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Abstract

Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for
understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to
investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space
among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained
from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous
series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then
three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working
memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD
were also calculated to describe the functional connectivity in the original space. The results showed that these network
characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then
decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality
were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional
connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low
dimensional space.
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Introduction

Working memory (WM) refers to a brain system that provides

temporary storage and manipulation of the information necessary

for complex cognitive tasks [1]. The prefrontal cortex (PFC) is

thought to play a critical role in memory organization and

executive functions during working memory tasks [2,3]. A

prevailing view is that WM is mediated by the activities of medial

prefrontal cortex (mPFC) neurons [4–6]. Up till now, the neural

mechanism of WM is still an open question.

The functional connectivity has been previously investigated to

explore the mechanism of working memory [7], and provides

novel insights into psychiatric and neurological disorders [8,9]. For

example, abnormalities of the brain functional connectivity

network have been observed in Alzheimer’s disease [10–12],

which is thought to relate to the declination of WM. In recent

years, there have been a numerous studies on functional

connectivity among neuronal signals at different levels and scales

[13]. A powerful technique to extract such connectivity from data

is Granger causality connectivity analysis (GCCA). GCCA,

originating from the field of economics and being widely used in

neuroscience [14], is an effective method to investigate the

interactions between variables [15].

Recently, GCCA has been widely used to extract functional

connectivity from macroscopic neuronal signals such as fMRI

[16], EEG and MEG [17,18]. Meanwhile, identifying functional

connectivity between the microscopic neuronal signals, such as

spikes, is also very important to understand how the brain

orchestrates information processing at the single-cell and popula-

tion levels [19]. Besides, these microscopic neuronal signals

recorded by micro-electrode array, have good temporal resolution.

Principal component analysis (PCA) is a dimensionality

reduction technique to extract the important information by

maximally concentrating the energy contained in the signals in a

smaller number of components. Following high-dimensionality

reduction by PCA, functional connectivity of fMRI was identified

and visualized [20] to reveal novel insights into dynamic brain

connectivity [21]. Hu et al. performed PCA on spikes recorded in

rats’ motor cortices through brain-machine interfaces when rats

were involved in real-time control tasks [22]. Meanwhile,

investigation has suggested that the behavior onset of a skilled

reaching task could be predicted using a smaller number of

principal components extracted from the population activity [23].

Moreover, Zhou et al. have proposed an approach to investigate

functional connectivity by combining PCA and GCCA [24].

Analyses of functional connectivity might serve as an effective

description of the neural mechanism underlying information

processing in small scale of brain (i.e. mPFC) during the WM tasks.

In this study, we investigated the functional connectivity variation

among spikes during the WM tasks. Then, we investigate the

functional connectivity by combining PCA and GCCA to explore
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whether these variations of the network can be effectively

described in low dimensional space.

Materials and Methods

Experiment and Data acquisition
This study was approved by the Institutional Animal Care and

Use Committee of Tianjin Medical University under the NIH

Guide for the Care and Use of Laboratory Animals.

Male Sprague-Dawley rats weighing 300–350 g were given a

two-day food limitation for 2 h per day to maintain body weight of

no less than 85% of normal weight. Then, the rats were adapted to

the Y-maze (Fig. 1A) for another two days. After habituation, rats

were given training sessions on a Y-maze working memory task

per day until the correct rate of the performance was over 85%.

The Y maze working memory task (Fig. 1A) was simply described

here: Each trial of the task included a free choice run and a

delayed alternation run. In the free choice, the rat could get a

small piece of food reward when it arrived at either end B or end

C. After consuming the reward, the rat returned to the start A and

waited for 5 seconds to make a ‘choice run’. During this phase, the

rat could only get the reward at the end of the arm which it had

not entered previously. After a trial, the animal went back to A to

start the next trial.

After reaching the performance criterion, the rats were

anesthetized with chloral hydrate (350 mg/kg) under aseptic

conditions. Meanwhile, 268 nickel-cadmium microelectrode array

(impedance less than 1 MV) were implanted into the rats mPFC

according to the rat brain stereotaxic coordinates [AP: 2.5–

4.5 mm, ML: 0.2–1.0 mm, DV: 2.5–3.5 mm].

