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ABSTRACT

Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups
is important for investigating evolutionary history, for speeding up web-based similarity
searches, for identifying sequence determinants of protein function, and for genome anno-
tation. However, whether or not a particular hierarchy is optimal is often unclear, and
independently constructed hierarchies for the same domain can often differ significantly.
This article describes methods for statistically evaluating specific aspects of a hierarchy, for
probing the criteria underlying its construction and for direct comparisons between hier-
archies. Information theoretical notions are used to quantify the contributions of specific
hierarchical features to the underlying statistical model. Such features include sub-
hierarchies, sequence subgroups, individual sequences, and subgroup-associated signature
patterns. Underlying properties are graphically displayed in plots of each specific feature’s
contributions, in heat maps of pattern residue conservation, in ‘‘contrast alignments,’’ and
through cross-mapping of subgroups between hierarchies. Together, these approaches
provide a deeper understanding of protein domain functional divergence, reveal un-
certainties caused by inconsistent patterns of sequence conservation, and help resolve con-
flicts between competing hierarchies.
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1. INTRODUCTION

The manner in which evolutionarily related protein domains have functionally diverged from an

ancient common ancestor is typically investigated by constructing a phylogenetic tree (Felsenstein,

2004). Such trees rely on sequence similarity to model the hierarchical relationships between proteins

conserving that domain. Each leaf node in the tree corresponds to an actual sequence, each internal node

corresponds to a hypothetical ancestral sequence, and each subtree typically corresponds to functionally

related proteins that presumably share similar biochemical and biophysical properties.

However, given that many classes of protein domains contain thousands of sequences, modeling protein

functional divergence in this way is problematic for the following reasons. (i) Finding the optimal tree is

extremely challenging computationally. (ii) The optimal tree is unlikely to correspond to the evolutionarily
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correct tree because of the typically very large number of nearly equally likely alternative trees. (iii) It is

difficult to justify such high-complexity models. (iv) It is unclear what biological insight such large trees

provide. (v) Such a tree fails to reveal those amino acid residues likely responsible for the biological

properties associated with specific divergent functions.

An alternative approach to constructing large sequence-level trees is to model a set of related protein

domains as hierarchically arranged clusters of biologically similar subgroups. This approach is used, for

example, in the construction of the National Center for Biotechnology Information (NCBI) Conserved

Domain Database (CDD) (Marchler-Bauer et al., 2003, 2011). A basic assumption underlying this ap-

proach is that ancient protein domains have diverged into functionally related subgroups, each of which

conserves similar biologically relevant properties. These conserved properties are presumably reflected at

the sequence level as conserved residue signatures distinctive of each divergent subgroup.

NCBI conserved domain hierarchies are created through manual curation in the light of sequence

alignments, phylogenetic trees, structural data, and the published literature—though we recently developed

a heuristically based approach to generate such hierarchies automatically (Neuwald et al., 2012). Moreover,

our recent article in this journal (Neuwald, 2014) describes a procedure for obtaining an optimal or nearly

optimal domain hierarchy via Bayesian Markov chain Monte Carlo (MCMC) sampling (Liu, 2008). This

approach takes as input a multiple alignment of, in principle, every available sequence for a given protein

domain. It searches for an optimal hierarchy by probabilistically adding and removing nodes, moving nodes

up and down the hierarchy, moving sequences between nodes, and redefining the residue patterns dis-

tinctive of each divergent subgroup. MCMC sampling is necessary because often the number of possible

hierarchies and the number of the associated sequence and pattern assignments are astronomical and thus

cannot be enumerated exhaustively.

