
Exactly Computing the Parsimony Scores

on Phylogenetic Networks Using Dynamic Programming

LAVANYA KANNAN and WARD C. WHEELER

ABSTRACT

Scoring a given phylogenetic network is the first step that is required in searching for the best
evolutionary framework for a given dataset. Using the principle of maximum parsimony, we can
score phylogenetic networks based on the minimum number of state changes across a subset of
edges of the network for each character that are required for a given set of characters to realize the
input states at the leaves of the networks. Two such subsets of edges of networks are interesting in
light of studying evolutionary histories of datasets: (i) the set of all edges of the network, and (ii) the
set of all edges of a spanning tree that minimizes the score. The problems of finding the parsimony
scores under these two criteria define slightly different mathematical problems that are both NP-
hard. In this article, we show that both problems, with scores generalized to adding substitution
costs between states on the endpoints of the edges, can be solved exactly using dynamic pro-
gramming. We show that our algorithms require O(mpk) storage at each vertex (per character),
where k is the number of states the character can take, p is the number of reticulate vertices in the
network, m = k for the problem with edge set (i), and m = 2 for the problem with edge set (ii). This
establishes an O(nmpk2) algorithm for both the problems (n is the number of leaves in the network),
which are extensions of Sankoff’s algorithm for finding the parsimony scores for phylogenetic
trees. We will discuss improvements in the complexities and show that for phylogenetic networks
whose underlying undirected graphs have disjoint cycles, the storage at each vertex can be reduced
to O(mk), thus making the algorithm polynomial for this class of networks. We will present some
properties of the two approaches and guidance on choosing between the criteria, as well as traverse
through the network space using either of the definitions. We show that our methodology provides
an effective means to study a wide variety of datasets.

Key words: biology and genetics, network problems, network topology, phylogenetic network,

problem complexity.

1. INTRODUCTION

Phylogenetic networks, modeled here as rooted directed acyclic graphs (DAGs), are general-

izations of phylogenetic trees that are used to model evolutionary events when they are not only passed

via vertical descent, but also events such as horizontal exchanges that cannot be modeled on a tree. Several

different methods and criteria have been used to construct phylogenetic trees. The parsimony method is one

Division of Invertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History,
New York, New York.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 21, Number 4, 2014

Mary Ann Liebert, Inc.

Pp. 303–319

DOI: 10.1089/cmb.2013.0134

303

such approach for inferring phylogenies, whose general idea was given in Edwards and Cavalli-Sforza

(1963); Farris (1966); and Kluge and Farris (1969). Scoring a given phylogenetic network is the first step that

is required in searching for the best evolutionary framework for a given dataset. In this article, we use

maximum parsimony to score phylogenetic networks based on the minimum number of state changes across a

subset of edges of the network for each character that are required for a given set of characters to realize the

input states at the leaves of the networks. Two different criteria that extend the notion of parsimony to

phylogenetic networks have been defined (Fisher et al., 2013; Kannan and Wheeler, 2012; Nakhleh et al.,

2005), and attempts have been made to solve them. In this article, we will present a dynamic programming

approach, generalizing Sankoff’s algorithm for phylogenetic trees (Sankoff, 1975; Sankoff and Rousseau,

1975), to solve the maximum parsimony problems in networks.

1.1. Maximum parsimony on networks

Unifying the definitions given earlier in the literature, we state that maximum parsimony is a network

inference method that scores networks based on the minimum number of state changes across a subset of

edges of the network for each character that are required for a given set of characters to realize the input

states at the leaves of the networks. If the entire edge set of the network is chosen, then the network score

assumes all possible changes that can take place in the network for the character. If the edges are those of a

spanning tree of the network that minimizes the parsimony score, the network score assumes a treelike

evolutionary scenario for the character; and reticulate events are explained by different spanning trees in

the network that achieve the best parsimony score for various characters. The former is called the hardwired

approach, and the latter the softwired approach (Fisher et al., 2013). In this article, we use the same terms

when referring to these approaches (see Section 2.3). Both these scenarios are useful depending on the type

of input characters. For example, if the character is a single position of the DNA string of various taxa, then

one might be interested in the softwired approach; and on the other hand, if each character itself is a set of

homologous gene sequences in various taxa, which could have hybridized in the past, the hardwired

approach would be better suited.

The optimal solutions for the hardwired approach on two states can be computed in polynomial time;

Menger’s theorem (Schrijver, 2003, 131–132) provides a variety of algorithms (Schrijver, 2003, 138–

140)—one such example is Ford-Fulkerson’s method to compute the max-flow min-cut between two

vertices of a graph. In general, the hardwired approach can be cast as a multiway-cut problem. This

problem has received attention for many years (Schrijver, 2003, 254 for detailed references) and has been

shown to be NP-complete (Dahlhaus et al., 1994) for more than two states. Recently, it has been shown to

be fixed-parameter tractable with the unknown score as the parameter (Fisher et al., 2013). On the other

hand, the softwired problem is a bit more challenging. It is proven to be NP-hard even for two states; and no

fixed-parameter tractable algorithm with the unknown score as the parameter can be devised unless P = NP

(Fisher et al., 2013).

Parsimony methods give multiple assignment scenarios, and it is of interest to generate all of them in

order to analyze the given data completely. Integer linear programming (ILP) formulations for both

problems are provided in Fisher et al. (2013), which in turn provide practical methods to compute the

scores. With the existing methods to compute all optimal solutions of an ILP, the ILP formulations would

be very helpful in compiling the complete solution set. In this article, we provide another method to find all

optimal solutions.

Parsimony scores can be further generalized by using substitution cost between different states and using

the addition of the costs along edges as the scores. These substitution costs are represented by a cost matrix.

While the parsimony score without such costs already gives a means to best test a network, the cost

matrices provide greater sensitivity to the type substitutions that the data would have undergone. In this

article, we devise a dynamic programming algorithm to find exact scores for general cost matrix for both

problems. This approach is the first method to efficiently compute the parsimony score of networks under

both the hardwired and softwired approaches, along with giving all possible optimal character assignments

on the internal vertices of the network.

1.2. Dynamic programming

Dynamic programming has been used to provide efficient solutions for finding the exact parsimony score

when the network is a phylogenetic tree (Sankoff, 1975; Sankoff and Rousseau, 1975), and more generally

304 KANNAN AND WHEELER

for cost matrices specific to each edge (Erdös and Székely, 1994). This later approach was used in Tuffley

and Steel (1997) to show that that the likelihood approach achieves identical results under some model as

the parsimony approach does in searching for trees. In Section 3, we show that the same approach can be

generalized to phylogenetic networks for both the hardwired and softwired problems. Sankoff’s algorithm

traverses the vertices of the tree via postorder while computing the minimum costs of each state at each

vertex from the leaves to the root, and then chooses the best assignments on each vertex by backtracking

from the root to the leaves by a preorder traversal of the tree. Here, we show that the algorithm can be

extended to networks by performing the pre- and postorder traversals on the tree representation of the

network that is considered.

