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ABSTRACT

The construction of suffix trees for very long sequences is essential for many applications,
and it plays a central role in the bioinformatic domain. With the advent of modern se-
quencing technologies, biological sequence databases have grown dramatically. Also the
methodologies required to analyze these data have become more complex everyday, re-
quiring fast queries to multiple genomes. In this article, we present parallel continuous flow
(PCF), a parallel suffix tree construction method that is suitable for very long genomes. We
tested our method for the suffix tree construction of the entire human genome, about 3GB.
We showed that PCF can scale gracefully as the size of the input genome grows. Our method
can work with an efficiency of 90% with 36 processors and 55% with 172 processors. We can
index the human genome in 7 minutes using 172 processes.

1. INTRODUCTION

The number of completely sequenced genomes stored in the Genome Online Database has already

reached the impressive number of 2968. Currently, there are about 99 million DNA sequences in Genbank

and 8.6 million proteins in the UniProtKB/TrEMBL database. The GenBank database contains more than

100 Gbp, and it is generally believed that its size will double every 6 months (GeneBank, 2005). The size of the

entire human genome is in the order of 3 billion DNA base pairs, whereas other genomes can be as long as 16 Gbp.

In this scenario one of the most important needs is the design of efficient techniques to store and query

biological data. The most common full-text indexes are suffix trees (McCreight, 1976), suffix arrays

(Manber and Myers, 1993), and string B-trees (Ferragina and Grossi, 1999).

The suffix tree is one of the most studied data structures, and it is fundamental for string processing

(Gusfield, 1997). It stores strings in such a way that it enables the implementation of efficient searches. It

has been shown that the suffix tree has a myriad of virtues (Apostolico, 1985). Once a suffix tree is built, a

variety of operations can be implemented in optimal time, for example, to find the longest common

substring across different strings, to compute the matching statistics, to find all locations of a pattern, to

extract palindromes, and many others (Gusfield, 1997).

Traditionally the suffix tree has been used in very different fields, spanning from data compression (Ziv

and Lempel, 1997; Apostolico et al., 2006) to clustering (Zamir and Etzioni, 1998; Comin and Verzotto,

2011). The use of suffix trees has become very popular in the field of bioinformatics, allowing a number of
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string operations, like detection of repeats (Kurtz et al., 2001), local alignment (Meek et al., 2003), the

analysis of regulatory elements (Comin and Parida, 2008), and the discovery of extensible patterns

(Apostolico et al., 2010).

Suffix arrays have been introduced recently as a successful variant of suffix trees (Manber and Myers,

1993). In bioinformatics the use of suffix arrays has become immediately of great help as a valid substitute

of suffix trees (Abouelhoda et al., 2002). Several compressed variants have been proposed, also in the

specific context of genome indexing (Lippert et al., 2005). In terms of performance, expressiveness is

traded for lower memory footprint and improved locality. In general, suffix arrays are superior to suffix

trees on exact string matching and memory requirement; however, suffix trees are still widely used as they

allow operations otherwise burdensome with suffix arrays. Suffix arrays are not suitable for inexact

searches, and they do not allow inference of motifs as suffix trees do (i.e., Federico and Pisanti, 2009), even

in the exact case. Moreover, in bioinformatics, applications finding regularities, like transcription factor–

binding sites, and inexact searches are of great interest, for these reasons indexing genomic data on suffix

trees is still fundamental. For a comprehensive review on prospects and limitations of full text indexes in

genome analysis we refer the reader to Vyverman et al. (2012).

The optimal construction of suffix tree has already been addressed by Ukkonen (1995) and McCreight

(1976), which provided algorithms in linear time and space. The main issue is that the suffix tree can easily

exceed the memory available as the input sequence grows. Moreover these algorithms exhibit poor locality

of reference. Thus every time the suffix tree cannot be stored into the main memory these methods become

immediately unpractical because the I/O disk cost may dominate the construction time. These algorithms

cannot scale when the input is very large like, for example, the human genome (3 GB).

In recent years researchers have tried to remove this bottleneck by proposing disk-based suffix tree

construction algorithms (Hunt et al., 2002), TDD (Tata et al., 2004), ST-Merge (Tian et al., 2005), and

Trellis (Phoophakdee and Zaki, 2007). In general, the basic idea is to reduce the number of random access

to the tree, but these methods can work only if the size of the input string fits the main memory. The

complexity of these methods is no longer optimal, but the locality of reference improves over the classical

optimal construction algorithms. However, constructing the human genome suffix tree can still take several

hours in a workstation with 2 GB of main memory (Tian et al., 2005).