The nature of a hierarchy for a given domain depends, of course, on the individual constructing it and on

the methods used. This raises the question of whether or not a given hierarchical configuration is optimal or

nearly so. Moreover, even when a hierarchy is optimal, inherent statistical uncertainties will remain,

thereby raising questions regarding the level of support for various features of the hierarchy: With what

confidence may a specific sequence be assigned to a specific subgroup? Do all of the sequences assigned to

a specific subgroup share the features of that subgroup in roughly equal measure or is there considerable

variability between sequences? Which signature residues most distinguish a functionally divergent sub-

group from closely related subgroups? Which subgroups have most strikingly diverged in sequence (and

presumably in function)? Do certain sequences have unusual features, such as conserved residues char-

acteristic of a subgroup, but not of an ancestral supergroup? (Such inconsistent features may occur in

proteins that, for example, are related to and conserve the biochemical properties of a specific subgroup

within an enzyme class but that lack the catalytic activity characteristic of that class.) Given two inde-

pendently derived hierarchies, what characteristics do they share and in what respect do they differ and

why? Is one hierarchy more correct than another, or do they merely provide different perspectives and thus

reveal different aspects of underlying biological properties? (For example, given the nature of biology, an

ensemble of nearly optimal hierarchical configurations may be of approximately equal biological rele-

vance.) This article describes statistically based approaches that can address such questions.

2. BACKGROUND

The statistical model for protein domain hierarchies is described in a previous article (Neuwald,

2014) and thus is merely summarized here. Such a model is illustrated in Figure 1, as follows: Figure 1A

shows a protein domain hierarchy consisting of N = 12 nodes and of M = 12 functionally divergent

subgroups, each of which corresponds to a subtree. (We also allow, though not here, N s M, which

corresponds to a graph other than a tree.) Figure 1B shows how the divergent sequence constraints for each

of these subgroups are quantified. This involves defining, for each subtree, a tri-partitioning of the nodes in

the hierarchy into (i) the subtree itself (termed the ‘‘foreground’’), (ii) other, closely related nodes (termed

the ‘‘background’’), and (iii) the remaining (nonparticipating) nodes. More specifically, the background

corresponds to the rest of the subtree rooted at the parent of the foreground subtree for each tri-partition.

Each tri-partition is also termed a ‘‘contrast alignment’’ because it reveals how the foreground aligned

sequences diverge from or contrast with the background sequences. The background for the main tree

(rooted at node 1 in Fig. 1A) is based on random sequences. The collection of such hierarchically arranged
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contrast alignments (one for each subtree within the tree) identifies the distinguishing patterns (illustrated in

Fig. 1C) associated with each functionally divergent subgroup within the protein class.

The probability distribution associated with this hierarchical model is defined (logarithmically) by

log P(X‚Y‚ a‚ A‚ H‚ S) =
XM

h = 1

X
z=2H0

h

X
i2Sz

Xk

j = 1

Æ log hh‚ j‚ xijæ +
XM
h = 1

X
z2H +

h

X
i2Sz

Xk

j = 1

IAh‚ j
Æ log

hah
h‚ j

hh‚ j

‚ xijæ
+ log p(Y) + log p(a) + log p(A) + log p(H) + log p(S) (1)

where X is an n · k matrix representing an alignment of k columns and n sequences; xi,j is a bitwise

vector specifying the residue observed in the ith sequence and the jth column; Y is an h · j matrix of

vectors representing the position-specific amino acid compositions for each of the foreground and

background partitions; at nonpattern positions, the vector hj corresponds to the overall (foreground and

background) composition; hah

h‚ j � (1 - ah)hh‚ j + ahdAh‚ j
models the foreground composition at pattern po-

sitions, where hh‚ j � (hAh‚ j
‚ h(Ah‚ j)

c)
T

is the background ‘‘functional’’ and ‘‘nonfunctional’’ residue fre-

quency vector for column j, where the parameter ah specifies the expected background ‘‘contamination’’

at pattern positions in the foreground, and where dAh‚ j
is a bit vector specifying the pattern residues at

position j for subgroup h; Ah,j specifies the set of functional residues at that position (as in Fig. 1C);

Hh � ÆH +
h ‚ H -

h ‚ H0
hæ denotes the hierarchically configured tri-partitioning of the node indices 1 £ z £ N

(as in Fig. 1B); S is an array of N disjoint sets, each of which indicates the distinct set of sequences

assigned to that node in the hierarchy; IAh‚ j
is an indicator variable equal to 0 when Ah,j = � and to 1 when

Ah,j s �. The inner product of two vectors is denoted by Æ �‚� æ. The third through seventh terms in

Equation 1 correspond to the logarithm of the product of the prior probabilities, as defined in Neuwald

(2014).

