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COMPUTATIONAL ENZYME DESIGN: ADVANCES, HURDLES AND POSSIBLE WAYS

FORWARD

Mats Linder "

Abstract: This mini review addresses recent developments in computational enzyme design. Successful protocols as well as known

issues and limitations are discussed from an energetic perspective. It will be argued that improved results can be obtained by

including a dynamic treatment in the design protocol. Finaﬂy, a molecular dynamics-based approach for evaluating and reﬁning

computational designs is presented.

MINI REVIEW ARTICLE

1. Introduction

A key factor in the success of the human race is our inclination to
exploit nature for our own ends. Even though it has been disastrous
many times throughout history, we would be nowhere near the current
height of our civilization the without this trait.

One frontier waiting to be conquered is the control over enzyme
catalysis. Enzymes have intrigued us for as long as they have been
known because of their formidable complexity and proficiency,
stemming from a relatively low number of catalyzed chemical
transformations.[ 1] It is conceived that if we can take control of these
“unit operations’ and their structure-function relationships, we will be
able to design environmentally benign catalysts, yet featuring superior
efficiency and selectivity compared to those in use today.[2] Another,
more fundamental aspect is that the successful design of an enzyme is
a stringent demonstration that the underlying mechanics have been
understood. Given the increasing interest for industrial biocatalysis
and the need for highly specific solutions to synthetic problems, the
expectations on artificial (or de novo) enzymes for the coming
decades are high.[2]

Recent years have seen tremendous advancement in computer-
aided (or computational) enzyme design. The field can be defined as
the use of im siico methods to understand, model and
enhance/ construct enzyme catalysis. As with all computational
disciplines, the limits for what can be done are continuously pushed
forward, from early approaches with limited side-chain rotamer
optimization,[3-8] to more sophisticated optimization algorithms
available today.[9-14] In addition, highly interesting crowd-sourcing

applications have been applied in recent

Rosetm@Home[IS] and FoldIt.[16,17]

A long-standing vision in computational protein design has been

years, such as

to automate, i.e. letting an algorithm make most critical decisions,
much like directed evolution is an automated exploitation of natural
selection. In the light of the recent successful designs using such
protocols,[18-21] it is however sobering to note that each active
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structure is accompanied by a multitude of false positives.[22,23] No
reported de novo enzyme has significantly outperformed the
numerous catalytic antibodies elicited in recent decades,[21,22,24] let
alone wild-type analogs. Moreover, it has recently been reported that
some de novo designs do not tolerate closer scrutiny[25] and that
established protocols sometimes fail altogether.[26]

This mini review will focus on recent trends in improving de novo
designs beyond the automation protocols, discussed within the
framework of contemporary understanding of how enzymes
work.[27-31] It does not cover all methodologies and results
published recently; for this purpose, the reader is directed to other
recent reviews[2, 23, 32-35] (also see ref. 2 and references therein).

2. Automated protein design

Due to the sheer size of the sequence and conformational space of
proteins, no computational method is able to assess them eXhaustiveri
For example, the number of unique configurations when only
considering a typical active site is ~I0%.[11] Hence, computational
design relies on the ability to 1) understand where to focus the efforts
and ii) develop methods that efficiently examines and selects among
the 'right’ variables. To this end, all automated design protocols so far
start with an existing protein scaffold and redesigns its sequence
around some introduced functionality while maintaining a rigid
backbone (Figure 1a). We will refer to such approaches as ’static’.
Protocols from the Mayo and Hellinga labs pioneered automated
design, [3,4,36-38] and the first computational 'designer enzyme’
appeared in the early 2000’s.[39] It was followed by an array of
(re)designed binding proteins and enzymes.[8,18,38,40] Although
several reports from the Hellinga lab have been challenged[25] and in
some cases retracted,[41] the numerous reports of de novo functions
promised a bright future for computational enzyme design.

