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Abstract Two architectures of intermittent control are
compared and contrasted in the context of the single inverted
pendulum model often used for describing standing in
humans. The architectures are similar insofar as they use
periods of open-loop control punctuated by switching events
when crossing a switching surface to keep the system state
trajectories close to trajectories leading to equilibrium. The
architectures differ in two significant ways. Firstly, in one
case, the open-loop control trajectory is generated by a
system-matched hold, and in the other case, the open-loop
control signal is zero. Secondly, prediction is used in one
case but not the other. The former difference is examined
in this paper. The zero control alternative leads to peri-
odic oscillations associated with limit cycles; whereas the
system-matched control alternative gives trajectories (includ-
ing homoclinic orbits) which contain the equilibrium point
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and do not have oscillatory behaviour. Despite this difference
in behaviour, it is further shown that behaviour can appear
similar when either the system is perturbed by additive noise
or the system-matched trajectory generation is perturbed. The
purpose of the research is to come to a common approach
for understanding the theoretical properties of the two alter-
natives with the twin aims of choosing which provides the
best explanation of current experimental data (which may
not, by itself, distinguish beween the two alternatives) and
suggesting future experiments to distinguish beween the two
alternatives.

Keywords Intermittent control · Predictive control ·
Human balancing · Quiet standing

1 Introduction

Human control strategies in the context of quiet standing have
been investigated over many years by a number of authors.
Early work, for example (Peterka 2002; Lakie et al. 2003;
Bottaro et al. 2005; Loram et al. 2005), was based on a single
inverted pendulum, single-input model of the system. More
recently, it has been shown (Pinter et al. 2008; Günther et
al. 2009, 2011, 2012) that a multiple segment multiple-input
model is required to model unconstrained quiet standing, and
this clearly has implications for the corresponding human
control system. Nevertheless, the single inverted pendulum
model remains of interest for two reasons: as a model of
human standing where all joints except the ankle joint are
physically constrained and as a simpler single-input system
on which to test theories of human control. However, any
such controller must also be scalable to the multiple segment
multiple-input case.
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Even in the ankle only model, many muscles are involved
and the controlled system thus has many inputs. The theo-
retical and experimental elucidation of muscle synergies has
also been the subject of many papers including Safavynia
and Ting (2012) and Alessandro et al. (2013). Again, regard-
ing the transformation of a single control signal to multiple
muscle synergies as part of the inverted pendulum model is a
useful simplification for testing theories, and this is the sim-
plification used in this paper. But again, any such controller
must be scalable to account for multiple system inputs and
consequent muscle synergies.

Any real system is nonlinear, but in principle can be lin-
earised in two stages. In the context of standing, these are
determining an equilibrium joint configuration [for example
using the approach of Alexandrov et al. (2005)] and then lin-
earising the system dynamics about that equilibrium.1 In the
single inverted pendulum case, these two steps are simple but
any controller design must extend to handle the more general
case. Analysis of the robustness of a controller based on such
linearisation is also an issue.

Rather than address more general issues, this paper
focuses on human control systems rather than the correspond-
ing dynamics and, in particular, compares two competing
control theories. To make this comparison as transparent as
possible, the simple inverted pendulum model is used as a
dynamical system model. However, the potential scalability
of the control theories to the more general case of a multi-
ple inverted pendulum model is a key consideration that is
addressed in this paper.

A general theory of human control systems must include
continuous as well as intermittent processes which incor-
porate discrete switching. Continuous systems integrat-
ing somatosensory, visual and vestibular sensory input are
well represented by the spinal and transcortical reflex-
ive pathways: these systems provide high-bandwidth feed-
back at short latency using feedback parameters which
are preselected and open to modulation by multiple brain
regions (Brooks 1986; Rothwell 1994; Pruszynski and Scott
2012). Switched systems selecting between multiple pos-
sibilities for movement are well represented by central
selection mechanisms within the basal ganglia, prefrontal
cortex and premotor cortex: these systems provide low-
bandwidth feedback at longer latency using parameters
selected online (Redgrave et al. 1999; Cisek and Kalaska
2005; Dux et al. 2006). Both continuous and switched sys-
tems have a primitive basis which extends through verte-
brates (Redgrave et al. 1999), invertebrates (Brembs 2011)
and even to the level of individual cells (Balazsi et al. 2011).
In the context of human standing, continuous reflexive sys-

