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Abstract

Introduction: Many studies examine gene expression data that has been obtained under the influence of multiple factors,
such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead
to effect modification and confounding. Higher order linear regression models can account for these effects. We present a
new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This
experiment investigates the influence of three variable factors: the genetic background of the mice from which the
macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-
treatment with interferon-c.

Results: We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new
practical tool for model selection complementary to global testing. It visually compares the size and significance of effect
estimates between two nested models. Using this methodology we were able to select the most appropriate model by
keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify
the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from
the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA
target genes that appear to be co-regulated with MHC class II genes.

Conclusions: We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order
interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model
selection in higher order linear regression models should generally be performed for the analysis of multi-factorial
microarray data.
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Introduction

Gene expression is the result of a multitude of different

mechanisms whose effects do not simply add up, but show

complex interactions. The analysis of the biological processes

underlying gene expression requires appropriate methodological

approaches. This paper presents a simple tool to tackle these

challenges using as an example the transcriptional response of the

genetic background of mice upon interferon-gamma (IFN-c)

stimulation.

Traditionally, the analysis of transcriptional regulation has been

performed on the level of individual TF-target pairs. The advent of

genome-wide transcription measurements provided a comprehen-

sive look at signaling processes. The most widely used standard for

the analysis of transcription data is linear regression as

implemented, e.g., in the Limma package [1]. Linear regression

quantifies gene by gene the individual effect that certain factors,

so-called covariates, have on gene expression. Examples for

covariates are gene deletion, environmental stress, or cytokine

stimulation. Usually, it is assumed that the covariates contribute

independently, e.g., additively, to the expression outcome. This

leads to a so-called first order linear regression model, in which

one effect (main effect) is calculated for each covariate. While this

type of analysis has been extremely successful, it often constitutes

an unjustified simplification and the assumption of additivity is

often violated. The most extreme examples of such violations are

so-called synthetic lethal interactions, where gene deficiency of one

or the other gene has no or mild effects, but the double gene

deficiency is lethal [2,3]. Non-additivity can also occur at the level

of gene expression. There, higher order interaction and effect
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modification typically arise from cooperation or competition of

transcription factors at their target genes [4]. But how can we

reliably identify such a complex interplay between covariates for

many genes at a time? Classical methods such as adjusted R2,

Akaike information criterion (AIC) and more complex strategies

like global tests such as GlobalAncova [5] or Goeman’s global test

[6] estimate the effect of a covariate over all genes simultaneously

and give a global and abstract assessment on which factors

determine the observed expression profiles. Linear models can be

enhanced by the incorporation of interaction terms, whose

magnitude and significance tell us if and how gene expression

deviates from additivity of the main effects as assumed by the first

order linear model. A non-zero interaction effect indicates that a

simple additive model is inappropriate. Interactions can be

classified into one of the following groups (Figure 1) [7]: an

interaction effect between two covariates is called alleviating

(aggravating, neutral), if the effect of the joint action of the

covariates is weaker than (stronger than, identical to) the sum of

the individual effects of these covariates. Interaction models have

been used to study the effect of combined gene-deficiencies [8,9]

and for the analysis of drug-drug and drug-gene interactions [10–

12].

We introduce the eruption plot, an intuitive visualization of

strength and significance of interaction effects on a genome-wide

scale for the purpose of unraveling non-additive biological

mechanisms. For the illustration and testing of our methodology

we chose a model data set based on a three-factorial design. In this

transcriptomics study the effects of an in vitro infection of mouse

macrophages from the genetic background C57BL/6 and BALB/

c were compared [13]. Two different strains of the intracellular

bacterium Y. enterocolitica were applied to the macrophage cultures

in the presence or absence of the activating cytokine IFN-c
(Table 1 for all used combinations of factors). The three factors

under consideration are therefore genetic background of the mice

H (C57BL/6 or BALB/c), cytokine stimulation C (application of

IFN-c or no stimulation), and Y. enterocolitica infection I (control

strain WA(pTTS,p60) or infectious strain WA(pYV)). We suggest

the eruption plot as a complement to tests like GlobalAncova for

the inclusion of significant interactions between covariates. In our

application, we demonstrate its relevance for the detection of effect

modification and confounding in linear models.