After recovery, multi-channel neural signals were recorded in

rat mPFC through a Cerebus Acquisition System (Cyberkinetics,

USA) during the WM tasks on the Y-maze. Then, spikes (high pass

filter: 250–7500 Hz, sampled at 30 kHz) exceeding the voltage

threshold were stored with the time stamps per channel. After that,

spike-sorting was performed to classify different neuronal firings by

offline sorter (Fig. 1B, Plexon). The occurrence of behavioral

events was marked by an infrared sensor in the Y-maze and was

defined as the ‘tripping point’ [25].

Conversion of spikes into continuous series
As spikes are series of discrete action potentials of neurons and

consist of point processes, they cast a challenge on multivariate

autoregressive (MVAR) model of GCCA. In that case, spikes

should be firstly converted into continuous time waveforms.

Considering that both rate and temporal information might be

important for assessing the interaction among neurons, we here

used a method which was applicable for dealing with short, sparse

spikes trains to generate a continuous time series more suitable for

MVAR modeling [26]. The basic idea of this method was to

convert the spikes into continuous temporal series of instantaneous

firing rate (IFR). Briefly, the procedure included three steps:

Firstly, the IFRs were obtained by calculating the inverse of the

interspike intervals.

r(t)~
1=(ti{ti{1) ti{1vtvti

1=(tiz1{ti) tivtvtiz1

�
ð1Þ

where ti-1, ti and ti+1 denoted three successive spike occurring

times.

Then a small time interval dT (much less than the average

interspike interval T) was chosen to yield the instantaneous

integrated rate (f(t)).

f i(t)~
Ð tzdT

t
r(t)dt ti{1ƒtvtiz1 ð2Þ

Finally, a continuous-time rate series was obtained by smooth-

ing out the functions in time by spline interpolation methods

(Fig. 1C, upper).

Granger causality
The measure of Granger causality are based on the notion that

a variable x1 can be said to cause another variable x2 if the

information in the past of x1 can help forecast the future of x2 with

better accuracy [27,28].

In this study, the number of the variables was larger than two.

In that case, conditional G-causality was applied to measure the

causal influences between the pair of signals in the multivariate

data set X.

X~ x1 tð Þ,x2 tð Þ, � � � ,xN tð Þ½ �T ð3Þ

To illustrate conditional G-causality, suppose that the temporal

signals (X) can be represented by a multivariate autoregressive

(MVAR) model.

Xp

k~0

L kð ÞX t{kð Þ~E tð Þ ð4Þ

In which E(t) is a vector of multivariate zero-mean uncorrelated

white noise process. L1,L2, � � �Lp are N by N matrices of model

coefficients while p is the model order chosen with the Bayesian

information criteria (BIC) for MVAR process. Then, the

conditional Granger causality was calculated.

In the time domain, the Granger causality from x2(t) to x1(t)

conditional on the other signals is defined as:

Fx2?x1j x3,x4,���,xNð Þ~ln

P
x1,x3, � � � ,xNð ÞP
x1,x2, � � � ,xNð Þ ð5Þ

where
P

x1,x3, � � � ,xNð Þis the variance of the noise in the

regression of the variables data set without the x2, andP
x1,x2, � � � ,xNð Þ is the variance in the regression of all variables

of X, both variances being associated with x1 variable. Then, the

Bonferroni correction was applied to assess the statistical

significance of the G-causality interaction (p = pnom/n(n-1),

pnom = 0.01) [15]. Interactions which do not reach statistical

significance are set to zero. In addition, the path lengths were

determined by taking the inverse of the strength of the granger

causality connection. Then, graph theoretical measures were

applied to estimate the connectivity as it provided an effective and

informative way to explore the network properties [29].

Feature calculations
Focusing on the effectiveness of the network information

transmission, the global efficiency (E) and the causal density

(CD) were selected to explore the variance of network properties

during the WM tasks in this study.

The global efficiency is defined as the inverse of the harmonic

mean of the minimum path length between each pair of the

elements [30].
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E~
1

n(n{1)

X
i=j

1

Lij

ð6Þ

where Lij is the mean of the minimum path length between nodes i

and j (neurons or principle components). E = 0 indicates that there

is no path between neurons or principle components (PCs). High

value of E reveals strong effect of the parallel information transfer

among nodes [31].

The causal density of the data set X is a global measure of

causal interactivity. It is defined as the mean of all pairwise

causalities between the elements, conditioned on the remainder of

the system.