1 It is also possible to linearise about non-equilibrium trajectories (Hunt
and Johansen 1997), although linearisations around equilibria lead to
simpler physical interpretation.

tems, incorporating muscle spindle and Golgi tendon organ
feedback, provide tonic equilibrium joint moments through
tonic stretch reflexes (Sherrington 1947) and provide par-
tial dynamic stabilisation of the unstable mechanical sys-
tem (Marsden et al. 1981; Fitzpatrick et al. 1996; Loram
and Lakie 2002a,b). By itself, the continuous control sys-
tem provides inadequate regulation (Marsden et al. 1981):
accurate regulation requires a combined system of higher-
bandwidth continuous control and lower-bandwidth control.
In particular, it is suggested that intermittent control provides
the lower-bandwidth central executive control driving higher-
bandwidth, continuous feedback inner control loops (Karniel
2013; van de Kamp et al. 2013a). This paper focuses on the
intermittent component of the combined control scheme.

Intermittent control has a long history in the physiological
literature including (Craik 1947a,b; Vince 1948; Navas and
Stark 1968; Neilson et al. 1988; Miall et al. 1993a; Bhushan
and Shadmehr 1999; Loram and Lakie 2002a; Loram et
al. 2011; Gawthrop et al. 2011). Intermittent control has
also appeared in various forms in the engineering literature
including (Ronco et al. 1999; Zhivoglyadov and Middleton
2003; Montestruque and Antsaklis 2003; Insperger 2006;
Astrom 2008; Gawthrop and Wang 2007, 2009; Gawthrop
et al. 2012).

There is a strong experimental evidence that some human
control systems are intermittent (Craik 1947a; Vince 1948;
Navas and Stark 1968; Bottaro et al. 2005; Loram et al. 2012;
van de Kamp et al. 2013b), and it has been suggested that
this intermittency arises in the central nervous system (CNS)
(van de Kamp et al. 2013a). For this reason, computational
models of intermittent control are important and, as discussed
below, a number of versions with various characteristics have
appeared in the literature.

Intermittent control action may be initiated at regular
intervals determined by a clock, or at irregular intervals
determined by events; an event is typically triggered by an
error signal crossing a threshold. Clock-driven control is dis-
cussed by Neilson et al. (1988) and Gawthrop and Wang
(2007). Event-driven control is used by Bottaro et al. (2005,
2008); Astrom (2008); Asai et al. (2009); Gawthrop and
Wang (2009) and Kowalczyk et al. (2012). Gawthrop et
al. (2011, §4) discuss event-driven control but with a lower
limit Δmin on the time interval between events; this gives a
range of behaviours including continuous, timed and event-
driven control. Thus, for example, threshold-based event-
driven control becomes effectively clock driven with interval
Δmin if the threshold is small compared to errors caused by
relatively large disturbances. There is evidence that human
control systems are, in fact, event driven (Navas and Stark
1968; Loram et al. 2012). For this reason, only event-driven
control is considered in the rest of this paper.

State feedback control requires that the current system
state (for example angular position and velocity of an inverted
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pendulum) is available for feedback. In contrast, output feed-
back requires a measurement of the system output (for exam-
ple angular position of an inverted pendulum). The classical
approach for output feedback in a state space context (Kwak-
ernaak and Sivan 1972, Goodwin et al. 2001) is to use an
observer (or the optimal version, a Kalman filter) to deduce
the state from the system output. Of the biologically orien-
tated methods considered here, that of Gawthrop et al. (2011)
[based on Gawthrop and Wang (2007, 2009)] explicitly uses
an observer; Bottaro et al. (2008); Asai et al. (2009) and
Kowalczyk et al. (2012) do not. Because of the separation
principle (Kwakernaak and Sivan 1972, §5.3) and (Goodwin
et al. 2001, §18.4), this difference is not important and so,
for simplicity, state feedback will be considered for the rest
of this paper.

