Skip to main content
. 2013 Jul;93(3):1019–1137. doi: 10.1152/physrev.00028.2012

Table 2.

Effects of phosphoinositides on ion channels and transporters

Channel Ins Lipid Regulator Reference Nos.
Voltage-gated Ca2+ channels
    T-type channels ??? No reports
    L-type channels PtdIns(4,5)P2 (+) 1038, 1490, 1491, 1815
    N-type channels PtdIns(4,5)P2 (+) 487, 865
    P/Q-type channels PtdIns(4,5)P2(±) 1302, 1735
TRP channels
    TrpL (Drosophila)* PtdIns(4,5)P2(−) 410, but (+) 662
    TrpC1 PtdIns(4,5)P2(+) 1331
    TrpC3 PtdIns(4,5)P2(+) 883
    TrpC4a PtdIns(4,5)P2(−) 1180
    TrpC5 PtdIns(4,5)P2(±) 782, 1573
    TrpC6 PtdIns(4,5)P2(+) 883, but (−) 27, 742
    TrpC7 PtdIns(4,5)P2(+) 883, but (−) 742
    TrpM2 PtdIns(4,5)P2(+) 1568
    TrpM4 PtdIns(4,5)P2(+) 1137, 1811
    TrpM5 PtdIns(4,5)P2(+) 923, 1284
    TrpM6 PtdIns(4,5)P2(+) 1745
    TrpM7 PtdIns(4,5)P2(+) 1312, but see 850, 1515
    TrpM8 PtdIns(4,5)P2(+) 319, 922, 1284
    TrpV1** PtdIns(4,5)P2, PtdIns4P (±) 257, 559, 951, 1587
    TrpV2 PtdIns(4,5)P2(+) 1033
    TrpV3 PtdIns(4,5)P2(−) 365
    TrpV5 PtdIns(4,5)P2(+) 869, 1284
    TrpV6 PtdIns(4,5)P2(+) 1556, 1789
    TrpA1 PtdIns(4,5)P2(−) 783, but (+) 761
    TrpP2 PtdIns(4,5)P2(−) 961
Cyclic nucleotide-gated channels
    Hyperpolarization-activated HCN2 channels PtdIns(4,5)P2(+) 1220, 1826
    Cyclic nucleotide-gated (CNG) PtdIns(3,4,5)P3 (−) 177, 181, 1724, 1793
ICRAC/Orai1 channels PtdIns4P ???(+) 184, 820
Potassium channels
    ROMK1 (Kir1.1) PtdIns(4,5)P2(+) 661, 915
    IRKs (Kir2.x) PtdIns(4,5)P2(+) 807, 1281, 1283, 1795
    GIRK (Kir3.x) PtdIns(4,5)P2(+) 661, 807, 1495
    KATP (Kir6.x) PtdIns(4,5)P2, PtdIns(3,4,5)P3, PtdIns(3,4)P2 423, 616, 1283
    Two pore PtdIns(4,5)P2(+) 937, but see 245, 911
    Voltage-gated (Kv1.3) PtdIns(4,5)P2, PtdIns(3,4,5)P3 (−) 1012
    M-type (KCNQ2,3,5) PtdIns(4,5)P2(+) 422, 1488, 1794
    BK (Ca2+ activated) PtdIns(4,5)P2(+) 1598
Ion exchangers and transporters
    Na+/Ca2+ exchanger PtdIns(4,5)P2(+) 58, 588, 616, 1763
    Na+/H+ exchanger PtdIns(4,5)P2(+) 12
    Na+/HCO3 cotransporter PtdIns(4,5)P2(+) 1734
    Epithelial sodium channel (ENaC) PtdIns(4,5)P2, PtdIns(3,4,5)P3 (+) 960, 1229, 1230, 1564, 1787
    CFTR PtdIns(4,5)P2(+) 619
Ion pumps
    PM Ca2+-ATPase PtdIns(4,5)P2(+) 249, 438, 1132, 1192
Ligand-gated channels
    P2X1 PtdIns(4,5)P2(+) 126
    P2X2 PtdInsP, PtdIns(4,5)P2(+) 474
    P2X2/3 PtdIns(4,5)P2, PtdIns(3,4,5)P3 (+) 1074
    P2X4 PtdIns(4,5)P2, PtdIns(3,4,5)P3 (+) 126
    P2X5 PtdIns(4,5)P2(+) 127
    P2X7 PtdIns(4,5)P2(+) 127, 291
    NMDA PtdIns(4,5)P2 (+) 977
    NR1/NR2 PtdIns(4,5)P2 (+) 1037
*

The Drosophila TrpL channels are stimulated after PLC activation, but the signal responsible for the stimulation is highly debated. DAG and polyunsaturated fatty acids (PUFA) have been the most accepted stimuli (573), and in some cases it is speculated that the PtdIns(4,5)P2 decrease and proton accumulation contributes to their activation (662). However, several data indicate that these channels still need PtdIns(4,5)P2 for optimal activity.

**

TrpV1 channels also called vanilloid receptors that respond to heat and capsaicin (224) are strongly sensitized by bradykinin and other PLC activators, and it was suggested that PtdIns(4,5)P2 breakdown relieves a tonic inhibition of these channels by PtdIns(4,5)P2 (257). However, the lipid regulation of these channels appears to be more complicated as they need phosphoinositides for their activity, and the effects of PtdIns(4,5)P2 also depend on the extent of stimulation by capsaicin (951, 1286, 1587) or association with other proteins (728, 780) and PtdIns4P may also support their activities (559, 951).