Materials and Methods

Eruption Plots
Volcano plots are commonly used for visualizing the effect size

(e.g. expression changes) and significance (p-values of a related

statistical test) of a certain variable A, if these were estimated for a

large number of items (e.g. genes). Each item is represented by a

dot showing effect size on the x-axis (e.g., expression fold on a log2

scale) and its significance on the y-axis (p-value on a log10 scale)

[14]. The eruption plot is essentially an overlay of two volcano

plots of the variable A that were generated from identical data, but

using two different models (Figure 2). Every item is represented by

an arrow, which connects the dot representing this item in the

volcano plot of Model 1 with the corresponding dot in the volcano

plot of Model 2. Let us consider how eruption plots can be used for

the detection of (ir)relevant covariates, confounding, effect

modification (interaction), and for model selection.

Let Model 1 be a linear regression model of the dependent

(continuous) variable Y versus the covariate A, for short Y,A. A

variable B that has additional effects independent of A increases

Figure 1. Interaction effects calculated by multiple linear regression. This schematic visualization of second order linear regression models
interaction effects. The diagram of the linear regression model includes two main covariates (strain H and stimulation with C) and their interaction
covariate H:C. The main covariates can assume two values (H: C57BL/6 or BALB/c; C: IFN-c stimulation or no stimulation). The arrows indicate the
estimated effects b. The pink and turquoise arrows reflect the aggravating or alleviating interaction effects as deviations from the additive model. A
second order linear model can dissect the effects arising from two perturbations and their interaction by looking at the magnitude and significance of
its regression covariates. Most importantly, the interaction covariate can indicate either an alleviating (weaker than expected from the single
intervention effects) or aggravating (stronger than expected) interaction. The linear model includes two main covariates H and C and their interaction
covariate G:C.
doi:10.1371/journal.pone.0091840.g001
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the explanatory power of the extended Model 2, Y,A+B in

comparison to Model 1, i.e., it substantially reduces the

unexplained variance (the ‘‘noise’’). Thus, the significance of a

potential effect in A will be increased, while the effect size estimate

of A will remain virtually unaffected. The eruption plot of variable

A will therefore show a long arrow pointing approximately straight

upward (Figure 2, Figure S1A). If on the other hand B has no

additional effect, it will merely, by chance, diminish the effect size

estimate of A, and thereby also its significance. In this case, the

direction of the arrow in the eruption plot of A points slightly

downward and slightly towards the y-axis (Figure 2, Figure S1 B).

Confounding describes the spurious association between the

dependent and an independent variable [15] which is caused by

an association of a hidden variable (the confounder) with both the

dependent and the independent variable. Additionally, the

confounder must not lie on a causal path from the independent

to the dependent variable. An example is given in Figure S2A,

where Y is independent of A, however both Y and A are positively

correlated to a confounding variable B (see File S1). Here,

including B in Model 2, Y,A+B, will remove all effects that were

spuriously attributed to A in Model 1. Hence, the eruption plot of

A will show an arrow whose head is located close to the origin.

Effect modification (also called interaction) occurs if the effects

of the discrete (group) variables A and B are not additive, i.e., the

B-group-specific estimates of A differ from one another signifi-

cantly [16]. The eruption plot can also be used to detect

interactions (Figure S2B) by comparing the main effects of A

and B in Model 1, Y,A+B with those in Model 2 containing an

interaction term, Y,A+B+A:B. In presence of effect modification

the interaction variable A:B increases explanatory power. By what

has been said above, the eruption plots of A respectively B will

therefore point straight upwards.