As well as introducing the concept of intermittency into
the theory of physiological control, Craik (1947a) also
emphasised that intermittent corrections were “ballistic” in
the sense that “they have a predetermined time pattern and
are ‘triggered off’ as a whole”. Ballistic control, whereby a
sequence of open-loop control signal trajectories is applied
to the system, is used by Neilson et al. (1988); Hanneton
et al. (1997); Loram and Lakie (2002a); Montestruque and
Antsaklis (2003); Bottaro et al. (2005, 2008); Astrom (2008);
Gawthrop and Wang (2009) and Gawthrop et al. (2011). As
the term “ballistic” has a different connotation in the area of
dynamical systems, this approach will be referred to as open-
loop trajectory (OLT), rather than ballistic, control in the
sequel. In contrast, switched feedback control, where a feed-
back controller is switched on and off, is used by Insperger
(2006); Stepan and Insperger (2006); Asai et al. (2009) and
Kowalczyk et al. (2012). In the off phase, the control signal
is zero. This will be referred to as zero control (ZC) in the
sequel.

Human control systems are associated with time delays.
In engineering terms, it is well known that a predictor can be
used to overcome time delay (Smith 1959; Kleinman 1969;
Gawthrop 1982). As discussed by many authors (Kleinman
et al. 1970; Baron et al. 1970; McRuer 1980; Miall et al.
1993b; Wolpert et al. 1998; Bhushan and Shadmehr 1999;
Van Der Kooij et al. 2001; Gawthrop et al. 2008, 2009, 2011;
Loram et al. 2012), it is plausible that physiological control
systems have built in model-based prediction. Gawthrop et
al. (2011) base their intermittent controller on an underlying
predictive design; Bottaro et al. (2008); Asai et al. (2009) and
Kowalczyk et al. (2012) do not.

A number of computational theories of the intermittent
control of quiet standing have been proposed including those
of Bottaro et al. (2005, 2008); Asai et al. (2009); Gawthrop et
al. (2011); Kowalczyk et al. (2012) and Suzuki et al. (2012).
The papers of Bottaro et al. (2005, 2008) are precursors to
the paper of Asai et al. (2009) and the paper of Suzuki et al.
(2012) is a multivariable extension. The paper (Kowalczyk

et al. 2012) analyses an approach closely related to (Asai et
al. 2009).

The two papers (Gawthrop et al. 2011) and (Asai et al.
2009) use the term “intermittent control” in the title of the
papers; this paper focuses on the similarities and differ-
ences of the theories exemplified by these two papers. Sec-
tion 2 investigates differences in the control architectures,
and Sect. 3 investigates differences in the control behaviour
as a prerequisite for experimental testing of the two alterna-
tive hypotheses. Section 4 draws together some conclusions
and makes suggestions for future work.

2 Architectures

There are a number of differences between the alternative
approaches discussed in the Introduction; this section focuses
on one of these: OLT (open-loop trajectory control) versus
ZC (zero control). For this reason, this paper uses an archi-
tecture based on that of Gawthrop et al. (2011) but with both
OLT and ZC versions. The controlled system is modelled by:

ẋ(t) = Ax(t) + Bu(t) − Bdd(t) (1)

where x (n×1), u (nu ×1) and d (nu ×1) are the system state,
control input and input disturbance, respectively. A (n × n),
B (n × nu) and Bd (n × nu) define the system dynamics. n is
the system order, and nu is the number of system inputs. In
the special case of the simple inverted pendulum, n = 2 and
nu = 1; but the method is applicable in the general case.

The intermittent control model of Gawthrop et al. (2011)
is based on an underlying continuous-time control design. In
particular, it is based on the standard linear-quadratic (LQ)
control theory to be found in textbooks (Kwakernaak and
Sivan 1972; Goodwin et al. 2001). LQ control has been used
to model human control systems by a number of authors
including Kleinman et al. (1970), Kuo (1995), Kuo (2005)
and Todorov and Jordan (2002). The dual theory of optimal
observers has been used for sensor integration by Van Der
Kooij et al. (1999) and Kuo (2005); but, as mentioned in
the Introduction, observers are not pursued further in this
paper.

Human control systems contain time delays. For this rea-
son, Kleinman (1969) extended the LQ theory to include
a pure time delay Δ in the controller and designed the
corresponding optimal state predictor giving a prediction
x̂ p(t − Δ) of the system state x(t) at time t based on mea-
surements taken up to time t − Δ.

The model of intermittency presented by Gawthrop et al.
(2011) is based on the LQ control design extended to include
time delays by Kleinman (1969). In the context of intermit-
tent control, the predictor is particularly simple (Gawthrop
et al. 2011, §3.3) and the prediction error ep can be written
as:
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ep(t) = x̂ p(t − Δ) − x(t) (2)

and ep is independent of x . The continuous-time design
method underlying the intermittent control is:

u(t) = −kx̂ p(t − Δ) (3)

where k (nu × n) is the state feedback matrix resulting from
the LQ design.