In Section 3.3, we discuss the complexity of the algorithms and show that both are fixed parameter

tractable in terms of the number of reticulate vertices in the network that, for networks whose underlying

undirected graph has disjoint cycles, can further be reduced to polynomial-time algorithms (see Section

3.3.1). The dynamic programming approach also yields all possible minimum cost assignments of the

characters to the internal vertices. This enables us to look for ‘‘redundant’’ reticulate vertices by choosing

only those optimal solutions that maximize the same set of parents of reticulate vertices that are ‘‘utilized’’

for a most parsimonious representation of all characters. In Section 4.2, we will give a formal definition for

this concept. Redundancy in the numbers of reticulate vertices can be used as a criterion while navigating

through the network space by increasing or decreasing the number of reticulate vertices. While one can

search for better hypotheses on networks with higher numbers of reticulate vertices, redundancy will help

bound the number of reticulate vertices that are appropriate for the given dataset. In Section 5, we present

an example in which our method identifies a network with reticulate events as a lower-cost evolutionary

history than trees for a real dataset from a set of taxa in which hybridizations are common.

2. PRELIMINARIES

2.1. Phylogenetic networks

We follow the definition of the phylogenetic networks as given in Moret et al. (2004, definition 4, page

16). For all other graph-theoretical definitions that are not given here, we follow Schrijver (2003). A rooted

phylogenetic network, simply called here a phylogenetic network, is defined in Huson et al. (2011) as a

rooted, directed acyclic graph (DAG), whose root has in-degree zero and leaves have out-degree zero. The

vertices whose in-degree is greater than one are called reticulate vertices, and the edges with reticulate

vertices as head vertices are called reticulate edges. All other edges are termed tree edges. The definition

given in Moret et al. (2004) takes care of the so-called ‘‘time-consistency’’ restraint, namely, that the tree

edges take place in a positive time and the reticulate vertices have parents that can only ‘‘coexist in time.’’

We recall the formal definition of phylogenetic networks as given in Moret et al. (2004).

Given any directed graph, we say two vertices u and v cannot coexist in time if there exists a sequence

P = (p1‚ p2‚ . . . ‚ pk) of paths in N such that:

1) pi is a directed path that contains at least one tree edge for every 1 £ i £ k,

2) u is the tail of p1 and v is the head of pk, and

3) for every 1 £ i £ k -1, there exists a network vertex whose two parents are the head of pi and the tail

of pi + 1.

A phylogenetic network N is a rooted DAG obeying the following constraints:

1) Every vertex has indegree and outdegree defined by one of the four combinations (0, 2), (1, 0), (1, 2),

or (2, 1)—corresponding to, respectively, root, leaves, internal tree vertices, and reticulate vertices.

All vertices other than reticulate vertices are called tree vertices.

2) If two vertices u and v cannot coexist in time, then a network vertex w with edges (u, w) and (v, w)

does not exist.

3) Given any edge of the network, at least one of its endpoints must be a tree vertex. Another component

of this definition is that for any edge in the phylogenetic network, at least one of its endpoints (either

the head or tail) is a tree vertex. We also assume that no internal vertex has two reticulate children.

We call this class of phylogenetic networks a phylogenetic network with no sister reticulations.

Wherever possible, we point out whether the conditions of the definition are necessary.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 305

Phylogenetic networks can naı̈vely be thought of as networks that contain, as subgraphs, trees that

explain the evolutionary histories of different segments of input terminal sequences. For a phylogenetic

network N with no sister reticulations, and r reticulate vertices with leaf set X, we denote T (N) as the set of

all trees contained in N. Each such tree is obtained by following two steps: (i) for each reticulate vertex,

remove one of the incoming edges, and then (ii) for every vertex v of indegree and outdegree one, whose

parent is u and child is w, contract the edges (u, v) and (v, w) into a single edge (u, w). The condition that

each edge in N has a tree vertex as an endpoint, and that each tree vertex has at least one tree vertex as a

child, ensures that the set of leaves of the resulting tree is the same as that of the network. Hence the set

T (N) contains exactly 2r phylogenetic trees whose leaf set is exactly X.

Below are some results about phylogenetic networks. In Lemma 1, we show that the phylogenetic

networks are indeed planar, that is, they can be drawn on a plane such that the edges do not cross each

other. In fact, Hartvigsen (1998) proved that calculating the hardwired score is polynomial. A graph G is

said to be planar if and only if for each subgraph H with at least 3 vertices of G, jE(H)j £ 3jV (H)j - 6.

Lemma 1: Let N be a phylogenetic network as defined above. Then N is planar.

Proof. Since the vertices of networks that we are considering have degree at most 3, it is straight

forward to notice that our networks are all planar.

Let H be any subgraph of N. Then, we have E(H) �
P

v2V(H)
deg(v)

2
� 3jV(H)j=2 � 3jV(H)j - 6 if and only

if jV (H)j ‡ 4. Also, by definition N is triangle-free. Thus, N is planar. -

The above result does not have immediate consequences that are used in this article. However, we point

out that the phylogenetic networks as defined here can be drawn on a sheet of paper.

The below result is straightforward, so we omit the proof.

Lemma 2: Let N be a phylogenetic network as defined above. Then N has 2n - 2 + 2r vertices and

2n - 2 + 3r edges, where r is the number of reticulate vertices.

The following theorem gives a bound on the number of reticulate vertices in a phylogenetic network.

Theorem 3: In any phylogenetic network N, and for any vertex v in N, the number of reticulate

descendants, including v is nv - 1 if v is not reticulate and nv if v is reticulate, where nv is the number of

descendants of v that are leaves (terminal descendants). Then the number of reticulate nodes in N cannot

exceed n - 2, where n is the number of leaves.

Proof (by induction on nv): Let v be a vertex in N, such that nv = 3. Let Nv be the network induced by v

and its descendants. There is a network with three leaves and with exactly one reticulate vertex up to permutation

of the leaf labels. Note that there can be at most one other reticulate vertex that can be added, including v (since no

two reticulate vertices can have a common immediate ancestor and no two reticulate vertices are adjacent—one

is not a child of another), so it matches with Nv. Thus, the number of reticulate vertices is at most nv - 1.

Similarly, if nv = 2, the number of reticulate vertices in Nv is at most 1, including v. Thus, the statement

of the theorem holds when nv = 1, 2, 3.

Now assume that v is any internal vertex with nv = n1 + n2, where n1 and n2 are the number of leaf

descendants of the left v1 and right v2 child respectively. If n1, n2 > 1, then the number of reticulate vertices

descendant to v cannot exceed n1 + (n2 - 1) = nv - 1 (since both v1 and v2 cannot be reticulate vertices).

Suppose v is reticulate and has only one child v1. Then since v1 cannot be a reticulate vertex, the number

of reticulate descendants of v1 is at most nv - 1. Thus, counting v, the number of reticulate descendants of v is nv.

Now the children of the root cannot be reticulate vertices. Thus, if v is a root, then there are at most (n1 -
1) + (n2 - 1) = nv - 2 = n - 2 reticulate vertices in N. -

In the following result, we give a constructive proof on how reticulate vertices can be added to a phylo-

genetic tree on n leaves to obtain a phylogenetic network with n - 2 reticulate vertices. This establishes the

tightness of the bound on the number of reticulate vertices that we allow in a phylogenetic network.

Theorem 4: Let N be a phylogenetic tree with n(‡ 2) leaves. Then n - 2 edges can be added to N to

obtain a phylogenetic network with n leaves and n - 2 reticulate vertices.