CD(X )~
1

n(n{1)

X
i=j

FXi?Xj
X½ij�
�� ð7Þ

where FXi?Xj
is the value of the Granger causality strength from

node i to node j and X[i,j] denotes the subsystem of X without Xi

and Xj. When all the statistically significant interactions are set to

1, the value of CD will be bounded into the range of [0, 1]. High

value of the CD indicates more causal links observed in the

network and is obtained only when the connectivity among the

elements is globally coordinated.

Figure 1. The Y maze working memory task and preprocessing of the data. (A) The Y maze working memory task. For the Y maze, dashed
lines represent the removable guillotine doors. The occurrence of behavioral event is detected by an infrared sensor. Food rewards are located at the
ends of goal arms. Arrow shows in the right plot possible correct path, dotted line in the right plot shows possible incorrect path. (B) Processes of
spike sorting. (C) Rastergram of the spike trains recorded during the Y-maze task (3 s pre and 1 s post the tripping time) and the converted
continuous series. The red triangle denotes the tripping time of the ‘choice run’ behavioral event in the Y-maze. (D) Plot of the principal components
obtained from the continuous time series. The first 10 principal components (PCs) account for over 90% energy of the total variables. (E) Granger
causality matrices in the original (left) and in the reduced dimensionality (right).
doi:10.1371/journal.pone.0091481.g001
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Connectivity among principal components
PCA is a statistical analysis technique that can be used for

feature extraction by seeking the linear combinations of the

original variables to derive new variables which capture the

maximal variance. Given a matrix with n variables and m

observations for each variable, the goal of PCA is to reduce the

dimensionality of the inputs by projecting them onto the reduced r

directions. These r new variables are mutually uncorrelated and

orthogonal. They, together, account for as much of the energy

contained in the original n variables as possible [32]. Investigations

have demonstrated that using PCA may improve upon application

of existing Granger causality method in the study of brain effective

connectivity [33]. In this study, we selected r new variables

(principal components) accounted for over 90% energy of the

original variables. As an example shown in Fig. 1D, the first 10

principal components (PCs) accounted for over 90% energy of the

total variables. In that case, thirteen was chosen as the number of

the PCs. These low dimension principal components from the

continuous time series of spikes were further analyzed to

investigate whether they could facilitate the subsequent Granger

causality analysis (Fig. 1E, right).

Results

In order to investigate dynamic variations of the functional

connectivity during the WM tasks in rat mPFC, the average values

of granger causality matrix obtained from the continuous spikes

(GC) were calculated (80 trials of 6 rats). The network was

identified by effective connections among the continuous spikes.

Meanwhile, we analyzed the global efficiency (E) and the causal

density (CD) in order to feature the changing tendencies of the

parallel information transfer and the global coordination of the

network based on granger causality matrix.

Furthermore, PCA was applied to the continuous spikes to

extract the principle components (PCs). As a comparison, the

average values of granger causality matrix obtained from the PCs

(GCPC) were also analyzed. In addition, global efficiency and

causal density of the network identified by functional connections

among the PCs, denoted by EPC and CDPC, were subsequently

calculated and compared to explore the effectiveness of describing

the functional connectivity by using PCA.

Dynamic variations of functional connectivity during the
WM tasks

The changing tendencies of the functional connectivity were

analyzed during the correctly performed WM tasks (4 s pre and

2 s post the tripping point). Accordingly, the period of the WM

task was divided into six 1 s length bins which were defined as A0,

A1, A2, A3, A4 and A5 from the beginning to the end. A0 was

defined as the working memory beginning state (WMBS).

Granger causality analysis was subsequently applied to inves-

tigate the changing tendencies of the functional connectivity. As an

example shown in Fig. 2A, the number of the effective connections

whose values were statistically significant became larger during the

WM task (at A2 and A3). Then the effective connections decreased

to smaller numbers after the tripping point (at A4 and A5).

The changing tendencies of the GC levels were subsequently

analyzed. Results showed that the GC levels among the

continuous spikes were dynamically varied from A0 to A5 during

the WM tasks (Fig. 2B). The values of the GC increased to the

maximum (defined as the working memory state (WMS)) from the

beginning, and then decreased in all six rats. The maximum values

of GC appeared 2 s pre (A2, for Rat 2, Rat 3 and Rat 6) or 1 s pre

(A3, for Rat 1, Rat 4 and Rat 5) the tripping point. Of note, the

GC values of the WMS were significantly higher than those of the

WMBS (Fig. 2D, 80 trials of 6 rats, original dimensionality: *

P,0.05). However, further comparisons between the WMBS and

the WMS for each rat respectively suggested statistical differences

of the GC values only in 4 rats (Table 1, paired sample t-test, *

P,0.05, ** P,0.01).