In combination with global tests such as GlobalAncova,

eruption plots reveal if an additional variable has explanatory

power or not and thus can be used to decide between a larger and

a smaller model. A variable without additional explanatory power

is omitted from the model, giving preference to the sparser model

(Occam’s razor [17]). The iterative removal (inclusion) of a

variable then leads to a backward (forward) model selection

procedure.

Global test
GlobalAncova offers a general methodology to study how the

expression structure within a group of genes is influenced by

design aspects of the study (experiment). Gene-wise linear models

are used to formalize the relationship of gene expression with

phenotypic or genomic covariates. An ANOVA-based sum of

squares summarizes the individual gene-wise linear models to a

group statement. This provides the name: GlobalAncova. A

permutation test and an asymptotic distribution of the test statistics

under the null hypothesis are available to calculate P-values.

GlobalAncova considers a broad range of designs by exploiting the

full scope of linear model theory. We applied GlobalAncova [5] to

compare two linear regression models (using 1000 permutations

for p-value calculation). The results of the global test were

compared with the results of the eruption plot.

Experimental setup
The published transcriptomics data were generated from bone

marrow-derived mouse macrophages [13]. It comprises three

different experimental factors (Table S1): H, the genetic

background of mouse macrophages which is either BALB/c or

C57BL/6; C, an indicator of the presence or absence of IFN-c
cytokine stimulation; I, the bacterial strain used for Y. enterocolitica

infection (virulent strain WA(pYV), control strain WA(pTTS, p60,

or mock, no infection). The non-virulent strain was engineered in

[18] as a derivative of WA(pYV). Table 1 comprises the number of

Table 1. Experimental setup.

Genetic background IFN-c stimulation Control strain WA(pTTS, pP60) Virulent strain WA(pYV) Mock

C57BL/6 No 3 3 3

BALB/c No 3 3 4

C57BL/6 IFN-c 3 3 3

BALB/c IFN-c 3 3 4

The table summarizes the number of replicates per group. The microarray data comprises genetic background of the mice (C57BL/6 and BALB/c), IFN-c stimulation, and
two Y. enterocolitica strains. The Y. enterocolitica strain WA(pTTS, p60) is a non-virulent bacterial strain and WA(pYV) is a virulent strain. The non-virulent strain has been
engineered as a derivative of WA(pYV). Mock has no infection and serves as a control.
doi:10.1371/journal.pone.0091840.t001

Figure 2. Schematic visualization for the interpretation of the
eruption plot. The results of two models can be compared in the
eruption plot. The arrows of an eruption plot can have different sizes
and directions. This scheme helps to interpret the arrow. Effect size is
displayed along the x-axis and the significance on the y-axis. The red
area shows the region of interest (ROI).
doi:10.1371/journal.pone.0091840.g002
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replicates and shows the combinations of the experimental factors

in each microarray experiment. The microarray data is accessible

under GEO accession no. GSE 9273 (Table S1 for the single

experiments).

Cluster, pathway, and transcription factor binding site
analysis

For every gene the estimated effect of the interaction covariate

H:C was taken to select for either an alleviating or aggravating

effect. If the effect of H:C had the same sign as the effect of H and

of C, this interaction was interpreted aggravating; if the effect of

H:C had the opposite sign of the common sign of H and of C, this

interaction was considered alleviating. The estimated effects of the

three covariates H and C and their interaction H:C were subjected

to hierarchical clustering and displayed in a heatmap. Only genes

showing a significant global effect (F-test ,0.05 after FDR

correction and at least one of the covariates having an effect

estimate of +/21.5) were subjected to the hierarchical cluster

analysis. The dendrogram was taken to order the p-values in a

heatmap. Each of the three covariates (H, C, H:C) can either be

positive or negative, resulting in eight different clusters. These

gene clusters provided the template for further gene ontology

analysis. The clusters were subjected to the DAVID bioinformatics

suite [19]. The genes for the transcription factor bindings site

(TFBS) analysis were further filtered for a minimum absolute effect

size of 0.5 for the covariate H:C. For the TFBS analysis the

promoter sequence (2500 to +100 bp relative to the transcrip-

tional start site according to the ENSEMBL database) was

assembled using the Regulatory Sequence Analysis Tool [20].