FIG. 1. (A) Hypothetical protein domain hierarchy. The hierarchy consists of N = 12 sequence subsets (each cor-

responding to a node; indexed as 1 £ z £ N) and M = 12 divergent subgroups (each corresponding to a subtree; indexed

as 1 £ h £ M). The tree is colored to highlight subgroup h = 4 (the blue subtree), which is presumed to have diverged

most recently from the rest of subgroup h = 2 (maroon nodes). (B) Schematic of a tri-partitioned alignment corre-

sponding to subgroup h = 4 in (A). Such a tri-partition (also called a contrast alignment) is represented mathemati-

cally as Hh � ÆH +
h ‚ H -

h ‚ H0
h æ, where each sequence subset (corresponding to each node) is assigned to a foreground

partition (z 2 H +
h = 4 = f4‚ 5‚ 6g), a background partition (z 2 H -

h = 4 = f2‚ 3‚ 7g), or a nonparticipating partition

(z 2 H0
h = 4 = f1‚ 8‚ 9‚ 10‚ 11‚ 12g). The sequences in these partitions are represented by blue, maroon, and gray hori-

zontal bars, respectively. The corresponding nodes in the tree in (A) are colored similarly. Partitioning is based on the

conservation of foreground residues (blue vertical bars) that most diverge from (or contrast with) the background

residue compositions at those positions (white vertical bars). Red vertical bar heights quantify the degree of divergence.

(C) Hypothetical residue sets conserved at discriminating positions in the contrast alignment. The residue set at position

j in contrast alignment h is represented mathematically by Ah,j with Ah,j = � at nondiscriminating positions.
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3. COMPARING AND EVALUATING HIERARCHIES

This section first describes methods for comparing the relationships between corresponding, node-

associated subgroups within two different hierarchies. Next, it describes a statistical and information

theoretical measure of the quality of a given hierarchy. Finally, it describes a way to measure the con-

tributions of subhierarchies, of node- and subtree-associated sequence subgroups, of individual sequences,

and of signature patterns to the overall quality of a hierarchy.

3.1. Comparing two hierarchies

To compare two hierarchies, one must first determine the correspondence between the nodes in each

hierarchy. This involves two procedural steps: (i) identifying corresponding (or roughly corresponding)

nodes so that nodes in one hierarchy can be mapped to the other, and (ii) rearranging one of the hierarchies

to best resemble the other hierarchy.

3.1.1. Mapping one hierarchy to another. This first step requires, for each node z within each tree,

a set of identifiers, Sz, representing the sequence set associated with that node. For each hierarchy, we also

require that (i) Sz � f1‚ . . . ‚ ng, where n is the number of sequences in the input alignment used to

construct both hierarchies; (ii) z s z0/ SzXSz0 = �; and (iii),
S

1�z�N Sz = f1‚ . . . ‚ ng where N is the

number of nodes in the hierarchy. We likewise define for each subtree within each hierarchy a set of

sequence identifiers Zz =
S

x2H +
z

Sx representing the sequences associated with the subtree rooted at node z.

We define as corresponding those pairs of nodes or subtrees, one from each hierarchy, with ‡ 90% overlap

in their sequence sets; as roughly corresponding such pairs with > 50% but < 90% overlap; and as

noncorresponding the remaining nodes. We represent sequence sets using a previously described data

structure (Neuwald and Green, 1994) facilitating efficient bitwise set operations.

3.1.2. Rearranging nodes in one hierarchy to best resemble another. This second step is re-

quired because there are
QN

z = 1 dz! number of ways to arrange the nodes within a tree of N nodes, where dz is

the number of children of the zth node. Thus, even for the simple tree shown in Figure 1, there are 576 ways

to arrange the nodes. To easily compare hierarchies, the nodes in each hierarchy are arranged similarly, so

as to best reveal which nodes and subtrees correspond. This is accomplished by recursively sorting the child

subtrees at each level of one of the hierarchies (starting from the root) to be consistent with the ordering of

the corresponding nodes and subtrees in the other hierarchy.