Subsequently, the PCA was applied on the continuous spikes to

extract the PCs to construct the reduced dimensionality network.

Investigations of the GCPC showed that the values of GCPC

presented similar increasing tendencies during the WM tasks and

decreased after reaching the largest values (Fig. 2C). Of note, the

occurring time of the GCPC highest levels were the same as the

GC. Difference between the GCPC levels of the WMBS and the

WMS was statistically significant (Fig. 2D, 80 trials of six rats,

reduced dimensionality: P,0.01). Most importantly, further

comparisons between the GCPC of different state for each rat

presented statistical differences for all 6 rats (Table 1, paired

sample t-test, * P,0.05, ** P,0.01).

To further investigate the effectiveness of using PCA, we then

compared the values of GC and GCPC at both the WMBS and the

WMS. Results showed significant differences between GC and

GCPC values at both the WMBS and the WMS (Fig. 2D, paired

sample t-test, P,0.01). Of note, comparisons between the GCPC

and GC at WMBS showed significant difference only in 3 rats

(Table 1, paired sample t-test, n P,0.05, nn P,0.01), though the

values of GCPC were higher than the GC in all the rats.

Thus, the values of the GC and the GCPC were both

significantly increased during the WM tasks. Besides, the

variations of the functional connectivity could be better described

in the reduced dimensionality.

Dynamic variations of the features during WM
As mentioned in section 2, the causal density and the global

efficiency were selected to feature the functional connectivity

network. E, CD of the network constructed from the original

continuous spike series and EPC, CDPC of the network constructed

from the PCs were calculated during the correct WM tasks to

describe the variations of the functional connectivity.

The variation trends of E, CD, EPC and CDPC were shown in

Fig. 3. They all increased during the WM tasks and decreased after

reaching the maximum values (Fig. 3A and B). Besides, the

maximum values of all the features (E, CD, EPC and CDPC)

occurred at A2 (Rat 2, Rat 3 and Rat 6) and A3 (Rat 1, Rat 4 and

Rat 5). Of note, the highest feature levels appeared at the same

time with GC and GCPC. In other words, they presented similar

changing tendencies during the WM tasks.

To investigate whether there were statistical differences between

the features values of the WMBS and WMS, we further compared

the average values of the features values of these two states for each

rats respectively. As shown in Table 2 and Table 3, compared with

the values of the WMBS, the feature values were higher at the

WMS. Besides, statistical differences were found between the

features of WMBS and WMS in the reduced dimensionality for all

the rats (EPC and CDPC, Table 2 and Table 3, paired sample t-test,
** P,0.01, * P,0.05). For the networks constructed from the

continuous spikes, however, significant differences between the

two states (WMBS and WMS) could not be found for 5 rats

(Table 2 and Table 3, paired sample t-test, **P,0.01, *P,0.05).

Further investigations of the effectiveness by applying PCA

showed that the values of the features were significant higher in the

reduced dimensionality (EPC and CDPC) at the WMS than they

were in the original dimensionality (E and CD, Fig. 3C and D, 80

trials for 6 rats, paired sample t-test, ** P,0.01). However, the

differences between the features of the original and the reduced

Functional Connectivity among Spikes
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dimensionality were not statically significant at the WMBS (Fig. 3C

and D, 80 trials for 6 rats, paired sample t-test, P.0.05). In

addition, no significant differences were found between the

features of the original and the reduced dimensionality at the

WMBS except for rat 4 (Table 2 and Table 3, paired sample t-test,
nP,0.05).

Thus, the average values of the features were both increased

during the WM tasks. Besides, the variations of the functional

network features were better described in the reduced dimension-

ality.