306 KANNAN AND WHEELER

Proof (by induction on n:): The result holds for n = 2. Now assume n = k for an integer k > 2; and

that the theorem holds for all phylogenetic networks with k - 1 or fewer leaves. Let T be a phylogenetic tree

with k leaves and let r be the root of the tree. Let v1 and v2 be the children of r in T; and let Ti, i = 1, 2 be the

subtrees of T induced by vi and the vertices reachable from vi. We have the following two cases to consider.

Case (i): The number of leaves in T1 and T2 are two or greater and are n1 and n2 respectively. By

induction hypothesis, ni - 2 edges can be added to Ti to obtain a network Ni with ni leaves and ni - 2 leaves,

i = 1, 2. Now replace Ti by Ni in T to obtain a network N0 on n leaves and (n1 - 2) + (n2 - 2) = n1 + n2 -
4 = k - 4 reticulate vertices. Now we will add two more reticulate vertices to N0, and we will be done.

Let wi, i = 1, 2 be a child of vi in N0. Now, remove the edges (r, v2), (v1, w1), (v2, w2) and add the edges

(r, u1), (u1, v2), (u1, u2), (v1, u2), (u2, u3), (u2, w), (u3, u4), (v2, u4), (u4, w2) to N0, where u1, u2, u3, u4 are new

vertices. This results in a network with n = k leaves and k - 2 reticulate vertices.

Case (ii): Without loss of generality, let v1 be a leaf. Then the tree T2 has k - 1 leaves. By induction

hypothesis, k - 3 edges can be added to T2 to obtain a network N2 on k - 1 leaves and k - 3 reticulate

vertices. Replace T2 by N2 in T to obtain a network N0 with k - 3 reticulate vertices. Let w2 be a child of v2

in N0. Now remove the edges (r, v1), (v2, w2) and add the edges (r, u1), (u1, v1), (u1, u2) to N0, where u1 and

u2 are new vertices. This results in a network with n = k reticulate vertices. -

We now state an open problem, which holds for phylogenetic trees.

� Given any phylogenetic network N with n leaves, can reticulate vertices be added until we obtain a

phylogenetic network with n - 2 reticulate vertices? Given a phylogenetic network, what is the

maximum number of reticulate vertices that can be added to obtain a phylogenetic network?

By Theorem 4, the answer for the first question above is yes if N is any phylogenetic tree with n leaves.

2.2. Tree representation of a network

The main idea here is to modify a phylogenetic network N so it becomes a rooted phylogenetic tree TN,

constructed as follows: Assume that N has p reticulate vertices r1‚ r2‚ . . . ‚ rp. For each reticulate vertex

rq‚ q = 1‚ 2‚ . . . ‚ p, delete one incoming edge eq = (uq, rq) and add a new vertex dq and an edge (uq, dq). For

convenience, we call dq the tail vertex corresponding to the reticulate vertex rq. Note that the reticulate

vertices of N must not be adjacent and N must have no sister reticulate vertices to allow the deletion of

arbitrary reticulate edges to produce TN. If we provide the same leaf label lq for rq and dq in TN, it is

straightforward to recover N from TN with the labels lq, where q = 1‚ 2‚ . . . ‚ p. This construction was

described earlier (Huson et al., 2011, Section 4.5) to represent a network in the Newick format of the

phylogenetic tree TN along with lq, where q = 1‚ 2‚ . . . ‚ p. We refer to TN as the tree representation of the

phylogenetic network N. We note that the vertex traversal of N is always a vertex traversal of TN, and all

vertex traversals of TN where rq is visited before dq is visited is also a vertex traversal of N.

Let v be any vertex in TN. We say that a reticulate vertex rq is reachable from v in TN if there is a directed

path from v to either of rq or dq. Note that this is not a standard graph-theoretical definition of ‘‘reachability’’

in TN, but we are defining it this way since the correspondence between rq and dq in TN is necessary here.

We also note that it suffices to fix TN for vertex traversals and for storage in the case of the hardwired

approach. For storage purposes in the softwired approach, we need to switch dynamically between the

parents of each reticulate vertex. So, we will define trees in T (N) by specifying which parent is deleted. We

will provide this definition in Section 3.2.

2.3. Parsimony score

Let [n] = f1‚ 2‚ . . . ‚ ng denote the set of leaf labels of a given phylogenetic network N. A function

k : [n]! f0‚ 1‚ . . . ‚ jSj - 1g is called a state assignment function over the alphabet S (a non-empty set) for

N. We say that a function bk : V(N)! f0‚ 1‚ . . . ‚ jSj - 1g is an extension of k on N if it agrees with k on the

leaves of N. For a vertex v in N, we call the bk(v) an assignment of bk on v. A fully assigned network is a

network in which all the vertices have labels from f0‚ 1‚ . . . ‚ jSj - 1g. Let C be a cost matrix whose ijth

entry cij is the cost of transforming from state i to state j along any edge in N. If e = (u, v) is an edge in N,

where u is the parent of v, we denote we(bk) = cij, where i =bk(u) and j =bk(v). For a graph G, we let E(G)

denote the edge set of G. Then the parsimony problems are defined as follows.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 307

Input: A phylogenetic network N with leaf labels [n] and a state assignment function k over the alphabet

S for N.

Parsimony criterion: For an extension bk of k, let

(hardwired approach) P1(bk) =
X

e2E(N)

we(bk)‚

and

(softwired approach) P2(bk) = min
T2T (N)

X
e2E(T)

we(bk)‚

Output: Given P 2 fP1‚ P2g, find bk that minimizes P(P(bk)).

We note that P2(bk) is introduced in Nakhleh et al. (2005), while P1(bk) and P2(bk) are both defined in

Kannan and Wheeler (2012) and Fisher et al. (2013).

2.4. Network traversal

Preorder traversal of a phylogenetic network from a vertex v

1) Visit vertex v.

2) Recursively perform preorder traversal from each child that has not yet been visited.

Postorder traversal of a phylogenetic network from a vertex v

1) Recursively perform postorder traversal from each child that has not yet been visited.

2) Visit vertex v.

Since a phylogenetic network is a DAG, such traversals will visit all the vertices of the network exactly

once, thus using a time-complexity of O(n). Refer to Schrijver (2003) for more details on existence of such

traversals on DAGs. For the purposes of this article, we assume that the vertices of a network are uniquely

labeled by integers. Note that the leaves are already labeled from the set [n]; and so we use other integers

for other vertices.

3. COMPUTING PARSIMONY SCORE WITH THE DYNAMIC
PROGRAMMING APPROACH

In order to decide whether a problem P can be solved by dynamic programming, we must define a

collection of subproblems with the following key property that allows them to be solved in a single pass:

There is an ordering on the subproblems and a relation that shows how to solve a subproblem given the

answers to smaller subproblems, that is, subproblems that appear earlier in the ordering. In other words, we

require a recursive expression of the problem in terms of its subproblems.

For the problem of computing the parsimony score on a network N, we define the problem P as that of

computing the optimum parsimony score on the tree TN. Let f1‚ 2‚ . . . ‚ kg be the set of states. For each leaf

v, we define Sv(i) = 0 if the leaf is assigned the state i; otherwise, we set Sv(i) = 1. In addition to this, for

each tail vertex dq of a reticulate vertex rq, we let Sdq(i) = 0 for each state i = 1‚ 2‚ . . . ‚ k. For each vertex v,

let Tv be the subtree of TN induced by the vertices reachable from v. The subproblems that we are trying to

solve are then defined as follows: for each internal vertex v of TN (and thus that of N) and each state

i 2 f1‚ 2‚ . . . ‚ kg, find Sv(i). The ordering of the subproblems that we use is the preorder traversal of TN.