3.2. Measures of hierarchy quality

As a measure of hierarchy quality, we utilize the information theoretical notion of relative entropy

(Cover and Thomas, 1991):

D(PkQ) =
X

i

P(i) ln

�
P(i)

Q(i)

�

which measures the expected additional descriptive length required to encode information using the

(wrong) probability distribution Q, instead of the true distribution P, and which is equivalent to the

expected log likelihood ratio of P to Q. Applying this to Equation 1, we obtain:

D(P(X‚ H)kQ(X‚ H)) =
X

all possible
Y‚ a‚ A‚ S

P(X‚ H‚Y‚ a‚ A‚ S) � loge

P(X‚ H‚Y‚ a‚ A‚ S)

Q(X‚ H‚Y‚ a‚ A‚ S)
(2)

where H � ÆH‚ Kæ is a 2-tuple that associates with each node z in the hierarchy H a consensus sequence,

denoted as Kz, and where Q(X‚ H) � P(X‚ ÆØH‚ Kæ) is the probability associated with a null hierarchy ØH

where all of the foreground sequence sets, the Sz, are assigned to the background partition for all subgroups,

h, that is, where 8Hh :� Hh � Æ�‚ H -
h [ H +

h ‚ H0
hæ. The vector K of consensus sequences is required to

define the nature of each node; without this, for example, three child nodes attached to a common parent

node would be indistinguishable. Each residue rj at pattern position j in sequence Kz helps define the

hierarchy by requiring that rj be a member of that pattern’s residue set. Equation 2 quantifies how well the
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data support the hierarchy and avoid over fitting by summing over variable parameters. From the

perspective of information theory, it calculates the information gained (in nats) using the specified

hierarchy instead of the null hierarchy, which is otherwise similar except that it treats the sequence data,

X, as lacking discriminating patterns. Conversely, it measures the expected additional descriptive length

required to encode the domain hierarchy using this null distribution Q, instead of the distribution P.

Therefore, the more closely P models the discriminating patterns present in alignment X, the more

Equation 2 will increase.

Equation 2 cannot be computed directly, though it could be estimated as the corresponding expected

log-likelihood ratio (LLR) using the mcBPPS sampler (Neuwald, 2011), which by design keeps H
constant during sampling. This involves continuing to sample values for the LLR after convergence

(proportional to P(X‚ H‚Y‚ a‚ A‚ S)) and taking the average. As a faster, less accurate alternative, we

can simply use the value of the LLR corresponding to the maximum a posteriori probability (MAP) as

an upper bound on Equation 2. This upper bound appears to be conservative based on the empirical

observation that, after convergence, the average of the mcBPPS-sampled values is typically only

slightly lower (roughly by no more than 15% less) than the LLR for the (presumed) MAP. The MAP,

which corresponds to the maximum LLR (denoted here as LLRMAP), is the value to which the sampler

(with simulated annealing) tends to converge, though this is not guaranteed. As illustrated by Neuwald

(2014), however, obtaining the same maximum LLR in multiple sampling runs using distinct random

seeds suggests that a nearly optimal hierarchy is typically found. Of course, when comparing such

MAP-associated LLRs for distinct hierarchies, it is essential that the same input alignment be used

throughout. Note that if discriminating patterns are eliminated from an input alignment by ran-

domly shuffling residues within each column, then both the LLRMAP and Equation 2 will be zero, as

expected.

3.3. Contributions of a specific subtree, sub-subtree, or subhierarchy

The contribution of the hth subtree to the quality of a given hierarchy is defined as the expected subLLR

(i.e., that component of Eq. 2) corresponding to the contrast alignment for that subtree. Here, however, we

will simply compute the contribution of the hth contrast alignment to the LLRMAP, which we represent as

subLLR(h). Using the MAP parameter settings, this is straightforward to compute by summing Equation 1

only over this one h, rather than over all h:

subLLR(h) = log P(X‚Y‚ a‚ A‚ Hh‚ S) - log Q(X‚Y‚ a‚ A‚ HhS): (3)

