speaking, too 
small.[45] Nevertheless, we obtained remarkable correlation with 
experiment. In our design works, we use cluster models of the active 
site for the QC calculations, which are typically size-converged at 
150-200 atoms.[82]  

 
7. Outlook  
 
 Ideally, one would wish for a completely dynamic design 
approach, where everything is treated in a time-resolved fashion 
(Figure 1c). For example, one would be able to measure the direct 
response to a point mutation or change in conformation of individual 
residues in ’real time’. Some methodologies have begun incorporating 

backbone flexibility,[13,14,32] and the EVB approach suggested by 
Warshel and coworkers[45,66,80] in principle maps the whole 
reaction coordinate. However, completely dynamic treatments will 
need time to mature, if ever feasible. A common and resilient problem 

is of course the coarseness of force field approaches, introducing 

dependencies on different parameterizations and failing to treat more 
subtle aspects of chemical interactions.  
    More likely is consolidation of the trend for which publications 
from the last couple of years[21,46,67,78,79,83] provide mounting 
evidence: development of composite approaches that utilize rational, 
computational and experimental tools iteratively. Iteration between 
models and experiment has recently been demonstrated (Figure 1b, 
blue),[79] and additional protocols are likely to emerge. An intriguing 

example of the beneficial use of human resources is an enhanced 
Diels-Alderase design developed with the help of FoldIt players.[83] 
They collectively improved substrate binding of DA_20_10 by 
redesigning a loop surrounding the active site. The new design CE6 

showed a 20-fold increased efficiency (see Table 1). 
    It has been argued that K-1

TS values larger than 1011 M-1 (∆∆GTS ≈ 

15 kcal·mol-1) are virtually impossible for enzymes exhibiting non-
covalent mechanisms.[29] Non-covalent mechanisms have been 

defined as those involving covalent enzyme-substrate intermediates, 
general acid/base catalysis, metal coordination or low-barrier 
hydrogen bonds. It follows from Table 1 that all designs leave room 

for significant improvement. To accomplish this, enzyme designers 
must be prepared to envision more complex reactions.  
    Another pertinent aspect is that enzymes earn much of their 

proficiency from catalyzing reactions that are astoundingly slow in 
water,[27,52] and for which catalysis stabilize large charge 
reorganizations in the TS.[84] Several of the reactions discussed 
herein are comparatively fast in solution, and thus limit the maximum 

Computational Enzyme Design 

5 

Volume No: 2, Issue: 3, September 2012, e201209009 Computational and Structural Biotechnology Journal | www.csbj.org 



rate enhancement. To significantly improve Diels-Alder catalysis, for 

example, it is perhaps necessary to both find a slower background 
reaction and re-route the catalytic mechanism. We recently presented 
an acid/base-mediated mechanism that utilized the catalytic 
machinery of ketosteroid isomerase.[85] This preliminary study 
indicated a dramatic rate enhancement of a reaction that is very slow 
in solution, provided that the substrates could bind to the active site 
and form pre-arranged conformations.  
    Enzyme design is evidently a complex, non-linear process and 
requires more than an ever-so-elegant algorithm. More advanced, 
diverse and cheap design tools, both computational and experimental, 
become available every year. The literature discussed in this review 
testifies that if a systematic application of the entire toolbox is 

conducted, dramatically improved results will definitely ensue.  
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