Note that if N is a phylogenetic tree, then TN = N the problem of computing the optimal parsimony score

has been described recursively by defining Sv(i) for any vertex as follows: For a vertex v with children

vertices wl and wr,

Sv(i) = (minjðc(v‚ wl)
ij + Swl

(j)Þ + (minjðc(v‚ wr)
ij + Swr

(j)Þ)‚ (1)

where c
(v‚ w)
ij is the cost of substitution from state i to state j along the edge (v, w) in N. It can be noted that

our method holds in general for any edge specific cost matrix.

308 KANNAN AND WHEELER

In our previous article, we extended the same recursion for networks. We showed that the dynamic

programming approach constructed from that recursion only produces a heuristic lower bound of the

optimum. The reason for this is because the assignment of the vertices rq and dq may not necessarily

be the same when the equality of states is necessary for any assignment on the network, in particular,

the assignment that yields the optimum parsimony score. We also provided a method to fix this

conflict and to obtain a heuristic upper bound for the quantity. In the earlier method, the dynamic

algorithm yielded us an efficient algorithm albeit only for heuristic solutions. In this article, we

provide recursive expressions that guarantee the exact solutions for each of the hardwired and

softwired approaches.

3.1. For the hardwired approach

Let N be any phylogenetic network. For each vertex v in TN, we require a storage of a multidimensional

array whose dimension is equal to one more than the number of reticulate vertices or tail vertices corre-

sponding to the reticulate vertices reachable from v in TN. For the leaves of TN, we store the quantities Sv(i)

for i = 1‚ 2‚ . . . ‚ k, which can be written as a one-dimensional array of size k. We describe the contents of

the storage for each internal vertex of TN below.

Let r1‚ r2‚ . . . ‚ rp be a complete list of reticulate vertices represented in some order. As before, let

d1‚ d2‚ . . . ‚ dp be the leaves in TN, where dq is the tail vertex corresponding to the reticulate vertex rq for

q = 1‚ 2‚ . . . ‚ p. Throughout the rest of our discussion, we will use the ordering r1‚ r2‚ . . . ‚ rp for ease of

notation, but the ordering does not matter since rq‚ q = 1‚ 2‚ . . . ‚ p serve as different dimensions in the

multidimensional array that we will define, and the ordering of the dimensions are interchangeable. For

each vertex v, we construct a multidimensional array of dimension at most p and whose dimensions are

labeled by the reticulate vertices. The elements of the array can thus be stored and retrieved by specifying

the labels of the dimensions of the element in the array.

Let v be a vertex in TN and let v1‚ v2‚ . . . ‚ vt be the list of reticulate vertices (including v, if v is a

reticulate vertex) in the same linear ordering as above that are reachable from v in TN, represented as a

tuple. Then we define S(s1‚ s2‚ ...‚ st)
v (i) as the minimum sum of costs of all the substitution events from the

vertex v to all the leaves that are reachable from v in TN, given that v is assigned state i and the reticulate

vertices v1‚ v2‚ . . . ‚ vt are assigned states s1‚ s2‚ . . . ‚ st respectively. If there is no reticulate vertex

reachable from v in TN, then we are simply interested in finding Sv(i). In such cases, the superscripts in

S(s1‚ s2‚ ...‚ st)
v (i) are dropped by default. Note that for each dq‚ q = 1‚ 2‚ . . . ‚ p, the only reticulate vertex

reachable from dq in TN is rq, and the state at dq is the same as the state at rq. Therefore, we assign S
(j)
dq

(i)
only when j = i as S

(i)
dq

(i) = 0 for each state i = 1‚ 2‚ . . . ‚ k.

Now, suppose v is any vertex of TN. Then S(s1‚ s2‚ ...‚ st)
v (i), where v1‚ v2‚ . . . ‚ vt is the complete list of

reticulate vertices reachable from v, is given by the following recursive expression.

Case 1:
Suppose v is a reticulate vertex and w is its only descendant. Note that v is reachable from v in TN.

Without loss of generality, let vt = v. Then, v1‚ v2‚ . . . ‚ vt - 1 is the complete list of reticulate vertices

reachable from w in TN. Therefore, we have

S(s1‚ s2‚ ...‚ st)
v (i) = minj c

(v‚ w)
ij + S(s1‚ s2‚ ...‚ st - 1)

w (j)
� �

: (2)

We also let t
(s1‚ s2‚ ...‚ st)
(v‚ w) (i) to be the arg minimum of the above equation, that is, the set of states at w, each of

which minimizes the above expression.

Case 2:
Suppose v is a tree vertex with descendant vertices wl and wr. Then the setfv1‚ v2‚ . . . ‚ vtg is the union of the set

of reticulate vertices reachable from wl and wr. Let c1‚ c2‚ . . . ‚ cx for some integer x be a list of reticulate

vertices that are reachable from both wl and wr in TN, and let m1‚ m2‚ . . . ‚ my and n1‚ n2‚ . . . ‚ nz for

some integers y and z be the list of reticulate vertices that are reachable exclusively by one of the vertices wl

and wr respectively. Without loss of generality, assume that c1‚ c2‚ . . . ‚ cx; m1‚ m2‚ . . . ‚ my; n1‚ n2‚ . . . ‚ nz

appear in the same linear ordering as in r1‚ r2‚ . . . ‚ rp (semi-colons are introduced for the sake

of clarity). Now, let us denote the states represented by each of these reticulate vertices as sc1
‚ sc2

‚ . . . ‚ scx
;

sm1
‚ sm2

‚ . . . ‚ smy
; sn1

‚ sn2
‚ . . . ‚ snz

.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 309

Subcase (i): If both wl and wr are tree vertices in N, then we have

S
(sc1

‚ sc2
‚ ...‚ scx ;sm1

‚ sm2
‚ ...‚ smy ;sn1

‚ sn2
‚ ...‚ snz)

v (i) = minjðc(v‚ wl)
ij + S

(sc1
‚ sc2

‚ ...‚ scx ;sm1
‚ sm2

‚ ...‚ smy)
wl (j)Þ

+ minjðc(v‚ wr)
ij + S

(sc1
‚ sc2

‚ ...‚ scx ;sn1
‚ sn2

‚ ...‚ snz)
wr (j)Þ: (3)

We also let t
(sc1

‚ sc2
‚ ...‚ scx ;sm1

‚ sm2
‚ ...‚ smy)

(v‚ wl)
(i) and t

(sc1
‚ sc2

‚ ...‚ scx ;sn1
‚ sn2

‚ ...‚ snz)

(v‚ wr) (i) be the arg min of the quantities on the

right-hand side of the above equation.