One of the most successful approaches has been to couple the
structure prediction utilities in the Rosetta design package,[9,42]
developed by Kuhlman, Baker and coworkers,[10,14,43] with an
"theozyme’[44]

optimization. Three very impressive enzyme designs were published

‘inside-out’ active site-design initiated by a
rapidly (the ‘Rosetta enzymes”), catalyzing a retro-aldol reaction,[19]
elimination,[ 20]

reaction.[21] The inside-out design method is a clean-cut example of

a  Kemp and most recently a Diels-Alder

the general philosophy described above. It optimizes a minimal model
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Figure 1. Evolution of enzyme design strategies. Nascent applications are indicated in blue and green and unlikely (or very distant) in red. (a) Approximate
protocol based on automated and/or rational design followed by experimental validation and screening. Optionally, the designs can be further refined through
directed evolution. (b) An iterative approach including molecular dynamics for selection and further design. (c) Tentative, automated computational design

incorporating conformational flexibility and dynamics in the search algorithm.

involving the transition state (TS) and a few key interacting residues
using quantum chemical (QC) methods, and the resulting theozyme is
then fitted into a suitable active site, which is repacked with the
Rosetta program. The idea relies on the finding that native proteins
have nearly optimal sequences for their structure,[43] so that
accommodating a new function can be done in a self-consistent way.

However, an enzyme needs to be exquisitely tuned in every part,
not just the active site residues, to be proﬁcient or even active.[45] As
examplified in Table I, enzymes straight out of the computer are
typically quite weak catalysts. But fine-tuning distant residues is (so
far) a bit to diffuse for computational methods,[45] and coupling
with directed evolution has proven to be a more successful
approach.[20,46] Nevertheless, such refined enzymes have at best had
a factor ~10? added to their efficiencies (Table I).

Before proceeding with a discussion on how to improve
prediction and refinement of catalytic power in computational design,
we will now briefly review how enzyme catalysis is understood. The
framework will then be used to quantify substrate binding and

dynamic contributions to the catalytic effect.

3. The undetlying theory

In the famous words of Linus Pauling,[47,48] enzymes work by
”stabilization of the transition state” of the reaction (relative to the
solvent). Transition state theory (TST) has acquired additional
flavors since then,[49] but it is now generally agreed that the bulk of
the catalytic effect can be attributed to the quasi-thermodynamic
transition state (TS) stabilization.[28] This is good news for the
computational enzyme designer, since the ’extra-thermodynamic’[28]
terms (re-crossing, tunneling and non-equilibrium effects) are
arguably too subtle to be incorporated in computational predictions

(yet).
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TS stabilization is understood as higher affinity for the TS of the
enzyme with respect to the solvent, described by a ’dissociation
constant’ K7s [50] This hypothetical TS binding is illustrated in the

pseudo-thermodynamic cycle in Figure 2 and is defined as

uncat

kcar

uncat

Krs = Ky = Ky— (D

car

with the associated dissociation energy

AAGrs = —RT In Kpg = AG?

uncat

Gcat AGbmd <2‘>
(We allow ourselves to approximate K with exp[AGb;nd/R 7)) The
catalytic proficiency of enzymes is thus the reciprocal of K7sand can
in native enzymes be as high as 10** M. [51]

Exactly how enzymes achieve their TS stabilization has been, and
still is, widely debated.[31,52-54] That enzymes selectively bind their
substrates is well understood[31] and reflected in small values of the
Michaelis constant (Ka). Rate enhancement, defined as ko) nc,
requires a lower enzymatic reaction barrier (AG % < AG hunce ); if the
difference is zero, Krs simply equals Ki. One way or another, a
proficient enzyme must therefore allow a reaction path for which
kea)Teuncae >> 1, equivalent to AAG e = AGha = AG e << 0.

The discourse regarding the origins of TS stabilization can, in
simple terms, be said to be about whether they have completely pre-
organized active sites that are evolved to match the TS geometry and
electrostatics,[31,55] or if they, e.g. by ground state destabilization
(or entropy trapping),[S6] desolvation[S7] or dynamic motion,[30]
increase the fraction of pre-organized states in conformational
space.[53,54] While it is reasonable to suggest that all contributions

play a role,[58] it is still disputed which one dominates in a particular
enzyme.[30,59-01]
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Figure 2. Schematic description of general enzyme catalysis (represented by one substrate and only the rate-determining step). The thermodynamic
relationships in the bottom panel has been adapted from Wolfenden.[27] Fictitious equilibria are indicated in red.