Discussion

The results indicated increasing tendencies of the strength of the

functional connectivity during the WM tasks. Besides, the

functional connectivity (GCPC and GC), effect of the parallel

information transfer (EPC and E) and global coordination (CDPC

and CD) had similar variation trends during the correct trials. The

maximum values of these measures occurred at the same time

(WMS). Therefore, stronger functional connectivity, higher

information transfer efficiency and increased global coordination

Figure 2. Dynamic variations of granger causality during working memory tasks. The data are divided into six 1 s length bins from the
beginning to the end (4 s pre and 2 s post the tripping time). The red triangle indicates the tripping time of the infrared sensor in the Y-maze. (A)
Dynamic variations of the granger causality matrixes during a working memory task of rat 1. (B) Variations of the GC values in the original
dimensionality during the working memory tasks of each rat (mean6SEM). (C) Variations of the GCPC values in the reduced dimensionality during the
working memory tasks of each rat (mean6SEM). (D) Comparisons of granger causality (mean6SEM). The granger causality values of the original and
the reduced dimensionality are both significantly higher at the working memory state (WMS) than at the beginning state (WMBS). Besides, the
granger causality levels in the original dimensionality at the WMS and the WMBS are significantly lower than those in the reduced dimensionality (80
trials for 6 rat, paired sample t-test, * P,0.05, ** P,0.01).
doi:10.1371/journal.pone.0091481.g002

Table 1. Comparisons of the granger causality of the original and the reduced dimensionality at WMBS and WMSa.

Nb Original dimensionality Reduced dimensionality

WMBS WMS WMBS WMS

Rat 1 26 0.015660.0030 0.023360.0026** 0.022560.0062 0.030860.0046*/n

Rat 2 20 0.004860.0011 0.008360.0012* 0.011260.0022nn 0.031060.0053**/nn

Rat 3 28 0.009360.0019 0.018360.0029* 0.019660.0046nn 0.041060.0067**/nn

Rat 4 36 0.005460.0012 0.011360.0038 0.01056.00185nn 0.027160.0027**/nn

Rat 5 28 0.011560.0059 0.023560.0162 0.013460.0038 0.050760.0155**/n

Rat 6 22 0.012560.0017 0.018960.0024* 0.020360.0051 0.032960.0062*/n

aThe values are the mean 6 SEM of the average granger causality values of each rats (paired sample t test).
bTotal number of the compared groups.
* p,0.05 compared to the granger causality values at the WMBS in the original dimensionality or the reduced dimensionality.
** p,0.01 compared to the granger causality values at the WMBS in the original dimensionality or the reduced dimensionality.
np,0.05 compared to the granger causality values of the original dimensionality at the WMBS or at the WMS.
nnp,0.01 compared to the granger causality values of the original dimensionality at the WMBS or at the WMS.
doi:10.1371/journal.pone.0091481.t001
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occurred at the WMS. In addition, significantly differences were

found between the measure values of the WMS and the WMBS

for all the rats in the reduced dimensionality. However, in the

original space, statistical differences were only found in 5 rats,

though the levels of the measures were higher at the WMBS for all

the 6 rats. These results, taking together, suggested that combining

the application of the PCA and the GCCA might provide an

effective way to investigate the functional connectivity mechanism

during the WM tasks in low dimensional space.

Dynamic variations of functional connectivity during the
incorrect WM tasks

To investigate the variations of the functional network during

the incorrectly performed working memory tasks, we calculated

the values of the features during the incorrect trials (20 trials for all

6 rats).

As shown in Fig. 4A, the connections between the neurons

varied during the incorrect working memory tasks. However,

comparisons among different period feature values showed

significant differences neither in the original dimensionality (one

way ANOVA, GC: F (5,114) = 1.46, P = 0.21; E: F (5,114) = 0.16,

P = 0.98; CD: F (5,114) = 0.14, P = 0.98) nor the reduced dimen-

sionality (one way ANOVA, GCPC: F (5,114) = 1.54, P = 0.18; EPC:

F (5,114) = 1.61, P = 0.16; CDPC: F (5,114) = 1.43, P = 0.22). Of note,

in contrast with the variations of the network features in the

correct trials, the feature values presented decreased tendencies

during the incorrect trials. The feature levels of the correct (80

trials) and the incorrect (20 trials) working memory tasks were

further compared. Results showed that there were no significant

differences between the feature values at the WMBS in the original

dimensionality (Fig. 4B, t test, P.0.05). However, in the reduced

dimensionality, the feature values were much higher at the WMBS

in the incorrect trials (Fig. 4C, t test, * P,0.05). Besides, the

feature values were significantly higher in the correct trials 2 s or/

and 1 s pre the tripping point both in the original and the reduced

dimensionality (Fig. 4B and C, t test, * P,0.05, ** P,0.01).

Therefore, during the error trials, no statistical differences were

found between the network features of different task durations.

Besides, the feature levels were much higher (1 s or 2 s pre the

tripping point) in the correct trials.