Subcase (ii): Without loss of generality, if wr were a reticulate vertex rq or the tail vertex dq corre-

sponding to a reticulate vertex rq in TN, then wr appears in the list n1‚ n2‚ . . . ‚ nr. Without loss of generality,

let nz = rq. Then,

S
(sc1

‚ sc2
‚ ...‚ scx ;sm1

‚ sm2
‚ ...‚ smy ;sn1

‚ sn2
‚ ...‚ snz)

v (i) = minjðc(v‚ wl)
ij + S

(sc1
‚ sc2

‚ ...‚ scx ;sm1
‚ sm2

‚ ...‚ smy)
wl (j)Þ

+ ðc(v‚ wr)
isnz

+ S
(sc1

‚ sc2
‚ ...‚ scx ;sn1

‚ sn2
‚ ...‚ snz)

wr (snz
)Þ: (4)

In this case, t
(sc1

‚ sc2
‚ ...‚ scx ;sn1

‚ sn2
‚ ...‚ snz)

(v‚ r) (i) simply contains the state nz.

We give the pseudocodes of the post- and preorder traversals below. The correctness of the algo-

rithm follows from the correctness of the recursive expressions (2), (3), and (4), which can be verified

easily.

Postorder traversal of TN: Calculate the cost of each state at each vertex v for each combination of

states at each reticulate vertex reachable from v

1: Input: Network TN and the observed states from S at the leaves of N, i.e., a state assignment function

k over the alphabet S for N. Let r1‚ r2‚ . . . ‚ rp be the list of reticulate vertices of N and let dq be the

tail vertex in TN corresponding to rq, for q = 1‚ 2‚ . . . ‚ p.

2: For each leaf v in N (and therefore a leaf of TN), let Sv(i) = 0 if k(v) = i and1 otherwise. For each

dq‚ q = 1‚ 2‚ . . . ‚ p, we assign S
(i)
dq

(i) = 0 for each state i = 1‚ 2‚ . . . ‚ k.

3: Repeat in postorder for each vertex v in TN with reachable reticulate vertices v1‚ v2‚ . . . ‚ vt: For each

state i‚ s1‚ s2‚ . . . ‚ st onv‚ v1‚ v2‚ . . . ‚ vt, compute S(s1‚ s2‚ ...‚ st)
v (i) given by the equations (2), (3) and (4).

Also, for each child w of v, store t
(s1‚ s2‚ ...‚ st)
(v‚ w) (i).

4: Output: f(S(s1‚ s2‚ ...‚ st)
v (i)‚ ½t(s1‚ s2‚ ...‚ st)

(v‚ w) (i) : w is a child of v�) : v 2 V(TN)‚ i‚ s1‚ . . . ‚ st 2 Sg.

We further define

Sv(i) = min(s1‚ s2‚ ...‚ st)S
(s1‚ s2‚ ...‚ st)
v (i)‚

where the minimum runs over all possible states (s1‚ s2‚ . . . ‚ st) for the complete list of reticulate vertices

(v1‚ v2‚ . . . ‚ vt) reachable from v. If v is the root, then S : = min iSv(i) is the optimum hardwired score of the

network. The optimum assignments can then be computed in the preorder traversal phase after slicing down

the multidimensional arrays at each vertex to a single dimensional array for each solution.

Preorder traversal of TN: Calculate the optimum and the corresponding optimal assignments

1: Input: f(S(s1‚ s2‚ ...‚ st)
v (i)‚ ½t(s1‚ s2‚ ...‚ st)

(v‚ w) (i) : w is a child of v�) : v 2 V(TN)‚ i‚ s1‚ . . . ‚ st 2 Sg.

2: Let S = mini‚ s1‚ s2‚ ...‚ sp
S

(s1‚ s2‚ ...‚ sp)
r (i), where r is the root vertex and let S = arg mini S

(s1‚ s2‚ ...‚ sp)
r (i).

3: For each element in S, there is a unique combination of states at the reticulate vertices and at the root

and all the reticulate vertices, s0
1‚ s0

2‚ . . . ‚ s0
p‚ i0. Slice the multidimensional array at each vertex v to a

single dimension by specifying the dimensions to ðs0
1‚ s0

2‚ . . . ‚ s0
pÞ.

4: Find optimal states by the preorder traversal of TN: For each vertex w with parent v whose optimal

assignment is i0
v , the optimal assignment of w is any element in t

ðs0
i1

‚ s0
i2

‚ ...‚ s0
it

)

(v‚ w) (i0
v), where ri1 ‚ ri2 ‚ . . . ‚ rit

are reticulate vertices reachable from v in TN. Pick an element and continue the preorder traversal.

5: Output: All optimal hardwired assignments.

In Figure 1, we present the subproblems of the hardwired approach for a character on a network.

310 KANNAN AND WHEELER

3.2. For softwired approach

Now we are ready to modify the above algorithm for the softwired approach. We need the following

changes.

1) For the hardwired approach, TN was fixed, and we used it for both vertex traversal of N and also for

cost storage by using the reachability definition. For this approach, although we will still traverse the

vertices of N via TN for the storage of costs, we need to specify which parent of each reticulate vertex

is used.

2) In the term S(s1‚ s2‚ ...‚ st)
v (i) in the above algorithm, the parameters s1‚ s2‚ . . . ‚ st represent the character

states of the reticulate vertices r1‚ r2‚ . . . ‚ rt. In the softwired approach, s1‚ s2‚ . . . ‚ st represent 0 or 1,

depending on whether or not the left (first parent that is traversed) or the right (second parent that is

traversed) parent of v1‚ v2‚ . . . ‚ vt are removed to calculate the costs of the subproblem. Note that the

states s1‚ s2‚ . . . ‚ st are different than the states i, j, which are character states.

The only place we need to make additional changes is in Subcase (ii), where we include a new function

depending on whether the vertex v is traversed before the other reticulate parent of wr, and if the left or the

right parent is removed to construct the putative spanning tree.

3.2.1. Case 2. Subcase (ii): Without loss of generality, if wr were a reticulate vertex rq or the tail

vertex dq corresponding to a reticulate vertex rq in TN, then wr appears in the list n1‚ n2‚ . . . ‚ nr. Without

loss of generality, let nz = rq. Then,

FIG. 1. An example showing one among the at-most two dimensions of storage at each vertex of a phylogenetic

network for computing the hardwired score and all optimal assignments on the network. The costs of each state at

each node are shown next to the corresponding vertex; the cost matrix considered here is given by cij = 1 if i s j

and 0 if i = j for the states i‚ j 2 fA‚ Gg. We order the reticulate vertices as (9, 12). The superscript (G) in Sv(.) at

the vertices v = 10, 11, and 12 corresponds to the state G at the vertex 12, and the superscript (A,G) in Sv(.) at the

vertices v = 0, 6, 7, 8, and 9 corresponds to the states at the reticulate vertices 9 and 12 respectively. Note that

there is exactly one optimal assignment corresponding to the superscript (A, G), namely a(.), given by a(1) = A,

a(2) = A, a(3) = A, a(4) = G, a(12) = G, a(10) = A, a(9) = A, a(8) = A, a(6) = A, a(5) = G, a(11) = G, a(7) = A,

a(0) = A. This assignment can be obtained by preorder traversal of TN, a spanning tree in N whose edges are shown

in double arcs. The optimal assignment and its corresponding storage entries at each vertex are highlighted in

boxes.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 311

S
(sc1

‚ sc2
‚ ...‚ scx ;sm1

‚ sm2
‚ ...‚ smy ;sn1

‚ sn2
‚ ...‚ snz)

v (i) = minj(c
(v‚ wl)
ij + S

(sc1
‚ sc2

‚ ...‚ scx ;sm1
‚ sm2

‚ ...‚ smy)
wl (j))