Less straightforward is assessing how much each node or sub-subtree within subgroup h contributes to

the subLLR(h). Such sub-subLLRs provide an indication of how well each subgroup (either a node or a

subtree) matches the distinguishing characteristics of each supergroup (i.e., each internal node) as one goes

up the hierarchy from that subgroup to the root node. A single (internal or leaf) node’s contribution to a

specific supergroup (corresponding to a node further up the hierarchy) is denoted as subLLR(z,h) and is

computed by first moving that node’s sequence set, Sz, from the supergroup’s foreground partition to the

nonparticipating partition and then subtracting the subLLR for this configuration from the original

subLLR(h). That is,

subLLR(z‚ h) = subLLR(h) - log
P(X‚Y0‚ a0‚ A‚

- z
Hh‚ S)

Q(X‚Y0‚ a0‚ A‚
- z

Hh‚ S)
(4)

where z 2 H +
h and - zHh � ÆH +

h - fzg‚ H -
h ‚ H0

h [ fzgæ and where Y0 and a0 indicate the modified vari-

ables obtained upon replacement of Hh with - zHh.

To determine the contribution of subtree h0 to a specific supergroup (denoted as subLLR(h0, h)), we need

to merely replace within Equation 4 z with h0 and - zHh with - h0Hh � ÆH +
h H +

h0 H
-
h ‚ H0

h [ H +
h0 æ, where

H +
h0 � H +

h ^ H -
h0 � H +

h . Computing the LLRMAP contribution of a subhierarchy rooted at node h (denoted

as Hh) is straightforward; it involves computing Equation 1 as if Hh were the entire hierarchy.

3.4. Evaluating sequence membership within each subgroup

We could estimate the probability of sequence membership within a subgroup by noting the frequency

with which the sampler assigns each sequence to that subgroup during postconvergence sampling.
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However, this approach is very expensive computationally and, therefore, is not used here. Instead, the

contribution to the subLLR(h) of sequence i is calculated by subtracting the corresponding subLLR when

that sequence is removed from the foreground partition for contrast alignment h. That is,

subLLR(i‚ h) = subLLR(h) - log
P(X‚Y0‚ a0‚ A‚ Hh

- iS)

Q(X‚Y0‚ a0‚ A‚ Hh‚ - iS)
(5)

where i 2 Sz !- i Sz = Sz - fig and i =2 Sz !- iSz = Sz and where Y0 and a0 again indicate the resultant

modified variables. Note that, because sequences are down weighted for redundancy, the influence of each

member of a cluster of redundant sequences on the subLLR is correspondingly diminished. To offset this

effect, the sequence’s contribution to the subLLR is multiplied by the inverse of its fractional weight. This

assumes that each member of its redundant set of closely related sequences makes, on average, the same

contribution to the LLRMAP. We will also compute the rank of each sequence i among the other sequences

within the subgroup according to each subLLR(i, h). Finally, we similarly compute subLLR(i), defined as the

contribution of sequence i to the total LLR. By examining a sequence’s rank and its various contributions to

the total LLR and subLLRs, we obtain a measure of confidence in that sequence’s assigned sequence set. Note

that for some sequences assigned to a subgroup h, the subLLR(i, h) may be negative. This does not necessarily

indicate, however, that the assignment is wrong biologically; instead, it may indicate that the sequence is an

atypical member of that subgroup. After all, in such cases, the sampler could have assigned the sequence either

further up the hierarchy or to the root node background partition, which corresponds to sequences rejected as

members of the domain class. Hence, a negative subLLR(i,h) may occur as a compromise over alternative

assignments that are worse because of the various constraints imposed by the other features of the hierarchy;

this situation is analogous to the principle of minimal frustration in protein folding (Bryngelson et al., 1995),

where the energetic frustrations associated with conflicting interactions are minimized.

3.5. Assessing sequence and taxonomic diversity

To identify sequence determinants of protein function, it is important to distinguish conservation because

of selective pressures from that merely due to recent common descent. It is currently unclear how to model

this statistically; so, instead, we merely assess the sequence and taxonomic diversity of each node and

subtree. Sequence diversity of a subtree h or a node z, denoted here by SqDv(h) and SqDv(z), respectively,

is defined as the relative standard deviation (RSD) of the scores of each of the sequences against the

consensus sequence for that subgroup. The RSD is the ratio of the standard deviation to the mean expressed

as a percentage. The corresponding taxonomic diversity, denoted here by TxDv(h) and TxDv(z), is simply

the number of phyla represented in the subgroup, where phyla are as defined by the NCBI taxonomy

database (Federhen, 2012). Examining both SqDv and TxDv is helpful, as certain subgroups that consist

entirely of taxonomically uncharacterized sequences may still be worthwhile modeling if their SqDv is

high. Subgroups with low SqDv and high TxDv may similarly be worthwhile modeling.