With the advent of modern sequencing technologies, biological sequence databases have grown dramati-

cally. Also the methodologies required to analyze these data have become more complex everyday. The

availability of different genomes has enabled a number of studies based on genome comparison. In this context

researchers may need to compare different genomes from the same or different species in order to search for

similarities or subtle differences. Thus, the ability to efficiently store and query these sequences can be of great

help. This can be achieved only if we are able to construct suffix trees for large sequences in a short time.

The current massively parallel systems have a small amount of memory per processing element, and in

the future, with clusters of GPUs, the available main memory per processing element will become even

smaller. Our algorithm is conceived such that every method can process more data than its available

memory.

Another issue of modern parallel systems is that they do not offer high disk I/O bandwidth, whereas they

do offer efficient network communication bandwidth among processing elements. Also the amount of total

main memory can be very high and coupled with the network performance this can be a great advantage for

the development of parallel applications.

We propose a parallel algorithm for the construction of suffix trees with the following properties:

� All previous algorithms need to preprocess the input data in order to find the best way to partition the

workload. This step is inherently sequential and for long sequences can take several minutes (Mansour

et al., 2011). We are the first able to parallelize this step so that all processes will start working

immediately without any preprocessing of the data.
� In the context of parallel algorithms all methods internally construct sub-suffix trees. We are the first to

use suffix arrays instead. Suffix arrays are always smaller than suffix trees. This will reduce the amount

of data being exchanged among the processes.
� In all previous algorithms the final merge phase can start only when all previous steps have computed

all subtrees. In our algorithm all phases can start as soon as some data is produced by the previous

steps. This can be achieved because all steps process the data on-line, reading it sequentially, in a

predetermined ordered sequence with no back-tracks or random accesses. For this reason, every
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computing element can process more data than the available memory, without resorting to costly I/O

disk operations. Thus for every step of our algorithm we do not require the data to fit into main

memory because processes can start working just with a little portion of the data.

The rest of the article is organized as follows. In the next section we review the other suffix tree

construction methods, we discuss our parallel method in section 3, and we conclude with an experimental

evaluation of the proposed algorithm in Section 4.

2. PRELIMINARIES ON SUFFIX TREES

Let S denote a set of characters. Let S = s0‚ s1‚. . . ‚ sN - 1$, with si 2 S, denote an input string of length N,

where $ =2S. The suffix tree for S is a data structure organized as a tree that stores all the suffixes of S. In a

suffix tree all paths going from the root node to the leaf nodes spell a suffix of S. The terminal character $ is

unique and ensures that no suffix is a proper prefix of any other suffix. Therefore, the number of leaves is

exactly the number of suffixes.

The optimal construction of suffix trees has been addressed by Ukkonen (1995) and McCreight (1976).

These methods perform very well as long as the input string and the resulting suffix tree fit in main

memory. For a string S of size N, the time and space complexity are O(N), which are optimal. However,

these optimal algorithms suffer from poor locality of reference. Once the suffix tree cannot fit in main

memory, these algorithms require expensive random disk I/Os. If we consider that the suffix tree is an order

of magnitude larger than the input string, these methods become immediately unpractical.

2.1. Construction in external memory

To address this issue several methods have been proposed over the years. In general they all solve this

problem by decomposing the suffix tree into smaller subtrees stored on the disk. Among the most important

work we can cite (Hunt et al., 2002), TDD (Tata et al., 2004), ST-Merge (Tian et al., 2005) and Trellis

(Phoophakdee and Zaki, 2007). TDD and ST-merge partition the input string into blocks of size N/K. For

all partitions a subtree is built. A final stage merges the subtrees into a suffix tree. This phase needs to

access the input string in a nearly random fashion. ST-merge improved the merge phase of TDD by

computing the LCP (longest common prefix) between two consecutive suffixes. However the overall

performance improvement was weak. In Trellis, the authors proposed an alternative way to merge the data.

Subtrees that share a common prefix are merged together. However this requires the input string to fit in

main memory otherwise the performance drops dramatically.

Only recently two methods solved this issue, Wavefront (Ghoting and Makarychev, 2009) and B2ST

(Barsky et al., 2011). The first will be reviewed in the next subsection. The latter is the first to use internal

suffix arrays instead of suffix trees, and it is also one of the best performing methods. In Section 3 we will

describe in more details how we rearchitected this method to scale on a large computing facility.