+ f (wr‚ snz
)(minj(c

(v‚ wr)
ij + S

(sc1
‚ sc2

‚ ...‚ scx ;sn1
‚ sn2

‚ ...‚ snz)
rq (j))): (5)

where

f (wr‚ snz
) = v1(snz

) if wr = rq;
v0(snz

) if wr = dq:

�

and

va(snz
) = 1 if snz

= a

0 otherwise:

n

Note that regardless of whether wr = rq or dq, S
(sc1

‚ sc2
‚ ...‚ scx ;sn1

‚ sn2
‚ ...‚ snz)

wr (j) is replaced by

S
(sc1

‚ sc2
‚ ...‚ scx ;sn1

‚ sn2
‚ ...‚ snz)

rq (j), and S
(i)
dq

(i) is never used. The way we handle (1) stated above is by using the

function f (wr, snz). It can also be seen that f (wr, snz) can simply be written as

f (wr‚ snz
) = vvrq

(wr)(snz
):

When performing the preorder traversal on TN, any conflict assignments are ignored. In Figure 2, we

present the subproblems of the hardwired approach for a character on a network. This set of subproblems

also give multiple solutions as described in the figure.

3.3. Problem complexity

Suppose p is the number of reticulate vertices in the network and k is the number of possible states of the

character. Then we need O(kp + 1) storage at each vertex for the hardwired approach and O(2pk) for the

softwired approach. If n is the number of leaves in N, by Lemma 2 there are O(n + p) vertices. Thus our

algorithm requires O(mrk(n + p)) storage, where n is the number of leaves and m = k for the hardwired

approach and m = 2 for the softwired approach. Also by Theorem 3, p is at most n - 2, thus rendering the

total storage to O(mpkn).

The tree traversal takes O(n), and to calculate the storage at a vertex, we need a calculation of O(k)

for each of the O(kmpk) entries at each vertex. Thus the time complexity is O(nmpk2). We note however

that if all solutions were to be found, the preorder phase can be exponential, as is the case in Sankoff’s

algorithm.

3.3.1. Reduction step. We include the following clause to reduce storage and time complexity:

In case 2 of the algorithms, if y = z = 0, we have a special scenario in which both children wl and

wr have exactly the same set of reticulate vertices that are reachable in TN. When this occurs, we

note that there is no subsequent vertex u in the postorder that is an ancestor of v, such that w is

reachable from u. Suppose such a u exists, then one of the following holds, y = 1, z = 1, a contra-

diction. When this happens at a vertex v, the superscripts in S(s1‚ s2‚ ...‚ st)
v (i) can be dropped and the

storage is only O(k) at the vertex v, and the set of (s1‚ s2‚ . . . ‚ st)s that achieve the optimal Sv are also

stored, whose storage is O(kp). As a result, our algorithms are polynomial in time for networks whose

reticulate cycles are disjoint, and in general if the number of intersecting cycles are bounded. See, for

example, Figures 1 and 2.

4. COMPARING NETWORKS BASED ON COSTS AND REDUNDANT
RETICULATE VERTICES

In this section, we deal with comparing scores between networks. Although this is not part of the

problem of finding the optimal score of a network, we show that there are some features in network score

that can be directly relevant in comparing networks based on scores, which will be useful later for the

problem of searching for networks with best scores.

312 KANNAN AND WHEELER

4.1. Comparable scores across all networks

We first note that the cost of the softwired approach of a network is comparable with the softwired

approach of any other network that has possibly different numbers of reticulate vertices compared to the

original if the cost matrix is a metric by the argument below. For the softwired approach, the optimal score

corresponds to a spanning tree in the network, which has 2n - 2 + 2r edges by Lemma 2. Although, the

number of edges in a phylogenetic tree is only 2n - 2 since the costs along r edges are effectively omitted in

the softwired cost, and by the triangle inequality, we notice that the states at the reticulate vertices must

match either the states of the parents being used or the states of their child. Thus the network score has to be

equal to that of the corresponding phylogenetic tree that can be constructed by contracting the edges

incident to the reticulate vertices in the optimal spanning tree.

On the other hand, the hardwired score is not comparable across networks because of the differing

quantity of edges in the network depending on the number of reticulate vertices present (namely, 2n -
2 + 3r). To address this fact, we adjust the score by subtracting, for each reticulate vertex, the maximum

substitution cost across either of its incident reticulate edges. By doing this, we convert the score to that

across only 2n - 2 + 2r edges. Using the triangle inequality of the cost matrix, the network score is higher

than that of the phylogenetic tree. Note that the network assignment might also not be an optimal as-

signment on the phylogenetic tree. Thus, we note that networks are penalized in this approach. We also

present an interesting result below, namely, for binary states and unweighted costs (i.e., with cost matrix

FIG. 2. An example showing one among the at-most two dimensions of storage at each vertex of a phylogenetic

network for computing the softwired score and all optimal assignments on the network. The costs of each state at each

node are shown next to the corresponding vertex; the cost matrix considered here is given by cij = 1 if i s j and 0 if

i = j for the states i‚ j 2 fA‚ Gg. We order the reticulate vertices as (9, 12). The superscript (0) in Sv(.) at the vertices

v = 10, 11, and 12 corresponds to the state 0 at the vertex 12, which in turn corresponds to the deletion of the left edge

(10, 12) incident at vertex 12 and the superscript (1, 0) in Sv(.) at the vertices v = 0, 6, 7, 8, and 9 corresponds to the

states at the reticulate vertices 9 and 12 respectively, corresponding to the deletion of the right edge (7, 9) incident at

vertex 9 and the left edge (11, 12) incident at vertex 12. Note that there are exactly three optimal assignments

corresponding to the superscript (1, 0), namely a1(.), a2(.) and a3(.) given by a1(1) = A, a1(2) = A, a1(3) = A, a1(4) = G,

a1(12) = G, a1(10) = A, a1(9) = A, a1(8) = A, a1(6) = A, a1(5) = G, a1(11) = G, a1(7) = G, a1(0) = G; a2(1) = A,

a2(2) = A, a2(3) = A, a2(4) = G, a2(12) = G, a2(10) = A, a2(9) = A, a2(8) = A, a2(6) = A, a2(5) = G, a2(11) = G,

a2(7) = G, a2(0) = A and a3(1) = A, a3(2) = A, a3(3) = A, a3(4) = G, a3(12) = G, a3(10) = A, a3(9) = A, a3(8) = A,

a3(6) = A, a3(5) = G, a3(11) = G, a3(7) = A, a3(0) = A. These assignments can be obtained by preorder traversal of the

spanning tree in N (whose edges are shown in double arcs) obtained by deleting the edges (7, 9) and (11, 12).

The optimal assignments and its corresponding storage entries at each vertex are highlighted in boxes. Note that both

the character states A and G are attained at the root vertex 0.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 313

with diagonal entries zero and one elsewhere), the adjusted net score is the same as that of the softwired

approach as shown in the result below.

Theorem 5: Let N be a network such that the reticulate cycles are edge-disjoint. Suppose we have a

binary character and unweighted cost matrix. Let on and ot be the cost of the network under the hardwired

and the softwired approaches. Also, let adj(on) be the adjusted cost of on. Then adj(on) = ot.

Proof:

We will prove the theorem for N with exactly one reticulate vertex. The general case can be proven by

induction on the number of ret nodes.