For each cluster over-represented TFBSs were predicted using the

Transcription Factor Matrix Explorer [21]. The putative TFBSs

were taken from the TRANSFAC database [22]. All settings and

thresholds were used as in [23].

Results and Discussion

Using eruption plots we assessed the benefit of comparing linear

models by eliminating covariates. In our case study we focused on

the genome-wide transcriptional response of different mouse

breeds to infection with Yersinia in the presence or absence of

IFN-c stimulation (Methods).

Interaction models improve understanding of
transcriptional effects

C57BL/6 mice are able to control and eliminate infection with

Yersinia. In contrast, BALB/c mice without IFN-c stimulation

succumb to the infection. Resistance against Yersinia was shown to

correlate with strong induction of IFN-c early during infection in

BALB/c mice [24,25]. Hence, with respect to survival there is an

interaction between IFN-c and the genetic background. The

transcriptional response underlying this interaction and difference

in IFN-c production remains unclear. We therefore investigated

interactions on a molecular (the transcriptional) level with a linear

model (Model 1, Table 2). We verified that H:C contributed

significantly to explaining our data, as can be read off the volcano

plot of the H:C effects [26] (Figure S3).

Selecting between nested models using eruption plots
We successively reduced Model 1 by third-order interaction

H:I:C (Model 2), then by the interactions of I with H and C (Model

2), and finally by the infection variable I (Model 4). The

hierarchical order of the models allowed us to apply a backward

model selection strategy. We started with Model 1 and moved

down the hierarchy, successively eliminating covariates as long as

we observed an improvement according to our selection criterion.

Our main objective was the effect of the inclusion/exclusion of

covariates on the estimates of the interactions H:C. We used the

eruption plot to compare the interaction covariate H:C between

two models.

We tested if the third order term H:I:C disrupted the effect of

the interaction covariate. Therefore, we went one step down in the

model hierarchy and compared by the eruption plot the results of

Model 1 and Model 2 (Figure 3A). The arrows start at Model 1

and end in Model 2. The direction of the arrows showed increased

statistical power and a change of effect sizes of Model 2. We also

quantified the p-values of the interaction covariate H:C of both

models by a density plot (Figure 3B). This plot showed higher

significance of Model 2. This is also supported by the results of

GlobalAncova (p-value = 0.27).

Assessing explanatory power
We next tested the explanatory power of the second order

interaction terms on the interaction covariate. We went one step

down in the model hierarchy (Table 2) to set up Model 3. This

model included the four main covariates and the interaction

covariate H:C. We tested if we gain or lose explanatory power by

eliminating the second order terms by comparing the results of

Model 2 to the results of Model 3 (Figure S5A). We observed no

significant difference in statistical power and effect size between

both models. The density plot supports these results. Accordingly,

the results of GlobalAncova showed no high significance of the

second order covariates (p-value = 0.02). Hence, the inclusion of

additional second order terms does not improve the model fit. Due

to general model selection criteria (Occam’s razor) preferring the

sparser model we chose Model 3 for upstream analysis.

Our data set also included samples subjected to infection with

different Y. enterocolitica strains (Table 1). Even though we were

mainly interested in differential co-expression of the genetic

background and IFN-c, we included the data of all microarrays

into our analysis. We tested the additional explanatory power of

the covariate I. Model 4 contains only two main covariates H and

C and their interaction covariate. The arrows in the eruption plot

point from Model 3 to the Model 4 (Figure S5B). The direction of

the arrows indicated a small change in p-values. The effect sizes

did not change between both models. The density plot stressed the

difference between Model 3 and Model 4 and showed an

increased statistical power of Model 3. The global test shows the

same result, the effects of the two main covariates are significant

(p-value = 0,00). Therefore, we gained statistical power by

including I as a covariate. Consequently, Model 3 was chosen

for further analysis and biological interpretation.