2.2. Parallel methods

The parallel construction of suffix trees on various abstract machines is a well-studied topic (Apostolico

et al., 1998; Hariharan, 1994). Similarly to the optimal serial algorithm, these methods exhibit poor locality

of reference. As a consequence they are inefficient when the input string does not fit in main memory. This

problem has been addressed by Farach-Colton et al. (2000) that provide a theoretically optimal algorithm.

However, due to the intricacy of the method, a practical implementation does not exist.

The only practical parallel implementations of suffix tree construction are Wavefront (Ghoting and

Makarychev, 2009) and ERa (Mansour et al., 2011). Wavefront splits the sequence S into independent

partitions of the resulting tree. The partition phase is done using variable length prefixes, so that every

partition starts with the same prefix. This ensures the independence of the subtrees that can be easily

merged. To reduce the cost of expensive I/O, Wavefront reads the string sequentially. However, the cost of

partitioning the string into optimal subtrees can be very high. The authors implement two versions of

Wavefront, serial and parallel. The parallel version runs on IBM BlueGene/L supercomputer, and it can

index the entire human genome in 15 minutes using 1024 processes. So far this is the best time for a large

parallel system.
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Similarly to Wavefront, ERa (Mansour et al., 2011) divides the string first into independent subtrees.

Subtrees are then further divided into partitions, such that each partition can be processed in memory. This

method is very similar to Wavefront, but the performance of its parallel implementation is poor. In fact with

16 processes this method operates with an efficiency of 53%. We argue this is a very small number

considering that it was obtained with just 16 processes.

3. PARALLEL CONTINUOUS FLOW:
PARALLEL SUFFIX TREE CONSTRUCTION

In this section we present our parallel suffix tree construction algorithm called parallel continuous flow

(PCF). We describe how we redesigned the best method to construct suffix trees for very large input in

external memory B2ST (Barsky et al., 2011) to achieve better performance on a massively parallel system

like MareNostrum (Marenostrum, 2012). We begin with a brief description of this method. The basic idea

is that the suffix tree of S can be constructed from the suffix array of S and an additional structure that stores

the LCP. It has been shown by Farach-Colton et al., (2000) that the conversion from suffix array to suffix

tree can be performed in linear time. This translation can be implemented efficiently also for large strings

because it exhibits good locality of reference. In particular the output suffix tree can be computed se-

quentially while reading the input suffix array, in a streaming fashion, thus avoiding random access to both

data structures. The main problem of this approach is to compute the suffix array of the whole input string.

Similarly to the other disk-based methods, B2ST divides this problem into smaller ones. At first the input

string is divided into k partitions of equal size N/k. The size of the partitions depends on the memory

available and for whole genomes in a serial environment the number of partitions is typically in the range [3,

6]. At the end of each partition, except the last one, a tail is attached, which is the prefix of the next partition.

This tail must never occur within the partition and it is required to compute the order of the suffixes within a

partition. For example, in Table 1 the string S = ababaaabbabbbab is divided into three partitions of size

five. The first partition is composed of the string ababa followed by the tail aa. The substring aa is the

shortest prefix of the second partition that does not occur in the first one. This will allow us to order each

suffix for each partition. The suffix arrays, SAi, of each partition i are shown in the last row of Table 1.

Once we have built all suffix arrays, one per partition, we need to combine them. This is necessary to

establish the relative order of all suffixes. Thus in this second step we generate the suffix arrays SAij for each

pair of partitions. We use as input the suffix arrays SAi and SAj to build the partitions pair suffix array SAij,

along with the LCP length for each suffix. The LCP is the length of the longest common prefix of each suffix

in SAij with its predecessor. This will be used in the final merge phase to order all suffixes. In Table 2 the first

two partitions, A and B, from the previous example are combined. This generates the suffix array SAAB of size

jSAAj + jSABj = 10, and two other data structures: the LCP array and the partition array. We can observe that

by using the latter two data structures and the suffix arrays SAA and SAB we can construct the partition pair

suffix array SAAB. Thus the output of this step is the order array OAAB that is composed by the arrays LCP

and partition. We don’t need to store explicitly SAAB since it can be obtained from the output of this step.

After the second step we have produced k suffix arrays SAi, one per partition, of total size N and k(k - 1)/2

order arrays OAij of total size kN. It is important to notice that all arrays, since they are already ordered, will

be scanned sequentially and thus the final suffix tree will be produced in a similar manner. This property

ensures good locality of reference since no random access on the data will be performed. This is crucial for

the design of our parallel algorithm.