Of note, Granger causality inferences are only valid if an

MVAR model adequately captured the correlation structure in the

data. The model could be considered as captured the data

adequately if the sum-square-error was more than 0.3, the

consistency value was above 80% and the value of Durbin -

Watson statistic test was larger than 1.0, simultaneously [15]. In

this study, these prerequisites had been satisfied.

In addition, the maximum values of the functional connectivity

(GC), the effect of the parallel information transfer (E) and the

global coordination (CD) appeared at A3 (Rat 1, Rat 4 and Rat 5)

and A2 (Rat 2, Rat 3 and Rat 6), which corresponds to 2 s or 1 s

before the tripping time. Because the tripping time of the infrared

Figure 3. Dynamic variations of global efficiency and causal density both in the original and in the reduced dimensionality during
working memory tasks, 6 rats respectively. (A) The dynamic variations of global efficiency in the original dimensionality (dashed lines) and the
reduced dimensionality (solid lines) during the WM tasks, 6 rats respectively (mean6SEM). (B) The dynamic variations of causal density in the original
dimensionality (dashed lines) and the reduced dimensionality (solid lines) during WM tasks, 6 rats respectively (mean6SEM). The red triangle
indicates the tripping time of the infrared sensor in the Y-maze. (C) Comparisons of global efficiency (mean6SEM). The values of the global efficiency
in both the original and the reduced dimensionality are significantly higher at the WMS than at the WMBS. The E values in the original dimensionality
at the WMS are significantly lower than the EPC values in the reduced dimensionality (80 trials for 6 rat, paired sample t-test, ** P,0.01). No significant
difference is found at the WMBS (80 trials for 6 rat, paired sample t-test, P.0.05). (D) Comparisons of causal density (mean6SEM). The values of the
causal density in both the original and the reduced dimensionality are significantly higher at the WMS than at the WMBS. The CD values in the
original dimensionality at the WMS are significantly lower than the CDPC values in the reduced dimensionality (80 trials for 6 rat, paired sample t-test,
** P,0.01). No significant difference is found at the WMBS (80 trials for 6 rat, paired sample t-test, P.0.05).
doi:10.1371/journal.pone.0091481.g003

Table 2. Comparisons of the global efficiency of original and
reduced dimensionality at WMBS and WMSa.

Nb Original dimensionality Reduced dimensionality

WMBS WMS WMBS WMS

Rat 1 26 0.4760.04 0.5560.04 0.3660.07 0.6360.04**/n

Rat 2 20 0.2160.04 0.3360.03* 0.2260.06 0.5060.05**/nn

Rat 3 28 0.3360.04 0.4660.04** 0.2660.06 0.5560.04**/n

Rat 4 36 0.2060.03 0.4360.03** 0.2660.04n 0.5160.04**/nn

Rat 5 28 0.3060.07 0.5560.07** 0.3560.08 0.6660.09**/n

Rat 6 22 0.2960.03 0.4360.04* 0.2460.07 0.5460.07*

aThe values are the mean 6 SEM of the global efficiency values of each rats
(paired sample t test).
bTotal number of the compared groups.
* p,0.05 compared to the global efficiency values at the WMBS in the original
dimensionality or the reduced dimensionality.
** p,0.01 compared to the global efficiency values at the WMBS in the original
dimensionality or the reduced dimensionality.
np,0.05 compared to the global efficiency values of the original
dimensionality at the WMBS or at the WMS.
nnp,0.01 compared to the global efficiency values of the original
dimensionality at the WMBS or at the WMS.
doi:10.1371/journal.pone.0091481.t002

Table 3. Comparisons of the causal density of original and
reduced dimensionality at WMBS and WMSa.

Nb Original dimensionality Reduced dimensionality

WMBS WMS WMBS WMS

Rat 1 26 0.2460.02 0.3560.02** 0.2260.05 0.4160.03**/n

Rat 2 20 0.1460.02 0.1960.03 0.1860.04 0.3460.04**/nn

Rat 3 28 0.1960.02 0.2760.02** 0.1760.04 0.4060.04**/nn

Rat 4 36 0.1660.02 0.2560.02** 0.2060.02n 0.3560.03**/nn

Rat 5 28 0.2460.05 0.4360.07* 0.2760.06 0.5560.08**/nn

Rat 6 22 0.1860.01 0.2360.02* 0.2360.04 0.3660.05*/n

aThe values are the mean 6 SEM of the causal density values of each rats
(paired sample t test).
bTotal number of the compared groups.
* p,0.05 compared to the causal density values at the WMBS in the original
dimensionality or the reduced dimensionality.
** p,0.01 compared to the causal density values at the WMBS in the original
dimensionality or the reduced dimensionality.
np,0.05 compared to the causal density values of the original dimensionality
at the WMBS or at the WMS.
nnp,0.01 compared to the causal density values of the original dimensionality
at the WMBS or at the WMS.
doi:10.1371/journal.pone.0091481.t003