Table 2. Linear regression models.

Model name Linear regression model

Model 1 Y,H+C+H:C+I+H:I+C:I+H:I:C

Model 2 Y,H+C+H:C+I+H:I+C:I

Model 3 Y,H+C+H:C+I

Model 4 Y,H+C+H:C

The table shows the linear regression models, which are tested on the van Erp
dataset. The linear regression models hold the variables genetic background G,
IFN-c stimulation C, and the bacterial strain I. The dependent variable Y is given
by gene expression matrix. The fat letters symbolize the additional variables in
the model.
doi:10.1371/journal.pone.0091840.t002
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Interaction effects in another double-factorial dataset
In order to show that interaction effects are common in

microarray experiments with a multi-factorial design, we analyzed

an additional multi-factorial data set (GEO accession

no. GSE22094). The gene expression data (Y) comprises wild

type, Fancc-deficient, Fancg-deficient (Fanc and Fancg are nuclear

core complex proteins), and double deficient (Fancc/Fancg) mouse

macrophages hereafter described by two binary covariates FC
(Fancc-deficient) and FH (Fancg-deficient). We applied two linear

regression models: Y,FC+FH+FC:FH and U,FC+FH. We

compared the results of the two models by means of an eruption

plot of FC (Figure S4A) and FH (Figure S4B). The arrows in

Figure 4A show changes in p-value and in effect size in favor of the

first model. This observation is supported by a GlobalAncova test

(p-value = 0.01). The eruption plot and the p-value density plot in

Figure 4B are partially inconsistent with this. They show changes

in favor of the second model. However, the number of genes

supporting the second model is substantially smaller. Thus, the

interaction covariate reveals effect modification.

Interaction analysis depicts functional gene clusters
After selecting the appropriate linear regression model for our

data, we aimed to analyze the genes showing interaction effects

between H and C. We subjected the main effects H and C along

with their interaction effect of Model 3 to a hierarchical cluster

analysis (Methods) and displayed the result in a heatmap (Figure 4).

The first column showed the main effects of the covariate H that

are conceived as the difference between the predicted gene

expression within the macrophages from BALB/c and C57BL/6

background in absence of IFN-c stimulation. Likewise, the second

column C presents the differences of IFN-c stimulation in genes

within cells of BALB/c background. The genes were selected by

the threshold F-test p-value ,0.05 after FDR correction and at

least one of the covariates having effect estimate of +/21.5. In the

third column aggravating and alleviating interaction effects are

indicated in pink and turquoise. The p-values of the genes are

plotted accordingly to the sequence of the effect estimate heatmap.

The values range from blue to white. The higher the values of the

effect estimates are the more significant are the p-values.

Each of the three covariates of this analysis had either positive

or negative values and thus a gene could fall into one of eight

different clusters. We looked at functional characteristics of the

eight clusters by an enrichment analysis of Gene Ontology (GO)

terms (biological process) and KEGG pathways (Figure S6). The

most significant (p, = 0.01) categories are displayed as bars, sorted

from the bottom (most significant) to the top. Similar terms are

represented by the most significant and specific term. Table S2

shows a complete list of functional categories. The majority of

clusters showed expectedly immune response as the most enriched

term. Interestingly, cluster 3 shows cell migration and motility of cells.

Response to wounding and defense response was referred to cluster 7.