Table 1. An Example of Partitions

Partition A Partition B Partition C

S a b a b a a a b b a b b b a b

pos 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

SA 5 3 1 4 2 1 2 5 4 3 4 5 3 2 1

An example of partitions of size 5 for the input string S = ababaaabbabbbab. The first partition

is ababa, followed by the tail aa, which does not occur within the partition. In the last row are the

suffix arrays, SA, for each partition.
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In order to parallelize the above procedure we need to carefully analyze the data dependencies. A

summary of the data flow can be found in Figure 1. As already observed, the number of partition pairs

grows like k(k - 1)/2, whereas the overall data grows like kN. If we analyze the performance reported in

Barsky et al. (2011), we can observe that the suffix tree construction for the human genome requires about 3

hours on a modern workstation. Moreover, from the data in Barsky et al. (2011), the most demanding task is

the construction of the ordered arrays OAij, which account for 95% of the time.

Another aspect that we need to take into consideration is the order by which the data is needed at each

phase. As already discussed, some steps will process the data sequentially. For example, the construction of

the ordered array OA1,2 will need the suffix arrays SA1 and SA2, but to compute the smallest suffix in OA1,2

we need only the smallest suffixes of SA1 and SA2. Thus the construction of OA1,2 can start as soon as the

smallest suffixes of SA1 and SA2 are received. Similarly, in the final merge the global smallest suffix can be

discovered as soon as the smallest suffixes for all ordered arrays are computed.

To map tasks to processes we take into account the most demanding task, the computation of the

order arrays. We choose to allocate k(k -1)/2 processes to construct the order array OAij. Thus each of

these processes will compute one order array. In principle we can reuse k of these processes to compute

also the suffix arrays, SAi, but this solution has the drawback that all of these k processes have to finish

computing the suffix arrays before they can construct also the ordered array, thus the distribution of

workload can be highly unbalanced. Moreover, with this configuration we could not exploit the

property of sequential data accessing already described. For this reason we decide to allocate additional

k processes that are dedicated to the construction of suffix arrays SAi. Similarly one more process will

collect the ordered array and merge the partial results into the final suffix tree. To summarize if k is the

FIG. 1. A workflow of the data dependencies of B2ST.

Table 2. An Example of Suffix Arrays of a Pair of Partitions

Suffix start 5 1 3 1 2 5 4 2 4 3

Partition A B A A B B A A B B

LCP 0 2 1 3 2 3 0 2 3 1

An example of suffix arrays of the pair of partitions A and B. The first two rows represent the

suffix array SAAB, where the first row is the position of the suffix within the partition and the

second row identifies the partition. The last row is the length of the LCP between two consecutive

suffixes. The last two rows, Partition and LCP, will form the ordered array OAAB. LCP, longest

common prefix.
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number of partitions, our algorithm will use k(k - 1)/2 + k + 1 processes. We will call the processes that

compute the suffix arrays SAi, type I; those that construct the ordered arrays OAij, type II; and the

process that merges the partial results into the suffix tree, type III.

To achieve better scalability we need to make sure that every process receives a continuous flow of data.

This flow should be adequate to maintain active computation of all processes at all times. Moreover, we

implement all communications with asynchronous nonblocking primitives, like MPI_Isend, to achieve

overlap between communication and computation, so that every process can continue the computation

while the network is taking care of the data transfer. For that purpose we need to allocate a series of buffers

to keep the in-flight data (data already sent but not yet received at destination) and manage them wisely to

orchestrate the continuous flow and maximize parallelism. Next we describe in more detail the main

algorithm and the different types of processes.

Main algorithm: The main algorithm divides the processes into different types and calls the appropriate

procedures. It also prepares the partitions of S for type I and type II processes. The string S is read

collectively by all processes. The use of MPI’s collective I/O primitives allows better performance, es-

pecially when the input string is large. These collective I/O operations ensure that the same copy of the

string is not read multiple times.

Type I process: These processes construct the suffix array SAi for the partition i. The output SAi is

computed in whole using one of the best performing tools by Larsson and Sadakane (2007). The SAi is then

divided into the subsuffix arrays SubSAi. The subsuffix array SubSAi will contain a portion of SAi of fixed

size BuffSize. The data contained in SubSAi is then sent to type II and III processes.