The following are immediate:

i) adj(on) ‡ ot

ii) on - 1 £ adj(on) £ on,

iii) on - 1 £ ot £ on.

Case A: Suppose ot = on.

By ii), adj(on) £ on = ot. Thus, using i) and the above equation, we have adj(on) = ot.

Case B: Suppose ot = on - 1.

Let a be an assignment on the nodes of N corresponding to softwired cost ot. Let w be the reticulate node

with parents p1 and p2, with p2 not the parent of w in the optimum tree. Let c be the child of w.

Then without loss of generality (with 0 and 1 interchangeable), we have the following cases:

� a(p1) = 0; a(r) = 0; a(c) = 0 or 1. Then a(p2) = 1, for if a(p2) = 0, then on = ot, a contradiction to the

assumption of the case. Thus a is also the optimal hardwired assignment on. Thus, adj(on) = on - 1 = ot.
� a(p1) = 0 or 1; a(r) = 1; a(c) = 1. Then a(p2) = 0, for if a(p2) = 1, then on = ot, a contradiction to the

assumption of the case. Thus a is also a optimum hardwired assignment, and thus adj(on) = on - 1 = ot.

Note that a(p1) = 0; a(r) = 1; a(c) = 0 is not possible, since a is an optimal softwired assignment.

-

Note that the above theorem is not extendable to general cost matrices or for nonbinary characters since

we obtained counter-examples for these cases (that are not reported here). Thus in general, the adjusted

hardwired score of a network is equal to or greater than the softwired score, and when they are equal, the

number of solutions achieved by the adjusted hardwired approach is smaller than the number of solutions

given by the softwired approach. For example, the adjusted hardwired cost of the network in Figure 1 is the

same as its softwired cost of 1 (see Fig. 2). However, among the optimal softwired assignments a1(.), a2(.),

and a3(.), only a1(.) and a2(.) are optimal adjusted hardwired assignments.

4.2. Redundancy in reticulate nodes

Another ingredient in comparing networks is to be able to decide if the reticulate vertices are indeed

needed. To check this, we make use of all solutions for the given problem. For a given optimal solution for

a set of characters, we call a set of reticulate vertices R to be redundant if the solution does not use any of

the reticulate vertices—that is, only a same parent of each vertex in R was used in the optimal spanning tree

of all the characters. Thus the maximum number of redundant reticulate vertices can be computed by

looking at all solutions of the characters formed by considering all combinations of solutions of the

individual characters and computing the number of reticulate vertices that are redundant under each

solution. Now, if the reticulate edge from the unused parent of a redundant vertex is removed, and any

vertex of degree two is contracted, we will obtain a network with the same softwired cost and the same or

lower hardwired cost. The list of unused parents can be computed immediately after the postorder traversal

for the softwired approach; but only after the adjusted cost is computed (after the preorder traversal of

finding all assignments) for the hardwired approach. Nevertheless, we need this computation only when we

want to decrease or increase the number of reticulate vertices present.

In Figures 3 and 4, we give simple examples of when a tree is preferred and when a network with

reticulate vertices is preferred for different datasets.

314 KANNAN AND WHEELER

5. TESTING A REAL DATASET

We implemented our algorithm in OCAML, and it will be made available in the upcoming versions of

the POY software (Varón et al., 2010). In order to see how our algorithm performs, we tested it on real

sequence data collected from ant species complex in which hybridization could be common. Hybridization

events have been observed in the evolutionary histories of ants belonging to various genera, such as

FIG. 3. Example of a character dataset that displays a tree that models better than networks with reticulate vertices.

The input set of three characters on two states ‘‘A’’ and ‘‘C’’ are given in the leaves. It can be seen that there is perfect

phylogeny for this set of characters, namely, there is a tree (on the left) such that each of its internal edges splits a

unique character into the two states (the edges that split the different characters are shown in dotted lines with the

corresponding character site written next to each of them). Thus the tree is an optimal tree with parsimony cost of three,

which equals the number of characters. Note that this is the minimum cost that can be attained for this dataset. Shown

on the right is a network with the same input dataset. The softwired and adjusted hardwired parsimony costs of the

network is three. However, it can be noted that the reticulate vertex 14 is redundant since the edge (13, 14) may be

removed to render the same cost. In general, the network cost of this dataset on any network with at least one reticulate

vertex will either have a cost of four or higher or if the score is three, then the set of all its reticulate vertices will be

redundant. Thus the score on the left hand tree is better than the score on the right.

FIG. 4. Example of two binary characters that are not compatible on a phylogenetic tree. Thus the parsimony score of

the characters on any phylogenetic tree of six leaves has a cost of three or more. Shown in the figure is a network with

one reticulate vertex with softwired and adjusted hardwired scores equal to two. This can be seen by the two dotted

edges that allow one substitution each in different characters. While the first character has an additional substitution

on the reticulate edge (11, 10), the second character has an additional substitution on the other reticulate edge (7, 10).

Thus the two characters choose different optimal spanning trees (whose reticulate edges are shown in different colors

with the corresponding character written next to them) inside the network, and the reticulate vertex 10 is not redundant.

Hence, the score on this network is better than the score on any tree.

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 315

Formica (Seifert et al., 2010) and Dorylus (Kronauer et al., 2011). We chose a fraction of a dataset taken

from the Camponotus maculatus species complex, the full version of which will appear in Clouse et al.

(2010). The dataset consisted of a marker each from the nucleus (LR, long wavelength rhodopsin) and

mitochondrion (COI, cytochrome c oxidase I) from 82 specimens collected throughout the Indo-Pacific.

The data gathered was reduced to a manageable size by first conducting tree searches in POY (Varón et al.,

2010) for the two markers separately. The sequences of 57 taxa showed clear conflict in phylogenetic

placement or were needed to establish the main lineages in the complex retained in the dataset. The

mitocondrial and the nuclear sequences were aligned and concatenated. As shown in Table 1, the softwired

parsimony cost of the network shown in Figure 5 that was formed by adding two reticulate vertices to the

most parsimonious tree formed from nuclear sequences was lower than the sum of the best parsimony

scores of the individual mitochondrial and nuclear sequences. This network was compared against other

random networks with two reticulate vertices for costs and by far has the lowest hardwired and softwired

cost. While it is expected that with the addition of more and more reticulate vertices, the softwired cost will

not be lesser compared to the tree cost, we did not see any decrease in cost as we added more than two

reticulate vertices. Additionally, we identified redundant reticulate vertices in all the random networks we

generated with three or more reticulate vertices. Also shown in the table are the hardwired costs with the

adjusted scores in parenthesis. Although the hardwired scores and their adjusted scores are higher than the

softwired costs for the network, the given network has the best hardwired cost among all the phylogenetic

networks with two or more reticulate vertices that we considered. In both the approaches, the network did

not have any redundant vertices.

While the softwired score can be used to compare networks directly, the hardwired scores can only be

used to compare networks with the same number of reticulate vertices. In both the approaches, the number

of reticulate vertices must be checked for redundancy. This will help place a bound on the number of

reticulate vertices that we allow in the networks.

6. CONCLUSION

In this article, we provided a dynamic programming solution to compute exactly the hardwired and

softwired parsimony scores on phylogenetic networks. As opposed to the hardwired approach, the sub-

problems that we consider for the softwired approach are finding the costs of each state at each vertex for

each subgraph by removing one reticulate edge each of the reticulate vertices reachable from the vertex.