Regardless of what explanation one prefers, it is instructive for the
present discussion to define a pre-organized state (S’ or ES’) as any
substrate conformation that is distorted with respect to the ground
state (S or ES), so that it lies "en route’ to the TS on the reaction
coordinate (Figure 2). Note that ES is a Boltzmann ensemble and
contains all conformations defined to belong to ES’; the crucial
delimiter between the two ensembles can be seen as ES not necessarily
being conformationally similar to the TS while ES’ is. Thus, AGuy >
0, and
AG* = AG,,, + AG™ (3)
where AG* is the free energy of activation from the pre-organized

state. We can from Figure 2 define a 'pre-organization constant’ Ks as

Ofg uncat

K

org,cat

Kg) = Ky ——— (4)

and it follows that

AG,C‘Lt

,i:ncat !
= Kg,/K s ©)

KTS == Ks,exp[

This manipulation effectively divides the activation barrier in two
parts, where AGiry can be assumed to contain mainly non-electrostatic
and entropic contributions, whereas AG’ mainly contains the charge-
transfer associated with the chemical step.[62]

From an experimental perspective it may seem pointless to
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consider such a ‘micro-history’[28,63] of the reaction coordinate,
since the only observables are K and 4w , but it is a useful
computational tool to characterize the enzyme. And, as will be argued
below, to design better ones. The introduction of an intermediate
state does not dismiss any of the various theories regarding the origins
of enzyme catalysis. Indeed, a very proﬁcient native enzyme can be
regarded as having an ES’ = ES due to a pre-organized active site, in
which case AGigee = 0[60] and the extended model reduces to the
usual one. That is, 4Gt = AG "« and contains solely electrostatic
contributions[31] while all pre-organization effects are captured in
AGhind.

However, in designer enzymes the match might not be so ideal,
even with the appropriate catalytic groups in place. Such a situation
will render a larger AGiga, and ku/ ke will be small even with
seemingly ideal interactions in the TS. In this case, the enzyme might
be improved by 'pulling down’ ES’ towards ES, thereby lowering the
barrier, whereas in a structure with insufficient electrostatic pre-
organization, the effort must focus on placement of the catalytic

residues to lower [ETS]F.

4. Where automated design fails

How do these mechanistic considerations influence computational
design strategies? Since the most direct design approach is to optimize
an active site around a computed TS model or perhaps TS hybrid, the
designer enzyme should ideally be fairly good at binding the
substrate(s) in their pre-organized conformations (ES”) as well, with a
consequently low AGige penalty. In other words, optimizing TS
binding should in principle yield adequate pre-arrangement as well. It
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has been pointed out that it is essentially the same strategy as
employed when raising catalytic antibodies against haptens.[38]

As mentioned, such an approach essentially assumes that the
design retains its structural integrity with respect to the scaffold, or at
least that the region around the active site is rigid. Herein lies, the
author argues, an important reason why computational design
algorithms rarely exceed a rate enhancement of ~I0° (Table I1),[22]
and why the success rate is in fact very low.[21,26] The dynamic
nature of enzymes includes both backbone and side-chain movements,
and although it is a good approximation to assume that the backbone
remains rigid with respect to ~10 introduced mutations, even a small
distortion can severely affect the positioning of catalytic residues. A
related problem is that backbone movements are slow on the
molecular time scale, and they are therefore seldom captured in
standard MD simulations.

Several studies have investigated the Rosetta enzymes,[46,64-67]
and most of their conclusions point in the same direction:
Unaccounted protein dynamics leads to a unsatisfying description of
enzyme-substrate interactions and the ability to pre-organize into the
target TS, which results in an over-optimistic prediction of activity. In
other words, the static nature of the design process fails to predict the
actual Boltzmann distribution of ES conformations. In addition,
Warshel and coworkers have pointed out that the extensively studied
Kemp Eliminases attain a significant part of their catalytic effect by
bringing the substrate close to the catalytic base, whereas actual TS
stabilization is poor and extremely difficult to achieve due to a small
difference in charge distribution compared to the ground state.[ 66]

It should be noted that the automated computational protocols
do a fairly good job at predicting the (albeit simple) reaction
mechanism and stereoselectivity, but do not manage very well to
separate actives from inactives.[19-21] Thus, selection is a major
challenge for automated protein design.[22] The problem of picking
out a few structures from an immense ensemble is in principle
equivalent to what troubles other disciplines in computational

chemistry: calculating small energy differences between large systems.