This procedure uses nonblocking MPI_Isend to send SubSAi to the other processes. In order to implement

this paradigm we need to store the inflight data (not yet received at destination) in a temporary buffer. The

number of messages stored in this buffer may affect the overall performance, because the other types of

processes that require this data will have different computing loads, thus we need to be able to provide the data

as soon as it is needed. For this reason we allocate MemForComm bytes for the communication buffer. This

temporary buffer tmpBuff contains up to numBuff messages of size BuffSize. The buffer tmpBuff is im-

plemented as a circular pool of buffers where we can keep the inflight messages and control its correct arrival

at the destination through the variables first, last and the vector of message status handle. This pool of buffers

allows us to wait for message completion (using the handle) only when strictly necessary, that is, when we are

running out of buffers, reducing unnecessary synchronization to keep the continuous flow of data and exploit

parallelism as much as possible. However, memory is a limitation and some experiments have been performed

to find out the right amount of temporary space and buffer size to maximize performance.

Type II process: The type II processes will take as input the subsuffix arrays SubSAi and SubSAj and build the

ordered array OAij. The procedure ComputeSubOA constructs the ordered array until BuffSize bytes are produced.

The ordered array OAij is the suffix array of the pairs of partitions i and j. Since SAj has already been

computed by some process, the construction of OAij is equivalent to the extension of SAj by adding the

partition i to the left of the already indexed partition j. The dynamic extension of suffix arrays has already

been addressed in Salson et al. (2010). Moreover, in Urbanovich and Ajtkulov (2011) the authors propose a

simplified version where a string is appended to the left. They provide an implementation that is based on

the results of Salson et al. (2010). We use the basic operation of this method to compare two suffixes using

the two input partitions and a data structure called an inverted suffix array. The comparison of two suffixes

and the corresponding update of the suffix array require in total O(log2n) time (Urbanovich and Ajtkulov,

2011). The suffixes of SubSAj are inserted incrementally into SubSAi. Note that the relative order of all

suffixes in SubSAi and SubSAj will be preserved in OAij.

Similarly with the type I processes the data is kept into a temporary buffer called tmpOAij and sent to type III

using nonblocking MPI_Isend primitives. In this case, we don’t need to store several messages because the only

process that will need this data is the type III. It is enough to allocate two buffers so that when the data is stored

for communication in the first buffer the process can continue working on the second one. While constructing

the ordered arrays ComputeSubOA also consumes the input sub-suffix arrays. Every time one of the two arrays

is empty we will require more data from the corresponding type I process.

Type III process: The type III process will merge the data and produce the suffix tree. The main task is

to order all suffixes so that we can incrementally construct the suffix tree from the ordered list of suffixes.

To do that, we need to compare the suffixes in all arrays SAi. Since these arrays are already ordered this
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process can start as soon as the first subSAi are produced by all type I processes and the correspondent pairs

of subordered arrays subOAij from type II processes. For this reason, we allocate the space to receive k

subSAi of dimension BuffSize and k(k - 1) subordered arrays subOAij. Now given all these data we can

efficiently search for the smallest suffix among the top elements in subSAi. Every time we compare two

suffixes, if they are within the same partition they are already ordered. Thus we can output the relative order.

On the other hand, say one is from SubSAi and the other from SubSAj, it is enough to check the top element

in the order array subOAij and output the suffix encoded in the partition vector. Every time a new smallest

suffix, newSuff, is discovered it is inserted into the final output buffer subST. This buffer of size Out-

putBuffSize contains the partial suffix tree constructed so far; when it is full it is written to the disk. Once a

new suffix, from partition partId, is discovered we need to advance a pointer in the corresponding sub-

SApartId. Similarly also for all k - 1 subOAj,partId that involve the partition partId. If one of these pointers

reaches the end of the corresponding array we refill it with a new MPI_Recv until no more data is available.

3.1. Workflow analysis and complexity

To better highlight the properties of our parallel algorithm, Figure 2 presents a workflow. In this diagram we

can see the different types of processes along with the data they produce. For type I and II processes, every

chunk of data represents BuffSize bytes, whereas the data chunks of type III process are of size OutputBuffSize.

In this figure we can appreciate how the different processes cooperate in the suffix tree construction.