Combining Eqs. (1), (2) and (3) gives the closed-loop sys-
tem:

ẋ(t) = Acx(t) − Bkep(t) − Bdd(t) (4)

where Ac = A − Bk (5)

The LQ design method ensures that the closed-loop system
matrix Ac has eigenvalues with strictly negative real parts
and thus corresponds to a stable system (Kwakernaak and
Sivan 1972; Goodwin et al. 2001).

The ideal system state trajectory xc(t) is an n × 1 vector
function of time t starting at time t = ti . It is defined in terms
of the closed-loop system matrix Ac and the state x(ti ) at the
time ti as:

ẋc(t) = Acxc(t) for t > ti (6)

xc(ti ) = x(ti ) (7)

In particular, the ideal system state trajectory is a trajectory
leading from the current state at t = ti to the origin:

xc(t) = eAcτ x(ti ) for t ≥ ti (8)

where τ = t − ti (9)

the n components of xc(t) are thus determined, through Ac,
by the system dynamics of Eq. (1) and the feedback gain k
(3) arising from the LQ design, and by the system state x(ti ).

The intermittent equivalent replaces the control (3) by:

ẋh(t) = Acxh(t) for t �= ti (10)

xh(ti ) = x̂ p(ti − Δ) (11)

u(t) = −kxh(t) (12)

where Ac is defined by Eq. (5) and x̂ p(ti −Δ) is the delayed
prediction of the system state at the i th intermittent time point
ti . As discussed by Gawthrop et al. (2011), this prediction is
only required at the intermittent time points, and thus, the
corresponding predictor is simpler than that required for the
continuous-time design of Kleinman (1969). Equation (11)
means that the hold state xh is reinitialised to the continuous-
time predicted state at time t = ti . Equations (10) and (11)
form the system-matched hold.

It is illuminating to rewrite these equations in error form
by defining the hold error x̃h as the difference between the
hold state xh and the actual state x and the state error x̃ as
the difference between the actual state x and the ideal state
xc. That is

x̃h(t) = xh(t) − x(t) (13)

x̃(t) = x(t) − xc(t) (14)

Using Eqs. (13) and (14) and rearranging Eqs. (1) and (10)
gives: 2

˙̃X (t) =
[

Ac −Bk
0n×n A

]
x̃(t) −

[
Bd

−Bd

]
d(t) (15)

where X̃(t) =
[

x̃(t)
x̃h(t)

]
(16)

and X̃(ti ) =
[

0
ep(ti )

]
(17)

When t �= ti , Eq. (15) implies the open-loop trajectories
of X and therefore of x . In the ideal case that d(t) = 0 and
ep(ti ) = 0, the state error x̃ = x̃h = 0 and the open- and
closed-loop trajectories are the same, and the system state
trajectory x(t) is equal to the ideal state trajectory xc(t) of
Eq. (8). In this ideal case, therefore, the state error x̃h = 0
and the intermittent control creates a stable manifold defined
by (8) leading from the current state to the origin.

In the non-ideal case, x̃h �= 0. In this case, x̃h is generated
via the open-loop matrix A, and in the case of an inverted
pendulum, A corresponds to an unstable system. Moreover,
x̃h �= 0 drives x̃(t) away from zero via the coupling term
−Bk in Eq. (15). For this reason, the hold error x̃h is used
to generate the events ti when a new sample is taken and the
error states of Eq. (15) are reset. In particular, the quadratic
switching function is defined by

x̃ T
h (t)Qt x̃h = q2

t (18)

where Qt is a positive semi-definite matrix. In the special case
that x (and thus x̃h) has only two components, two examples
of Q are

Qt =
[

1 0
0 1

]
(Circle: x2

1 + x2
2 = q2

t ) (19)

Qt =
[

0 0
0 1

]
(Straight lines: x2 = ±qt ) (20)

As mentioned in the Introduction, the ZC strategy replaces
the system-matched control trajectory u(t) generated by
Eq. (10)–(12) by u(t) = 0 when the system state crosses
the switching surface (18). To provide a direct comparison
between the two approaches, the equivalent of ZC is created
within the OLT framework simply by initialising the hold
state xh to zero in Eq. (11) instead of to the predicted state
x̂ p(ti − Δ). This has the following consequences:

2 Throughout the paper, the symbol 0 is the n × 1 zero vector and 0n×n
is the n × n zero square matrix.
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u(t) = 0 from (12) (21)

x̃h(t) = −x(t) from (13) (22)

ẋ(t) = Ax(t) + Bdd(t) from (1) & (21) (23)

Equation (21) is the required controller behaviour. Equa-
tion (22) means that the relative switching surface of Eq. (18)
becomes the absolute switching surface given by

xT (t)Qt x(t) = q2
t (24)

Equation (23) means that the system behaviour corresponds
to the (unstable) open-loop system driven by the disturbance
d and determined by the matrix A. Thus, the behaviour inside
the switching surface is the same as that of the controllers of
Asai et al. (2009) and Kowalczyk et al. (2012).

Outside the switching surface, Asai et al. (2009) and
Kowalczyk et al. (2012) use a delayed PD (proportional +
derivative) controller; here, we use an intermittent controller
based on state feedback. However, in the examples, the sys-
tem state comprises the system angular position and velocity,
and thus, state feedback (3) is equivalent to delayed PD con-
trol. As discussed by Gawthrop et al. (2011), the correspond-
ing intermittent controller approximates the underlying pre-
dictive continuous controller. Thus, the essential difference
between the delayed PD and the controller of this section is
the use of prediction. As discussed in the Introduction, it can
be argued that humans do, in fact, use predictive control.

3 Behaviour

It is natural to analyse control systems incorporating switch-
ing in terms of switching surfaces and trajectories in state
space. In the the case of second order systems, such analy-
sis is represented by the well-known phase plane. Asai et
al. (2009) make the crucial insight that switched control can
be usefully designed to drive the system state towards stable
manifolds3 (curves in the state space which lead to the ori-
gin) rather than towards the origin itself. Moreover, switched
control of unstable systems can lead to homoclinic orbits3

(closed curves in the state space which include an equilib-
rium point). As pointed out by Kowalczyk et al. (2012), these
can arise when system parameters are suitably perturbed. But
the notion of homoclinic orbits can also be explicitly applied
to control system design in the context of unstable systems
(Lozano et al. 2000). We believe that the twin concepts of sta-
ble manifolds and homoclinic orbits are key to understanding
intermittent control in the context of the human standing; for
this reason, the approach of Gawthrop et al. (2011) is rein-
terpreted in this paper in the light of these twin concepts.

Similarly, switched control of unstable systems can lead
to limit cycles3 (closed curves in the state space which do

3 See Appendix 1.

(a)

(b)

Fig. 1 Initial condition response (d(t) = 0). The system state tra-
jectories starting from three initial conditions are shown. a All three
trajectories asymptotically approach the equilibrium at the origin and
the grey trajectory is part of a homoclinic orbit. b All three trajectories
asymptotically approach a stable limit cycle

not include an equilibrium point and correspond to nonlinear
oscillations); and such limit cycles are indeed predicted by
Bottaro et al. (2005, 2008), Asai et al. (2009) and Kowalczyk
et al. (2012). However, as explained in this paper, using open-
loop trajectory (OLT), rather than zero (ZC), control leads to
homoclinic orbits rather than limit cycles.

A key idea in the paper of Asai et al. (2009) is the notion of
stable manifolds3. In particular, the stable manifold is deter-
mined by the eigenvalues of the open-loop system matrix A
(1). As discussed in Sect. 2, the switching surface is designed
to drive the system state towards this stable manifold.

This section illustrates the fact that the use of the system-
matched hold based OLT control trajectories of Sect. 2 leads
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(a)

(b)

Fig. 2 Disturbance response. The initial condition is zero, and the sys-
tem is perturbed by a disturbance d(t) with standard deviation 0.1. a
The system state trajectory is a perturbed version of the homoclinic orbit
of Fig. 1a and it’s negative. b The system state trajectory is a perturbed
version of the limit cycle of Fig. 1b. The system state trajectories using
OLT and ZC are superficially similar

to system state trajectories which, in the absence of distur-
bances, correspond to the stable system determined by the
eigenvalues of the closed-loop system matrix Ac (4).