Table 1: Examples rate enhancements and specificities of
computationally designed enzymes.”

Fcat k

Name Reaction log 7 S— log T\Lw“i —log K1s Ref.
P7D2 Ester hydrolysis 2.26 0.43 6.03 39
G4-DFtet Phenol oxidation ~30 1.42 6.08 18
RAG1 Retro-Aldol 1.36 -0.15 8.04 19
KE07 Kemp Elimination 1.19 111 7.04 20
—KE07T*¢ Kemp Elimination 6.07 3.40 9.34 20
KE70 Kemp Elimination 5.08 2.10 8.04 46
—KET70*¢ Kemp Elimination 6.63 1.75 10.7 16
HG-3¢ Kemp Elimination 5.77 2.63 8.56 79
DA_20_00 Diels-Alder 0.61 -1.26 3.90 21
—DA_20_10  Diels-Alder® 1.93 0.73 5.90 21,83
—CE6 Diels-Alder® 1.96 1.94 7.11 83

‘A’ —’ indicates the design has been developed from the closest design above.
*Only an approximate rate enhancement was reported by the authors. “The *R7
10/11G’ variant of KE07,[20] and 'R6 4/8B’ variant of KE70,[46] evolved by
directed evolution and containing 8 and 14 mutations compared to their
respective progenitor. “Refined in three generations using a combination of small-
molecule placement,[11] MD and experimental techniques. ‘A bimolecular
reaction, reported values therefore contain ked (KniKuz ). Evolved from
DA_20_00 by rational design and contains 6 mutations with respect to the
progenitor. ‘Evolved from DA_20_10 by exchanging an unstructured loop on the
fringe of the active site to a helix-turn-helix motif that better encapsulates the
substrates. The design was found by employing the community of FoldIt[16]
players.
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5. Searching for matching functionalities

In order to mitigate some of the problems associated with
introducing a de novo mechanism in an existing scaffold, an
alternative strategy could be to search for structures with
functionalities matching the desired machinery already in place. We
have been interested in re-designing enzymes containing an ’oxyanion
hole’ moiety[68] to catalyze the intermolecular Diels-Alder reaction,
which is virtually unknown in nature[69-71] and therefore highly
interesting for de novo design.[2] Our work was initially guided by a
rational design framework (Figure Ia),[72] which can be said to rely
on the concept of “catalytic promiscuity’.[73] Catalytic promiscuity is
in turn a manifest of evolutionary heritage,[23,74,75] where a wide
array of reactions can be catalyzed by structurally and functionally
similar enzymes.[23]

We recently adapted a ’semi-rational’ approach,[76,77] which
contains a biased search in the Protein Data Bank (PDB) for
structures containing the target functionality (an oxyanion hole). The
search is coupled with a search of a combinatorial substituent library
for matching substrates, thereby increasing the chance of structural
complementarity with the active site while keeping the number of
mutations at a minimum (Figure Ib, green). After a pre-selection, the
remaining structures are evaluated by molecular docking of TS
analogs. The results then form the basis for further selection and
rational mutations. Recently, Nosrati and Houk published a program
('SABER”) designed to automatically search the PDB for "predesigns’
having a set of predefined functionalities in place for promiscuous
catalysis.[ 78] Their approach is consistent with ours, albeit in a more
automated fashion. To the author’s knowledge, only the originnal
proof of principle study has been published to date. One can
anticipate, however, future de novo designs employing the SABER
methodology.