Cluster 6 showed antigen processing and presentation via MHC class II

(Figure 4B). We chose this cluster, which includes the antigen-

presenting MHC class II genes Aa, Ab, and Eb, for further

assessment by in silico promoter analysis by TRANSFAC

(Figure 4C). This analysis revealed a number of genes, which

shared NFY binding sites and the CAAT box. Other genes of

cluster 6 such as TRIM30d, IIGP1, and CXCL9 are involved in

the IFN-c -induced immune response. Also the apoptotic regulator

Cflar, known also as Flip, is located in this cluster. In our TFBS

analysis of these genes we extracted pairs of sites that were found

to be enriched in their promoter sequences. We identified NFY

binding sites as well as the CAAT boxes as co-localized TFBS in

close proximity to the transcriptional start of the genes in this

cluster. It seems therefore likely that the transcription factors that

bind to this site are responsible for the similar behavior in our

expression analysis and thus their placement in cluster 6. This

notion is further supported by the fact that an NFY binding site is

part of the MHC class II enhanceosome. It seems possible that

Figure 3. Eruption plot. A: Effect size is displayed along the x-axis at log2 scale and the y-axis shows the negative log10 p-value. The vertical blue
lines indicate 1.5 fold up and down-regulation and the horizontal blue line indicates a significance of 0.05 after Bonferroni adjustment. They bound
the regions of biological interest (ROI), which are characterized by a sufficiently high effect, and a sufficiently low p-value. I.e., biologically interesting
effects are found in the top left and the top right segment of the plot. Each gene is represented by an arrow comparing the effect size and
significance estimate of a covariate (the interaction covariate H:C in this case) between Model 1 (arrow tail) to Model 2 (arrow head). The details of
Models 1 and 2 are given in Table 2. Black and grey arrows represent genes completely contained within ROI and excluded completely from ROI,
respectively. Red and blue arrows represent genes that are located within ROI solely in Model 1 and Model 2, respectively. B: Density plot of the p-
values of Model 1 (red) and Model 2 (green). The dashed lines indicate the median of each density.
doi:10.1371/journal.pone.0091840.g003
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some of these genes may also constitute C2TA targets and are

therefore co-regulated with MHC class II.

Interaction analysis discovers biologically relevant
features

To show the biological value of the interaction analysis we chose

the gene H2-Ea, which is an MHC class II gene that is under

control of IFN-c through the C2TA transactivator protein. H2-Ea

is an active gene in BALB/c; its product forming the surface-

expressed peptide-presenting H2-E heterodimer. It is a pseudo-

gene (H2-Ea-ps) in C57BL/6 due to a large genomic deletion that

includes the core promoter and the transcription start site. Thus,

in mRNA of macrophages of C57BL/6 background generally no

transcript of H2-Ea-ps is found. Therefore, this gene can be seen

as a genetic example for cluster 8, an alleviating interaction: a)

transcript levels in C57BL/6 should be vastly reduced in

comparison to BALB/c; b) IFN-c should not have any influence

on expression of the pseudogene in C57BL/6 macrophages. A

detailed analysis of the expression pattern of this gene is shown by

a scatter plot in Figure S7. In our expression analysis we observed

that gene expression of H2-Ea in BALB/c is up-regulated upon

IFN-c stimulation. Further, we found low gene expression of H2-

Ea in C57BL/6, with and without IFN-c stimulation. Expectedly,

inclusion of the bacterial covariates I1, and I2 does not deliver

additional explanatory power (Figure S7).

Figure 4. Cluster and pathway analysis. A: the effect estimates of Model 3 were subjected to a hierarchical cluster analysis. Genes are displayed
in the rows, which showed a significant global effect (F-test p-value ,0.05 after FDR correction and at least one of the covariates having +/21.5 fold
change). The three columns are the covariates G, C, and G:C. The column strain shows differences between C57BL/6 and BALB/c, up-regulation
shown in red and down-regulation shown in green. The column C shows in red up-regulation in BALB/c and in green down-regulation upon IFN-c
stimulation. The third column helps to distinguish alleviating and aggravating effects. Aggravating effects are represented in pink and alleviating
effects in turquoise. P-values are plotted separately in a heatmap. The order of the genes is given by the effect estimate clustering. P-values are given
in 2log10 scale and start from 0 displayed in colors ranging from blue to white. B: The results of a pathway enrichment analysis of cluster 6 as a bar
plot. The direction of regulation of the genes of cluster 6 is indicated by the color bar. Gene Ontology ‘Biological Process’ terms and KEGG pathway
categories (p,0.01) are sorted from bottom (most significant) to top. To reduce redundancy, similar terms are represented by the most significant
and specific term. For complete list of functional annotations see Table S2. The right side shows the results of a TFBS analysis of this gene cluster. The
two most significantly represented TFBS are given by the name of the transcription factor, the motif, and the p-value.
doi:10.1371/journal.pone.0091840.g004
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While Ea is a special case due to its nature as a pseudogene in