Figure 1 shows the initial condition response (with d(t) =
0) of the two versions of the intermittent controller (OLT and
ZC) using the particular parameters of Appendix 2, and the
switching surface defined by Eq. (20). Figure 1a shows the
two system states: velocity x1 = v and position x2 = y;
the hold state component of X is not shown. Three system
state trajectories are shown where the system state x is ini-
tialised at 3 initial values [0 0.5]T , [0.5 0]T (black lines)
and [0.01 0.01]T (grey line). In the case of OLT, the hold

4
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20

0.9 0.95 1 1.05 1.1

T
l (

se
c)

α

Fig. 3 Limit cycle periods Tl resulting from perturbing the open-loop
trajectory controller (OLT) with parameter α (25). α = 1 corresponds
to no perturbation, and the resultant homoclinic orbit has infinite period;
small perturbations give long-period limit cycles

state is initialised to zero. In both cases, the unstable open-
loop system drives the state onto the switching boundary.
The resultant OLT signal drives the state exactly to the ori-
gin where it remains; in contrast, the ZC approach leads to
each trajectory approaching a stable limit cycle. As discussed
by Asai et al. (2009), the switching surface can be specially
tailored to improve the performance in the ZC case.

In this particular case, and when using OLT, the initial
value [0.01 0.01]T lies on a homoclinic orbit formed from
the unstable curve x1 = x2 and the system state trajectory
leading back to the origin. There is a similar homoclinic orbit
for negative values of x1 and x2.

The addition of system noise will prevent the system
exactly reaching equilibrium. Figure 2 corresponds to Fig. 1
except that a single system state trajectory starting at zero
is plotted, and the system is perturbed by noise d with stan-
dard deviation 0.1.4 Although Fig. 2a appears to correspond
to the sort of limit cycles discussed by Asai et al. (2009)
and Kowalczyk et al. (2012), there are no limit cycles: Fig-
ure 2a is a perturbed version of the homoclinic orbit shown in
grey in Fig. 1a. The system state trajectories using OLT and
ZC are superficially similar; however, the OLT trajectory is
aperiodic, whereas the ZC trajectory becomes more periodic
as the variance of the disturbance d(t) is reduced. This is
another aspect of the masquerading property of intermittent
control discussed by Gawthrop et al. (2011).

Similarly, the perturbation of system or controller para-
meters will prevent the system exactly reaching equilibrium.
Figure 3 examines the case where the hold (11) matrix Ac

(5) is replaced by:

Ac = A − αBk (25)

4 The noise was generated using a random-phase multisine (Pintelon
and Schoukens 2001) with a flat spectrum between 0.1 and 5 Hz.
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α = 1 thus corresponds to the unperturbed case (5). In par-
ticular, the period T of the limit cycle for OLT is plotted
against an (unmodelled) system gain factor α. No modelling
error (α = 1) gives an homoclinic orbit; other cases give a
limit cycle which, for small perturbations has a long period.
Loosely speaking, the ideal case (α = 1) corresponds to an
infinite-period limit cycle.

4 Conclusion

Two types of intermittent control have been compared using
the single inverted pendulum model of Loram et al. (2005):
the ZC (zero control) approach formulated by Asai et al.
(2009) and the OLT (open-loop trajectory control) approach
formulated by Gawthrop et al. (2011).

The two approaches have much in common. In particu-
lar, there is an underlying continuous-time design method;
there is a switching surface designed to prevent system state
trajectories deviating too far from a stable manifold, and the
control is open-loop when inside the switching surface.

There are three key algorithmic differences. The OLT
approach uses:

1. a nonzero (though open loop) control inside the switch-
ing surface generated by the system-matched hold which,
in the absence of disturbances, drives the system state
towards equilibrium,

2. a switching surface based on the relative distance between
the current state and the current stable manifold and

3. a state predictor.

The ZC approach uses:

1. a zero control inside the switching surface,
2. a switching surface based on the current state and
3. no predictor.

There are a number of ways of comparing the two
approaches.

Generality: The OLT approach has been suggested as a gen-
eral model for human control systems; the ZC model just
for balance. Thus, the OLT approach potentially has more
explanatory power.

Algorithmic complexity: On the one hand, the OLT approach
(Gawthrop et al. 2011) is a more complex algorithm than
the ZC approach (Asai et al. 2009). On the other hand,
the OLT approach is simple insofar as it does not switch
between two different algorithms at the switching sur-
face; it merely chooses when to take the next sample.
Moreover, the predictor is particularly simple in the inter-
mittent case.