6. Including dynamics

Another key feature of our approach is that we rely on molecular
(MD)
quantification of different variants,[72,76] a practice that has recently
begun appearing in several other studies (Figure 1b).[21,67,79] We

refer to this as ‘dynamic design’.

dynamics simulations for evaluation, selection and

The virtue of dynamic design is that it relaxes a static design in
response to the functionalities introduced, and in addition provides
both qualitative and quantitative tools to distinguish between systems
with just a few atoms discrepancy (even though it does not warrant a
perfect description of reality). It was shown by Kiss er al. that MD-
derived metrics could be used to significantly improve computational
predictions of active designs[67] of de novo Kemp Eliminases.[20]
The groups of Mayo, Houk and Hilvert then went on to use MD in
an iterative protocol[11] to refine an inactive design for the same
reaction to an active one (HG-3 in Table 1).[79]

Despite the use of both QC and MD methods in several dynamic
protocols, few attempts have been made so far to use them for
quantitative predictions. Warshel and coworkers recently used their
"empirical valence bond’ (EVB) method to correlate computed AGhu
values with experiment, and argued that this approach can be used for
screening[80] and refinement purposes.[45] It is the author’s opinion
that reliable energetic predictions of the designed reaction coordinate
is the most robust way to improve the predictive power of
computational enzyme design.

We took an early interest in probing the possibility of
quantitative evaluation using MD and QC. One reason for this being
that the docking protocol used in the early stages of design is
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inherently static, like most other protocols employed thus far, and
does not provide a particularly precise basis for selection of catalytic
activity. Our studies have lead to a dynamic protocol employing
standard MD and cluster QC calculations,[76, 77] which for a
preliminary benchmark test gives encouraging results.

To quantify the quality of a particular design, one needs to
determine Krs (eq. I), which requires explicit predictions of the
substrate binding and activation free energies. An estimate of K can
be obtained from the MD trajectory while the rate constants in
principle require ab initro calculations. As seen from Figure 2, AGa
must be calculated with respect to ES, but this state is not correctly
sampled at the QC level if not conformationally very restricted.
Although QM/MM may be one solution to this problem, we have
utilized that ES’ can be fairly well defined within both MD and QC
frameworks due to its conformational constraints, and use eq. 3 to
estimate AG w. The pre-organized complex can be defined in several
ways, and we have used the concept of ’'near attack conformers’

(NACs) championed by Bruice[81, 53] to determine A Girgenr[ 60]

AG,,. ..~ AGysc = RTIn ¢ ©)

org,cat
8 total

where Mac denotes the number of instances in the ensemble obeying
the criteria defined for a NAC. Hence, we compute AG " cat using a
cluster model of the active site, and obtain AGirger as a statistical
average from MD. The uncatalyzed states are determined in a
traditional way from QC.[72,76,77]

The NAC concept is debated[28,54,60,61] and suffers from its
inherently arbitrary deﬁnition,[ZS] but we argue that it is a useful tool
to optimize substrate binding in enzyme catalysis. In the notation of
Figure 2, NAC=ES' (or §’), and as pointed out above, the ideal design
goal is to equate this state with ES. Computational design typically
produces multiple candidates with essentially identical catalytic
residues, and in a QC evaluation of the TS stabilization it is
convenient to use the same (or similar) models to save CPU time.
They can instead be ranked by augmenting a common AG " with
AGirgee obtained from MD. (This is essentially what is done by Houk
and coworkers,[46,67] although without estimating energetics.)

In addition, this treatment is useful for quantifying the origins of
catalysis (or lack thereof!). If ES" and S are defined equivalently, the
electrostatic portion of the TS can be determined by AG "w=AG "uncae
(ie. K'1s in eq. 5; this comparison is similar to the 'caged’ reference
state used by Frushicheva er al[45,66]), which can be taken as a
measure of the quality of the designed catalytic machinery.

As a test of the predictive power of this concept, the kinetic
constants of four active Diels-Alderases published by the Baker group
were estimated in ref. 77. We used a 'LIE+YSASA’ method to
calculate binding constants from MD, and employed the theozyme
reported by Siegel er al as our cluster model. Despite its crudity, the
approach predicted Krs within one order of magnitude and ranked
three of four designs correctly; the largest error was a factor 60
overestimation for CE6 (= 2.4 kcal-mol™"). Predicted in the same way,
two variants designed using our semi-rational protocol have estimated
rate enhancements of 5.9:10* and 4.1-10° M, and efficiencies of
8.6-10" and 9.5-10" s'™M" | respectively.[76,77] We have not yet
been able to express these designs for experimental validation, but
speculatively, our simulations suggest that the main difference
between these variants and those published by the Baker group is the
propensity to form NACs (or ES’). In our designs, we explicitly
designed for alignment of the (ternary) ES complex to resemble the
tentative TS, thereby lowering the AGuge penalty. We recorded
MNac/ Nt values of < 0.10 for the Baker variants, versus 0.25-0.50
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for our best designs.