one of the analyzed genetic background of the mice, the MHC

class II genes that are functional (Eb, Aa, and Ab), as discussed

above, were allocated into clusters 6. The MHC class II genes

were found to be up-regulated in C57BL/6 and IFN-c. Their

interaction effect presented as alleviating since the expression in

IFN-c treated macrophages of C57BL/6 mice was lower than

expected from the effect sum of the two single covariates. It has

been known for a long time that the regulation of MHC II

expression is almost exclusively dependent on the binding of the

transcriptional transactivator C2TA to a constitutive, yet inactive,

enhanceosome complex including RFX-AP, -ANK, -5, CREB,

and NF-Y [27]. Therefore it would appear logical to find C2TA in

the same clusters as the MHC class II genes (Table S2, cluster 6).

Yet, unexpectedly we find C2TA in clusters 2 and 4, which show

both an increase of C2TA mRNA by IFN-c and an aggravating

interaction effect. A closer analysis of the data reveals however,

that this outcome is result of a very small expression change

between the genetic background of the mice. Since both probe sets

for C2TA recognize the same (and main) exon of C2TA this result

can only be explained by noise. Thus, we can assume C2TA

expression to be basically unchanged between the strains, with a

strong effect seen by IFN-c. This strong effect is more pronounced

in C57BL/6 mice than in BALB/c mice. The effect of IFN-c-

mediated C2TA up-regulation is reflected in the expression

increase of the classical functional MHC class II genes Eb, Aa,

and Ab as well. While this is expected by the biology of expression

control of MHC class II genes, it is interesting to note that the

interaction effect was calculated as alleviating. It can be postulated

that the IFN-c and thus in turn C2TA-mediated increase in the

transcription of the MCH class II genes runs into the ceiling of

possible transcription at that locus. Thus, the expression difference

found between the strains in steady-state cannot translate into an

effect in the presence of IFN-c.

Conclusions

In this study higher order linear regression models were applied

to microarray expression data in order to identify interactions

between multiple treatments and their effects on the transcrip-

tional response. The aim of our study was to establish the eruption

plot as a valuable auxiliary tool for model selection in a hierarchy

of models. While GlobalAncova can be used to assess a difference

in fit between two models, giving a p-value to test the null

hypothesis of equal fit, GlobalAncova does not provide any insight

how the different covariates contribute to the fit. The eruption plot

was developed to visually select the best model for the given, high-

dimensional data. The prevailing directions of the arrows an

eruption plot can uncover effect modification, confounding, as well

as an improvement of explanatory power of a covariate. Applying

this methodology to microarray data from different mouse breeds

that were infected with different agents and received INF-c
stimulation or not, we show that second order effects are present in

the data set. We conclude that higher order interaction effects

should always be considered when linear regression models are

applied to multi-factorial microarray data. The biologically

interesting interaction effects of mouse breed and INF-c stimula-

tion were qualitatively interpreted and classified into neutral,

alleviating, or aggravating effects. A clustering of genes based on

their effect sizes resulted in eight gene clusters which were

subjected to a pathway and TFBS analysis. We found one gene

cluster built up of putative C2TA targets which are co-regulated

with MHC class II genes, indicating the biological significance of

our approach.

Supporting Information

Figure S1 Model selection by the eruption plot. A: The

response U is the sum of the covariates A and B and a noise term.