Consequences: The ZC approach inevitably leads to limit
cycles; the OLT approach does not (except where due to
incorrect internal models) but rather gives homoclinic
orbits. We conjecture that limit cycles in humans are
associated with poor training and incorrect internal mod-
els, and therefore, a theory of learning is needed to fully
explain behaviour; this is the subject of current research.

Scalability: The ZC approach has been extended to the dou-
ble inverted pendulum case by Suzuki et al. (2012); it
is not clear how the ZC approach scales to more gen-
eral situations. The OLT approach is based on a linear-
quadratic (LQ) optimal control design which, as dis-
cussed in Sect. 2, is valid for arbitrary state dimension
(N > 2) and arbitrary control dimension (nu > 1). It
is thus potentially scalable to more complex situations
including multiple inverted pendulum and multiple mus-
cle synergy models. More research is needed to develop
the intermittent control approach to handle the detailed
dynamical models arising from the mechanical and mus-
culature properties of human stance.

Experimental: As Fig. 2 indicates, it is hard to distinguish
between the two approaches using only measurements of
sway angle and angular velocity. However, using mea-
surements of muscle activity, it is known zero control is
not observed in quiet standing; in particular, it is excep-
tionally rare for all ankle crossing muscles to be simulta-
neously switched off (Di Giulio et al. 2009). This effec-
tively rules out the ZC alternative.
The challenge is to devise experiments on human stand-
ing which do lead to clear differences in the sway data.
For example, it is known that double stimulus experi-
ments distinguish between event-driven intermittent con-
trol (Loram et al. 2012), timed-intermittent control and
continuous control. It is possible that a similar form or
perturbation of quiet standing could distinguish between
OLT and ZC.
Further, as discussed by Gawthrop et al. (2011, Section
4.2 & Appendix B), when an experiment involves smooth
(that is bandlimited) disturbances, the OLT approach
masquerades as a continuous-time controller; and this
explains why the seminal experiments of Kleinman et
al. (1970) could be explained by a continuous-time con-
troller. In contrast, the ZC controller does not have
the masquerading property and thus cannot explain the
experimental results of Kleinman et al. (1970).

To summarise, we believe that the OLT approach has the theo-
retical advantages of generality, performance and scalablility
and that this by itself is sufficient to make OLT the favoured
model. Although we have shown that it would be hard to dis-
tinguish the two approaches by analysing sway data in the
context of quiet standing, we suggest that additional evidence
from muscle activation data does support OLT rather than
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ZC. We further suggest that experiments involving suitable
perturbation signals could, in principle, distinguish between
the two approaches.
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Appendix 1: Definition of terms

This appendix provides intuitive definitions of some mathe-
matical terms used in this paper. For more precise definitions,
see, for example, Hirsch et al. (2012).

Consider state space containing the state X (t) of a dynam-
ical system.

Equilibrium point: X0 is an equilibrium point if when
X (t0) = X0, X (t) = X0 for all t > t0. That is, if the
system is at equilibrium, it stays there.

Stable manifold: An open curve in the state space which
includes an equilibrium point X0 and such that if X (t0)
lies on the curve it implies that X (t) stays on the curve
for all t > t0 and that lim

t→∞ X (t) = X0. That is, if the

current state lies on a stable manifold, it will move along
that manifold to the equilibrium point.

Limit cycle: A closed curve in the state space such that if
X (t0) lies on the curve it implies that X (t) stays on the
curve for all t > t0 and that there is a period T such that
X (t + T ) = X (t). In other words, on a limit cycle curve,
the system state travels around that curve with a fixed
period.

Homoclinic orbit: A closed curve in the state space such that
if X (t0) lies on the curve, it implies that X (t) stays on the
curve for all t > t0 and the curve includes an unstable
equilibrium X0. In other words, a homoclinic orbit is
like a limit cycle except that the system comes to rest at
X = X0 taking an infinite time to do so. It is different
from a stable manifold in that it is a closed curve which
starts and finishes at an equilibrium X = X0.

Appendix 2: Simulation parameters

A =
[

0 1
1 0

]
, B =

[
1
0

]
, C = [

0 1
]

(26)

k = [
2.94 4.32

]
(27)

Δ = 0.18 (28)

In the case of Fig. 2, the system is perturbed by a multisine
sequence with variance 0.1.
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