Main(Input: S, MemForComm, BuffSize, OutputBuffSize)

1: i = MPI_Rank();

2: P = MPI_Size();

3: if i >= 0 and i < k then

4: Read the ith partition of string S

5: ProcTypeI(MemForComm,BuffSize,P)

6: end if

7: if i >= k and i < P - 1 then

8: Read the ith partition of string S

9: ProcTypeII(BuffSize)

10: end if

11: if i == P - 1 then

12: ProcTypeIII(BuffSize,OutputBuffSize)

13: end if

Pseudocode 1: Main Algorithm

FIG. 2. The dataflow of our parallel algorithm, Parallel continuous flow (PCF).
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Pseudocode 2: process TypeI

ProcTypeII(Input: BuffSize; Output: OAij)

1: subSAi ) alloc(BuffSize);

2: subSAj ) alloc(BuffSize);

3: tmpOAij ) alloc(BuffSize * 2);

4: first = last = 0; Pointers to the of buffer tmpOAij

5: MPI_Recv(i, subSAi, BuffSize);

6: MPI_Recv(j, subSAj, BuffSize);

7: while SAi and SAj are not finished do

8: tmpOSAij[last] ) ComputeSubOA(subSAi,subSAj);

9: if subSAi is empty then

10: MPI_Recv(i, subSAi, BuffSize);

11: end if

12: if subSAj is empty then

13: MPI_Recv(j, subSAj, BuffSize);

14: end if

15: handle[last] = MPI_Isend(P - 1, tmpOAij[last], BuffSize);

16: last = (last + 1)%2;

17: if first = = last then

18: MPI_Wait(handle[first]);

19: first = (first + 1)%2;

20: end if

21: end while

Pseudocode 3: process TypeII

ProcTypeI(Input: MemForComm, BuffSize, P; Output: SAi)

1: ptrToSA = 0;

2: SAi ) alloc(Size);

3: numBuff = MemForComm/BuffSize;

4: tmpBuff ) alloc(BuffSize * numBuff);

5: handle ) alloc(MPI_RequestSize * P * numBuff);

6: first = last = 0; Pointers to the pool of buffers tmpBuff

7: Compute(SAi);

8: while partition i is not finished do

9: ptrToSA ++ ;

10: if ptrToSA%BuffSize = = 0 then

11: tmpBuff [last] ) SAi[ptrToSA];

12: for each process p in P that needs SAi do

13: handle[last][p] = MPI_Isend( p,tmpBuff [last],BuffSize);

14: end for

15: last = (last + 1)%numBuff ;

16: if first == last then

17: MPI_WaitAll(handle[first]);

18: first = (first + 1)%numBuff ;

19: end if

20: end if

21: end while
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Pseudocode 4: process TypeIII

The construction of a suffix array takes O(NlogN) time in total for the k partitions. In our parallel algorithm

this phase is computed by k type I processes, thus the complexity is O((N/k) log(N/k)). The k(k - 1)/2 order

array can be built in total time of O((kN) log2(kN)). The k(k -1)/2 type II processes in O((N/k) log2(N/k)) time

construct all order arrays. Thus the worst case complexity of these two phases is O((N/k) log2(N/k)), but the

number of processes P = k(k - 1)/2 + k + 1 scale like O(k2), thus overall the complexity is

O((N=
ffiffiffi

P
p

) log2 (N=
ffiffiffi

P
p

)). This worst case complexity is O( log2 (N=
ffiffiffi

P
p

)), worse than that of other algorithms

like Ghoting and Makarychev (2009) and Mansour et al. (2011). However, it is worth noting that although the

worst case complexity does not scale linearly with P, in real applications the construction time scales almost

linearly with the number of processes. This relates to the fact that the depth of a suffix tree is in the worst case

O(N), whereas, for real data like genomes it can be as small as O(log N).

ProcTypeIII(Input: BuffSize, OutputBuffSize; Output: SuffixTree)

1: subST ) malloc(OutputBuffSize);

2: SAptr ) alloc(k * integer);

3: OAptr ) alloc(k * (k - 1)/ 2 * integer);

4: for each i from 1 to k do

5: subSAi ) alloc(BuffSize);

6: MPI_Recv( pi, subSAi, BuffSize);

7: S Aptr[i] = 0;

8: end for

9: for each i from 1 to k do

10: for each j from i + 1 to k do

11: subOAij ) alloc(BuffSize);

12: MPI_Recv( pij, subOAij, BuffSize);

13: OAptr[i,j] = 0

14: end for

15: end for

16: while String S is not processed do

17: newSuf ) FindSmallestSuffix(all subSAi, all subOAij)

18: partId ) ParitionOf (newSuff )