We showed that although the subproblems are different, they can both be solved by the dynamic pro-

gramming approach using the same vertex traversal order. We also gave a reduction step that reduces both

the storage and time complexities of the algorithms.

We noticed that the two approaches have some properties that suggest the existence of simpler

algorithms. First, for binary states and binary cost-matrix, the softwired and hardwired scores are the

same; although, the number of solutions can differ. It is well known that the hardwired problem is

polynomially solvable. It would be interesting to derive a polynomial algorithm for the softwired

approach as well. Second, for planar graph and binary cost-matrix, it has been proven in Hartvigsen

(1998) that the hardwired problem is polynomially solvable. It would thus be possible to obtain an

algorithm for computing the hardwired score on phylogenetic networks, perhaps similar to the Fitch

algorithm (Fitch, 1971) for phylogenetic trees. Note that by Lemma 1, the networks that we consider

are planar.

Table 1. Parsimony Scores of the Network Shown in Figure 5

(i) (ii) (iii) (iv) (v)

Mitocondrial 477 745 746 907 (789)

Nuclear 560 1942 1915 2095 (1945)

Total 1037 2687 2661 3002 (2734)

Aligned mitocondrial and nuclear sequences of 57 taxa taken from

Camponotus maculatus species: (i) Sequence type; (ii) length of sequence; (iii)

tree cost; (iv) softwired network cost; and (v) hardwired network cost (adjusted

cost).

316 KANNAN AND WHEELER

F
IG

.
5

.
E

x
p

er
im

en
ta

l
re

al
d

at
a

sh
o

w
in

g
h

y
b

ri
d

iz
at

io
n

ev
en

ts
in

th
e

C
a

m
p

o
n

o
tu

s
m

a
cu

la
tu

s
sp

ec
ie

s
co

m
p

le
x

.
T

h
e

b
lu

e
an

d
re

d
ed

g
es

co
rr

es
p

o
n

d
to

th
e

sp
an

n
in

g
tr

ee
s

th
at

ar
e

m
o

st

p
ar

si
m

o
n

io
u

s
to

m
o

st
ch

ar
ac

te
rs

in
th

e
L

R
an

d
C

O
I

m
ar

k
er

s
re

sp
ec

ti
v

el
y

.

317

The algorithms provide us with the states at the reticulate vertices that fetch the optimal assignments. For

the softwired approach, this readily gives us a method to realize if a set of vertices are redundant.

Maximizing the size of the redundant networks helps us to realize a network with a minimum number of

reticulate vertices. For the hardwired approach, we provide a method to adjust the cost by removing a

reticulate edge for each reticulate vertex that has the highest traversal cost. This gives a score that is

comparable across different networks with different vertices, a feature that is readily available in the

softwired approach. Additionally, redundancy can also be incorporated in the hardwired approach after

the adjusted scores are found. Thus, we provide a method to compare network cost to navigate through the

space of networks. We also note that although the softwired approach in theory is more challenging to

tackle, we have a faster exact algorithm for this approach that readily gives a method to compare networks

based on the cost and also the number of redundant reticulate vertices. Methods such as these will help

search for the best networks with an optimum number of reticulate vertices, the next major challenge that

needs to be addressed to find the ‘‘Net of Life.’’

ACKNOWLEDGMENTS

We thank Nicolas Lucaroni for suggestions provided while implementing the algorithms. We sincerely

thank Ronald Clouse and Milan Janda for Camponotus sequence data, which were collected with the

following support: DARPA (W911NF-05-1-0271); Marie Currie Fellowship (PIOFGA2009-25448); Czech

Science Foundation (P505/10/0673; 206/09/0115); Czech Ministry of Education Grants (LC06073;

6007665801); and Putnam Expedition Grants (Museum of Comparative Zoology). We also thank Anupam

Kumar and Sameer Siddiqi, who filtered the dataset to a manageable size. This material is based upon work

supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under

grant number W911NF- 05-1-0271.

AUTHOR DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

Clouse, R.M., Janda, M., Blanchard, B., et al. 2013. Camponotus maculatus-group ants and biogeographic heteroge-

neity in the indo-pacific. (manuscript in preparation.)

Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., et al. 1994. The complexity of multiterminal cuts. SIAM Journal on

Computing 23, 864–894.

Edwards, A.W.F., and Cavalli-Sforza, L.L. 1963. The reconstruction of evolution. Annals of Human Genetics (also

published in Heredity 18, 553) 27, 105–106.

Erdös, P.L., and Székely, L.A. 1994. On weighted multiway cuts in trees. Math. Program. 65, 93–105.

Farris, J.S. 1966. Estimation of conservatism of characters by constancy within biological populations. Evolution 20,

pp. 587–591.

Fisher, M., Van Iersel, L., Kelk, S., et al. 2013. On computing the maximum parsimony score of a phylogenetic

network. Available at: http://arxiv.org/abs/1302.2430

Fitch, W.M., 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic

Zoology 20, 406–416.

Hartvigsen, D. 1998. The planar multiterminal cut problem. Discrete Applied Mathematics 85, 203–222.

Huson, D.H., Rupp, R., and Scornavacca, C. 2011. Phylogenetic Networks: Concepts, Algorithms and Applications.

Cambridge University Press, Cambridge, United Kingdom.

Kannan, L., and Wheeler, W.C. 2012. Maximum parsimony on phylogenetic networks. Algorithms Mol Biol. 7, 9.

Kluge, A.G., and Farris, J.S. 1969. Quantitative Phyletics and the Evolution of Anurans. Systematic Zoology 18.

Kronauer, D., Peters, M., Schoning, C., et al. 2011. Hybridization in East African swarm-raiding army ants. Frontiers in

Zoology 8, 20.

Moret, B.M., Nakhleh, L., Warnow, T., et al. 2004. Phylogenetic networks: modeling, reconstructibility, and accuracy.

IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 13–23.

318 KANNAN AND WHEELER

Nakhleh, L., Jin, G., Zhao, F., et al. 2005. Reconstructing phylogenetic networks using maximum parsimony. Pro-

ceedings of the 2005 IEEE Computational Systems Bioinformatics Conference, 93–102.

Sankoff, D. 1975. Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics 28, 3542.

Sankoff, D., and Rousseau, P. 1975. Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Progr. 9,

240–276.

Schrijver, A. 2003. Combinatorial Optimization - Polyhedra and Efficiency. Springer.

Seifert, B., Kulmuni, J., and Pamilo, P. 2010. Independent hybrid populations of formica polyctena xrufa wood ants

(hymenoptera: Formicidae) abound under conditions of forest fragmentation. Evolutionary Ecology.

Tuffley, C., and Steel, M. 1997. Links between maximum likelihood and maximum parsimony under a simple model of

site substitution. Bulletin of Mathematical Biology 59, 581–607.

Varón, A., Vinh, L.S., and Wheeler, W.C. 2010. Poy version 4: phylogenetic analysis using dynamic homologies.

Cladistics 26, 72–85.

Address correspondence to:

Dr. Lavanya Kannan

Division of Invertebrate Zoology and Richard Gilder Graduate School

American Museum of Natural History

New York, NY 10024

E-mail: lkannan@amnh.org

COMPUTING PARSIMONY SCORES ON PHYLOGENETIC NETWORKS 319