3.6. Evaluating the contributions of conserved residues

One of the less obvious but important aspects of optimizing a protein domain hierarchy is to identify

sequence determinants of protein function. Key catalytic residues at enzyme active sites are often con-

served over long periods of evolutionary time. Of course, the same holds for many residues whose

biological roles are still unknown. Hence, those subgroup-specific patterns that are subject to the strongest

selective pressures are most likely to perform critical biological functions associated with that subgroup. As

a measure of the selective pressure associated with subgroup-specific discriminating patterns, we compute

the contribution of the jth pattern position in contrast alignment h as:

subLLR(j‚ h) = log P(X‚ hh‚ j‚ ah‚ Ah‚ j‚ Hh‚ S) - log Q(X‚ hh‚ j‚ ah‚ Ah‚ j‚ Hh; S) (6)

where

log P(Xjhh‚ j‚ ah‚ Ah‚ j‚ Hh‚ S) =
X
z=2H0

h

X
i2Sz

Æ log hh‚ j‚ xijæ +
X
z2H +

h

X
i2Sz

IAh‚ j
Æ log

hah

h ‚

hh‚ j

‚ xi‚ jæ (7)

and where log Q(X,hh,j, ah, Ah,j Hh, S) is defined analogously as for Equation 2.
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4. RESULTS

The approaches described in the previous section were implemented in C + + and applied to the 60

domains (from the NCBI CDD) that are described in Neuwald (2014). In this section, the evaluation and

comparison of protein domain hierarchies is illustrated using two of the most challenging to model among

these domains, namely, those related to the phosphoinositide 3-kinase (PI3Kc) catalytic domain (cd00142)

and those related to phosphoribosyltransferase type II domains (PRTaseII) (cd00516). Because the

PRTaseII domain is particularly challenging, it provides ample opportunity to apply the various approaches

described in Section 3.

4.1. Comparing manually curated and automatically generated hierarchies

Figure 2 illustrates a comparison between two independently generated hierarchies using PI3Kc-like

catalytic domains. One hierarchy was generated and optimized from a single root node (i.e., de novo) by the

omcBPPS sampler, as described by Neuwald (2014), whereas the other was manually curated. For the

curated hierarchy, the pattern and sequence assignments were optimized using the mcBPPS sampler

(Neuwald, 2011) to obtain the associated LLRMAP. The de novo hierarchy expands one of the leaf nodes in

the curated hierarchy into a subtree and inserts three additional internal nodes (Fig. 2A), whereas the

curated hierarchy expands two nodes within the de novo hierarchy into subtrees. Based on our metric, the

de novo hierarchy achieved a slightly better score (56,085 nats) than did the curated hierarchy (56,514

nats). However, the de novo hierarchy is based on more stringent criteria regarding the number of phyla and

the sequence diversity associated with the nodes (Fig. 2B,C). The lowest SqDv score for the sequence sets

associated with the de novo hierarchy is 8.0 RSD, whereas for the curated hierarchy it is 5.3 RSD.

Likewise, all of the nodes within the de novo hierarchy span at least three phyla, whereas the curated

hierarchy has five nodes corresponding to a single phylum. The curated hierarchy models two leaf nodes of

the de novo hierarchy as two subtrees, cd05165 and cd05166, with seven leaf nodes. In fact, the de novo

hierarchy could not have retained these seven leaf nodes as they have fewer assigned sequences (35–55)

than were permitted by the sampler ( ‡ 100 for this analysis). Thus, at least regarding these aspects of the

curated hierarchy, the applied criteria were clearly less stringent. Applying the sampler de novo using these

less stringent criteria resulted in a considerably larger hierarchy of 40 nodes with a score of 73,159 nats.

Together, these analyses indicate that the optimized hierarchies constitute a significant improvement over

the curated hierarchy in this case.