19: SAptr[partId] ++
20: if SAptr[partId] == BuffSize then

21: MPI_Recv( pi,subSAi, BuffSize);

22: S Aptr[partId] = 0;

23: end if

24: for each partition i < partId do

25: OAptr[i, partId] ++ ;

26: if OAptr[i, partId] == BuffSize then

27: MPI_Recv( pi,partId, subOAi,partId, BuffSize);

28: OAptr[i, partId] = 0;

29: end if

30: end for

31: for each partition i > partId and i < k do

32: OAptr[partId, i] ++ ;

33: if OAptr[partId, i] == BuffSize then

34: MPI_Recv( ppartId,i, subOApartId,i, BuffSize);

35: OAptr[partId,i] = 0;

36: end if

37: end for

38: subST ) Insert(newSuf)

39: if sizeOf (subST) == OutputBuffSize then

40: Write(subST) / Disk

41: empty(subST)

42: end if

43: end while
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4. EXPERIMENTAL EVALUATION

This section presents the results of our performance evaluation. All the experiments were conducted in

the MareNostrum supercomputer (Marenostrum, 2012). MareNostrum is a cluster of 2560 JS21 blades,

each of them equipped with two dual-core IBM PPC 970-MP processes at 2.3GHz, which share 8 GBytes

of main memory. Each core has a 64 KByte instruction/32 KByte data L1 cache and 1024 KBytes of L2

cache. The blades run the SLES10 (Linux) operating system. The interconnection network is Myrinet.

Myrinet cards have 2 Gbits/s of interconnection speed. Our implementation uses MPI as message passing.

The MPI implementation running on MareNostrum is MPICH (Gropp et al., 1994), configured for running

on top of the MX (Myrinet Express) driver. Our method, parallel continuous flow (PCF), is implemented in

C ++ using MPI primitives for communication.

4.1. FINE TUNING/MEMORY

As detailed in the previous section, our parallel algorithm includes as parameters the sizes of two buffers.

The first one, BuffSize, controls the size of messages that are being exchanged; the second, Out-

putBufferSize, determines the output file size. We analyzed the best configuration while varying these

parameters. In Figure 3, we report the times to construct the suffix tree of a string of 500 Mb, drawn from

the human genome, using 37 processes (8 partitions). In general, if the size of messages is small the

communication overhead degradates the performance. Similarly, if the output buffer is too small it

increases the frequency of disk writings and reduces the efficiency. However, bigger buffer sizes result in

less frequent communication, which may limit the continuous flow of data and hinder load balancing,

therefore reducing the overall parallelism of the application. We tested several configurations of these

parameters, and after an extensive comparison, we found that messages of size 5 to 10 MB and an output

buffer of size 75 to 100 MB are in general the best choice. These settings are also the best performing

for longer inputs (data not shown). Based on these observations we set BuffSize to 10 MB and Out-

putBufferSize to 100 MB.

FIG. 3. Construction times for the 500 MB genome with 37 processes (eight partitons) while varying the parameters

BuffSize and OutputBuffSize.
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4.2. RESULTS

We measure execution times for three different data sets of different sizes; all data sets are drawn from

the human genome. We used 43 nodes (172 processes) for our experiments. Each experiment was run six

times, and the average value was taken. Unfortunately, the code of Wavefront was not available because of

IBM policy, the method ERa was only recently published, and MareNostrum has been recently dis-

assembled and is no longer available. To this end, we compare our methods using only the information

available from other articles.

For each different data set, we study different allocations for the memory budget—60D/40C indicates

that 60% of the memory budget is reserved for the application data, while the remaining 40% is used for

internal communication buffers. Our algorithm works in-memory, and hence the memory is a limitation. To

be able to execute the algorithm in-memory, each process needs to maintain in main memory different data

structures: (i) the application data, which includes the input string blocks of one partition Si; part of the

suffix arrays, SubSAi; part of the ordered arrays, SubOAij; and part of the suffix tree, SubST; and (ii) the

communication buffers. In order to exploit parallelism we need to manage the communication asynchro-

nously, and for that purpose, we need to choose an appropriate value for MemForComm. The application

data that needs to be stored in each process is fixed by the input data set and the number of processes, but we

can control how much of these data we keep in memory at a time. Working with data chunks that are too

small will result in less memory locality, while if the granularity is too big the amount of parallelism will be

reduced. At the same time the amount of memory devoted to data will condition how much communication

buffers we can allocate; increasing the communication buffers will avoid unnecessary synchronization and

thus increase parallelism up to a certain limit, where more buffers will not benefit anymore because no more

parallelism can be achieved. Figures 4, 5, and 6 illustrate that the optimal combination is 60D/40C. Less

memory used in communication buffers means less exploitation of the application parallelism, and the

application becomes communication bounded; however, if more memory is used in communication buffers,

the application becomes computation bounded. The measurements show that our algorithm scales up to a

certain threshold for every size of the data set. The small size data set (500 Mb) scales up to 46 processes