Functional Connectivity among Spikes

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e91481



sensor marked the ‘choice run’ behavioral events during the WM

tasks, the results suggested the strongest connectivity occurred at

WMS happened 2 s or 1 s before the ‘choice’ behavioral events.

PCA is a powerful technique to extract components from all

neurons based on the covariance structure. Investigations have

demonstrated that the combination of the PCA and the GCCA

might provide an effective way to study the brain effective

connectivity [33]. Though the application of PCA will lead to a

little loss of the information contained in original data, study has

proved these will not affect the following connectivity analysis [34].

Besides, research suggests that the more efficient representation of

the sequences generated by PCA indicates the more efficient

information of relationship can be obtained in Granger causality

analysis [24]. In the study, we use the PCA to extract the principle

components in order to investigate whether the features of the

functional connectivity during the WM tasks could be effectively

described in a low dimension space. Results showed that the

changing trends of GCPC, EPC and CDPC were the same as GC, E

and CD (Fig. 2B, C, Fig. 3B and C). Besides, the maximum of

GCPC, EPC and CDPC occurred at A3 (Rat 1, Rat 4 and Rat 5) or

A2 (Rat 2, Rat 3 and Rat 6), which also just before the ‘choice’

behavioral events.

In order to detect the effectiveness of describing the functional

connectivity by using PCA, the features obtained from the network

constructed by the continuous spikes (GC, E and CD) and from

the network constructed by the PCs (GCPC, EPC and CDPC) were

further compared, correspondingly. The values of GCPC were

significantly higher than the GC values at the WMBS (Fig. 2C).

Meanwhile, no significant differences were found between the

values of global efficiency (Fig. 3C) at the WMBS, as well as the

causal density (Fig. 3D). Of note, additional investigations showed

that statistical differences between the feature values of the original

and the reduced dimensionality could only be found in some of the

rats at the WMBS (Table 1, 2 and 3). By contrast, the features of

Figure 4. Dynamic variations of granger causality, global efficiency and causal density during the incorrect tasks in both the
original and the reduced dimensionality (20 trials for 6 rats). The data are divided into six 1 s length bins from the beginning to the end (4 s
pre and 2 s post the tripping time). The red triangle indicates the tripping time of the infrared sensor in the Y-maze. (A) Dynamic variations of the
granger causality matrixes during an incorrect trial of rat 1. (B) The variations of granger causality (left), global efficiency (middle) and causal density
(right) during the incorrect tasks (20 trials for 6 rats) and the correct trials (80 trials for 6 rats) in the original dimensionality. The feature values in the
correct trials are significantly higher 2 s (GC, E, CD) and 1 s (E, CD) pre the tripping time than those in the incorrect trials (t test, * P,0.05, ** P,0.01).
No statistical difference is found at the WMBS between the incorrect and the correct trials (t test, P.0.05). (C) The variations of granger causality (left),
global efficiency (middle) and causal density (right) during the incorrect tasks (20 trials for 6 rats) and the correct trials (80 trials for 6 rats) in the
reduced dimensionality. The feature values in the correct trials are significantly higher 2 s (GCPC, EPC, CDPC) and 1 s (GCPC, EPC, CDPC) pre the tripping
time than those in the incorrect trials (t test, ** P,0.01). In addition, the feature values were significantly higher at the WMBS in the incorrect trials (t
test, * P,0.05).
doi:10.1371/journal.pone.0091481.g004
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the PCs constructed network were significantly lager than those of

the continuous spikes constructed network at the WMS (Table 1, 2

and 3).

These findings suggested that PCA was an effective way to

describe the features of the functional connectivity during WM,

though the connections among the PCs were not identical to the

underlying physical mechanism of the connections between the

neurons. The approach of combining the PCA and the GCCA

could be an effective way to investigate the mechanism of brain

cognitive function by analyzing the features of the functional

connectivity during WM.
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