Interestingly, the computed AGY cat are not so different in these
examples. In other words, we conclude that K'zs is rather similar,
whereas Ks is smaller in our computational designs. This observation
suggests that the moderate rate enhancements of the Diels-Alderases
given in Table I can be improved by dedicated improvement of
substrate pre-arrangement. In addition, the treatment reveals the
difficulty in attaining a large (electrostatic) TS stabilization. We have
that AGhwa — AG'kae < 3 keal/mol in our design studies. This can
possibly be attributed to lack of electrostatic reorganization in the TS,
similar to the case of Kemp-eliminases.[66]

Again, note that partitioning K7s as in eq. 5 is not always justified,
and must be done with care depending on what one seeks to analyze.
We have used it as a tool to improve designs suffering from poor
substrate pre-arrangement and quantitatively compare systems with
similar active sites. Furthermore, the QC model needs to be large
enough to capture all essential electrostatics, and the theozyme used
for evaluating the Baker Diels-Alderases is, strictly speaking, too
small.[45] Nevertheless, we obtained remarkable correlation with
experiment. In our design works, we use cluster models of the active
site for the QC calculations, which are typically size-converged at
150-200 atoms.[82]

7. Outlook

Ideally, one would wish for a Completely dynamic design
approach, where everything is treated in a time-resolved fashion
(Figure Ic). For example, one would be able to measure the direct
response to a point mutation or change in conformation of individual
residues in 'real time’. Some methodologies have begun incorporating
backbone flexibility,[13,14,32] and the EVB approach suggested by
Warshel and coworkers[45,66,80] in principle maps the whole
reaction coordinate. However, completely dynamic treatments will
need time to mature, if ever feasible. A common and resilient problem
is of course the coarseness of force fleld approaches, introducing
dependencies on different parameterizations and failing to treat more
subtle aspects of chemical interactions.

More likely is consolidation of the trend for which publications
from the last couple of years[21,46,67,78,79,83] provide mounting
evidence: deveiopment of composite approaches that utilize rational,
computational and experimental tools iteratively. Iteration between
models and experiment has recently been demonstrated (Figure 1b,
blue),[79] and additional protocols are likely to emerge. An intriguing
example of the beneficial use of human resources is an enhanced
Diels-Alderase design developed with the help of Foldlt players.[83]
They collectively improved substrate binding of DA_20_I0 by
redesigning a loop surrounding the active site. The new design CE6
showed a 20-fold increased efficiency (see Table I).

It has been argued that K'1s values larger than 10" M (AAGrs=
IS keal-mol™) are virtually impossible for enzymes exhibiting non-
covalent mechanisms.[29] Non-covalent mechanisms have been
defined as those involving covalent enzyme-substrate intermediates,
general acid/base catalysis, metal coordination or low-barrier
hydrogen bonds. It follows from Table I that all designs leave room
for significant improvement. To accomplish this, enzyme designers
must be prepared to envision more complex reactions.

Another pertinent aspect is that enzymes earn much of their
proficiency from catalyzing reactions that are astoundingly slow in
water,[27,52]
reorganizations in the TS.[84] Several of the reactions discussed

and for which catalysis stabilize large charge

herein are comparatively fast in solution, and thus limit the maximum
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rate enhancement. To signiﬁcantly improve Diels-Alder catalysis, for
example, it is perhaps necessary to both find a slower background
reaction and re-route the catalytic mechanism. We recently presented
utilized the
machinery of ketosteroid isomerase.[85] This preliminary study

an acid/base-mediated mechanism that catalytic
indicated a dramatic rate enhancement of a reaction that is very slow
in solution, provided that the substrates could bind to the active site
and form pre-arranged conformations.

Enzyme design is evidently a Complex, non-linear process and
requires more than an ever-so-elegant algorithm. More advanced,
diverse and cheap design tools, both computational and experimental,
become available every year. The literature discussed in this review
testifies that if a systematic application of the entire toolbox is

conducted, dramatically improved results will definitely ensue.
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