4.2. Comparing independently optimized hierarchies

Perhaps a more important type of comparison is between alternative, independently optimized hierar-

chies with a view to identifying and combining the most robust features and thereby obtaining further

improvements. To aid such comparisons we can also evaluate the various subLLR contributions described

in Section 3. In this and the following subsections, such analyses are performed on three independently

generated and optimized hierarchies for PRTaseII-related domains, comparisons between which are shown

in Figure 3. These hierarchies share a significant number of nodes and five major subtrees in common.

Indeed, two of the subtrees, those rooted at nodes 29 and 40 in the figure, are essentially identical within all

three hierarchies, indicating good support. However, the manner in which these five subtrees are arranged

differs. The subLLR scores for each subhierarchy corresponding to these major subtrees (bottom of Fig. 3)

indicate comparable support for each of these alternative arrangements. Although the LLR score for the

hierarchy A in Figure 3 (178,463 nats) is about 5% less than the highest scoring hierarchy, the scores for the

two remaining hierarchies (B and C) are nearly identical (186,731 nats vs. 186,359 nats). In the following

subsections we investigate why these different subtree arrangements may have such similar levels of

support.

4.3. Examining contributions of individual nodes and patterns

Figure 4 examines the LLR contributions of nodes and patterns to the contrast alignment associated with

the main root node of the highest scoring PRTaseII hierarchy (shown in Fig. 3B). The contribution of each

node is displayed in a plot subLLR(z,h) above a corresponding heat map of the percentage of sequence

matches to pattern residues for each node. Even though, for this contrast alignment, all of the nodes are
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assigned to the foreground partition, those nodes belonging to subtrees 29 and 40 (color coded in purple and

orange, respectively, in the figures) lack matches to a significant number of pattern residues. As a result,

removing the sequences corresponding to these nodes actually increases the overall LLR—as indicated by

their negative values of subLLR(z,root) (see plot in Fig. 4)—presumably by improving the proportion of

foreground sequence pattern matches. This does not imply, however, that these subtrees are unrelated to the

other foreground sequences or that they are misclassified, for two reasons: first, they still retain a significant

number of pattern matches to the consensus for the class; second, the sampler did not assign them to the

background (unrelated sequence) partition. Notably, the patterns that subtree 29 sequences lack are largely

distinct from those absent from subtree 40 sequences, and none of the three hierarchies in Figure 3 (nor

others that we examined) grouped subtrees 29 and 40 together.

Further insight is provided by examining, in the same way, the foreground and background partitions

associated with the major subtrees of PRTaseII hierarchy B. The heat map in Figure 5A reveals that, despite

FIG. 2. Comparison of various hierarchies for PI3Kc-like domains (cd00142). (A) Comparison between the Con-

served Domain Database manually curated hierarchy (56,085 nats; 22 nodes) and a hierarchy generated de novo (56,514

nats; 20 nodes). Nodes are colored (as indicated) depending on whether they correspond (i.e., share ‡ 90% of their

assigned sequences), roughly correspond (share >50%), or fail to correspond. The orange-highlighted line indicates that

assignment of node cd05172 as a child of cd05164 lacks statistical support (i.e., the subLLR is negative). (B) Histogram

of sequence diversity (SqDv) for the hierarchies shown in (A). (C) Scatter plot of SqDv versus the number of phyla for

the curated and de novo hierarchies. RSD, relative standard deviation.
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subtree 29 lacking certain canonical patterns, it also shares with subtree 2 conserved patterns that distin-

guish these from the remaining subtrees. Note too that each of the foreground nodes are well supported [see

plot of subLLR(z,h) in this figure]. This explains why node 49 links these subtrees together in hierarchy B.

This heat map also suggests why hierarchy A in Figure 3 links these subtrees to subtrees 3 and 40: Among

the background nodes in the map, subtrees 3 and 40 share certain foreground patterns that subtree 48 lacks.

The heat map corresponding to the subtree 3 contrast alignment in Figure 5B likewise reveals that certain

patterns distinctive of subtree 3 also match sequences within subtrees 2 and 29 and, to a lesser extent,

subtree 40. Conversely, the heat map in Figure 5C for the contrast alignment with subtree 2 in the

foreground and subtree 29 in the background indicates that subtree 3 shares certain foreground patterns—as

does subtree 48. The subtree 40 contrast alignment, however, fails to exhibit such pattern sharing (Fig. 5D).