FIG. 4. Execution times for different memory allocations and efficiency for the best memory allocation (60D/40C) as

we increase the number of processes—dataset human genome of size 500 MB.
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FIG. 5. Execution times for different memory allocations and efficiency for the best memory allocation (60D/40C) as

we increase the number of processes—dataset human genome of size 1000 MB.

FIG. 6. Execution times for different memory allocations and efficiency for the best memory allocation (60D/40C) as

we increase the number of processes—dataset whole human genome 3 GB.
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(Fig. 4), up to 106 processes for medium size (1000 Mb) (Fig. 5), and up to 172 for the whole human genome

(3000 Mb) (Fig. 6). We attribute this scalability threshold to the inherent parallelism limit of the application.

We compute the relative efficiency as Efficiency(p) = PCF(p0)�p0

PCF(p)�p , where p is the number of processes and

PCF( p) is the construction time with p processes. Ideally, p0 should be one and PCF( p0) should be the

runtime for the serial algorithm. However, big data sets do not run on a single process due to memory

limitations; therefore, we take into account the smallest configuration that is possible to run, which is p0,

being PCF( p0) the runtime with this configuration. For the whole human genome, the smallest configu-

ration is the run with three processes. Thus, in this case the relative efficiency with p processes is

Efficiency(p) = PCF(3)�3
PCF(p)�p.

The efficiency is close to 90% for small configurations (up to 36 processes for the whole human

genome), and it is slightly decreasing as we scale up, due to the parallelization overhead, until it

reaches the point where it starts degrading because of the inherent limit of parallelization in the

application. For 172 processes we get 55% efficiency (Fig. 6). Similar results are also obtained for

the other datasets (Figs. 4 and 5). We argue that the efficiency is relatively good, given the I/O

intensive nature of the suffix tree construction. For example, the efficiency of ERa (Mansour et al.

2011) drops very quickly, and the best performance reported an efficiency of 53%, but with just 16

processes.

In the last experiment we test the weak scalability, where the ratio between the size of the input and the

number of processes is constant. We vary the input from 50 MB for 3 processes to 3 GB for 172 processes.

In the ideal case, the construction time should remain constant; this can only happen with embarrassingly

parallel problems with no data dependencies where no communication overhead or serial computation parts

are present. Figure 7 shows that the construction time of PCF increases linearly with the number of

processes. In the same test, the performance of WaveFront grows more than linearly. Only ERa has a

similar behavior but with a steeper inclination (see Figure 13 of Mansour et al. 2011). This is very

important for real applications, when the input strings can be very long.

PCF constructs the whole human genome suffix tree in 425 seconds, about 7 minutes, and uses 172

processes in our testing platform. We argue that this is a very good performance compared with the

bibliography. In Ghoting and Makarychev (2009), a time of 880 seconds, 15 minutes, is reported but it

requires Blue Gene/L and 1024 processes, similarly in Mansour et al. (2011), a time of 11.3 minutes is

reported with 16 machines, each with one dual-core Intel CPU at 3.33GHz and 8 GB RAM. However, these

are absolute times on different platforms and thus cannot be directly compared.

FIG. 7. Weak scalability as we increase the input size from 50 MB for 3 processes to 3 GB for 172 processes.
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5. CONCLUSIONS

The construction of suffix trees for very long sequences is essential for many applications, and it plays a

central role in the bioinformatic domain. With the advances in sequencing technologies, the amount of

biological sequences available in genome and proteome databases has grown dramatically. Therefore, it is

essential to have fast methods to build suffix trees. In this article, we presented parallel continuous flow

(PCF), a parallel suffix tree construction method that is suitable for very long strings. We tested our method

for the suffix tree construction of the entire human genome, about 3 GB. We showed that PCF can scale

gracefully as the size of the input string grows. Our method can work with an efficiency of 90% with 36

processes and 55% with 172 processes. We can index the entire human genome in 7 minutes using 172

processes. To the best of our knowledge this is the fastest existing method in terms of absolute time.
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