The eruption plot compares the effect estimates for covariate A in

a linear model containing only covariate A (arrow shaft) with that

of the correct linear model (arrow head). B: The response Y is the

sum of A and a noise term. The eruption plot compares the effect

estimates for covariate A in the correct model (arrow shaft) with a

linear model including A and B (arrow head).

(TIF)

Figure S2 Examples for confounding and effect modifi-
cation. A: the upper plot shows a scatter plot of noisily increasing

data. The arrow of the lower plot shows the comparison of Y,A+B

to model Y,A. B: the upper plot shows a scatter plot of noisy data.

The arrow of the lower plot shows the comparison of Y,A+B to

model Y,A+B+A:B.

(TIF)

Figure S3 Volcano plot of Model 4. Linear regression model

includes estimation of the effects as given in Model 4 (Table 2).

The volcano plot displays the effects of interaction covariate G:C.

The log2 fold change is displayed on the x-axis and the negative

log10 p-value is displayed on the y-axis.

(TIF)

Figure S4 Eruption plot of a double-factorial dataset.
The data U comprises two single gene-deletions Fancc FC and

Fancg FG one double gene-deletion of Fancc and Fancg. A: the

left plot shows an eruption plot, comparing covariate FC of the

two models: U,FC+FG+FC:FG (shaft) U,FC+FG (head). The

right plot shows the corresponding histogram of the p-values from

covariate FC of both models. B: the left plot shows the eruption

plot of the same models but comparing covariate FG. On the right

is the corresponding histogram of the p-values from covariate FG
of both models.

(TIF)

Figure S5 Eruption plots. Effect size is displayed along the x-

axis at log2 scale and the y-axis shows the negative log10 p-value.

Grey arrows show not significant effects of both models and black

arrows significant effects of both models (BH corrected p-values

,0.05 and fold change .+/20.5). The blue lines starting from

the x-axis are at +/20.5 and the line starting at the y-axis is at

2log10 (0.05). The model details are given in Table 2. A: Eruption

plot from Model 2 to Model 3: the arrows start at the results from

Model 2 and end at the results of Model 3. The arrows are short,

so there are no big differences between both models. The density

plot next to the eruption plot shows the density of the p-values

from both models. B: Eruption plot from Model 3 to Model 4: The

arrows point from the results of Model 3 to the results of Model 4.

The density plot next to the eruption plot shows the density of the

p-values from both models.

(TIF)

Figure S6 Gene ontology and TFBS analysis. The gene

clusters shown in Figure 4 were subjected to a gene ontology and

TFBS analysis. Each cluster is build up by genes having effect sizes

of the three covariates G, C, and G:C. The column strain shows

differences between C57BL/6 and BALB/c, up-regulation shown

in red and down-regulation shown in green. The column C shows

in red up-regulation upon IFN-c, stimulation in BALB/c and in

green down-regulation upon C stimulation. The third column

helps to distinguish alleviating and aggravating effects. Pink color

reflects aggravating effects and in turquoise alleviating effects.

Functional characteristics of the eight clusters are defined by an

Regression Models on Transcription Data
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enrichment analysis of Gene Ontology (GO) terms (biological

process) and KEGG pathways. The left side shows a list of the

functional categories belonging to Cluster 1–8. The right side

shows the results of the TFBS analysis. The two most significantly

represented TFBS are given for each gene cluster along with the

name of the transcription factor, the motif, and the p-value.

(TIF)

Figure S7 Scatter plot of gene expression data. The

scatter plot shows the gene expression data from BALB/c mice

and C57BL/6 mice of gene H2-Ea-ps. The form of the data points

reflects if the probe was treated with an infection I and the color

indicates if the probe was stimulated by C.

(TIF)

File S1 R code to reproduce the eruption plots to
simulate confounding.
(R)

Table S1 Design matrix.

(XLSX)

Table S2 Functional characteristics of cluster 1–8.

(XLSX)
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