Finally, the heat map in Figure 5E, for which subtree 29 is in the foreground and subtree 2 in the

FIG. 3. Independently optimized hierarchies for PRTaseII-related domains (cd00516). (A) A hierarchy optimized

starting from a heuristically generated hierarchy. (B) A hierarchy optimized starting from a single root node (i.e., de

novo). This (highest scoring) hierarchy serves as the reference for the other two hierarchies. (C) A hierarchy optimized

starting from a manually curated hierarchy. Nodes in each full hierarchy are colored as indicated in Figure 2, but with

some of the nodes in (B) two-toned to indicate that each of those nodes differs in correspondence with a node in (A)

(top color) versus a node in (C) (bottom color). These three hierarchies share five subtrees in common (although

utilizing distinct arrangements thereof). Each of the root nodes of these subtrees is highlighted in the full hierarchies

with glow that is similarly colored as is the corresponding node in the truncated hierarchy below. These subtrees are

investigated further here. For the truncated hierarchies, the LLR contribution (in nats) to the subhierarchy [i.e.,

subLLR(Hh), where h corresponds to the associated node] and to the contrast alignment [i.e., subLLR(h)] are indicated

by the numbers shown in black and red, respectively.
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background, indicates that subtree 48 conserves a few foreground patterns—though these appear to be due

to chance as those sequences assigned to the unrelated sequence (i.e., random background) set match a

similar percentage of foreground patterns. Patterns conserved in subtree 48 (Fig. 5F) also appear unique to

that subtree.

Hence, the manner in which conserved and divergent residues are distributed across these subtrees is

somewhat inconsistent with a single hierarchy: The analysis in Figure 5C indicates that subtrees 2 and 48

share patterns that distinguish these from subtree 29, whereas the analysis in Figure 5A indicates that

subtrees 2 and 29 share patterns that distinguish these from subtree 48. Similarly, Figure 5A indicates that

subtrees 2 and 29 share certain patterns with subtrees 3 and 40, which may explain why hierarchies A and C

in Figure 3 connect these four subtrees differently.

4.4. Comparing node and pattern contributions across hierarchies

The heat map and subLLR(z,h) plot in Figure 6A, which corresponds to the subtree rooted at node X of

hierarchy A, further aid the evaluation of this alternative subtree arrangement. The foreground for this

subtree corresponds to the (sub-)subtrees 29, 2, 3, and 40. This heat map delineates more clearly the

patterns shared by these subtrees. However, the corresponding plot reveals that the nodes associated with

subtrees 3 and 40 contribute negatively to the contrast alignment subLLR associated with subtree X. This

appears because of these subtrees both lacking some of the subtree X patterns and matching more fre-

quently other patterns that background nodes also tend to match. Hence, this helps account for the lower

overall LLR score for hierarchy A and the notion that hierarchy B is a better model.

A similar analysis of subtree Y within hierarchy C provides additional support for hierarchy B. Figure 6B

shows the associated heat map and subLLR(z,h) plot. The foreground for this subtree includes the (sub-

)subtrees 29, 2, and 3. Unlike the analysis of subtree 49 within hierarchy B (see Fig. 5A), for which the

node subLLR contributions are all positive, the nodes associated with subtree 3 again contribute negatively

to the subLLR for subtree Y. This appears because of subtree 3 both lacking some of the foreground

FIG. 4. Heat map showing the percentage of sequences, among those assigned to each node (columns), that match

each of the patterns (rows) associated with the root node contrast alignment for the de novo PRTaseII hierarchy. Plotted

above the map are the values of subLLR(z,h) for the zth node and where h corresponds to the root; node identifiers are

listed in the row directly below the map. Node identifiers are highlighted using the subtree color scheme given in Figure

3. Note that all of the nodes in two of the subtrees (highlighted in purple and orange) contribute negatively to the LLR.

Nodes are ordered by decreasing percentages of overall matches to the patterns; note that this fails to correspond to

decreasing values of subLLR(z,h) because the number of sequences (shown in the bottom row) influences this value, but

not the percentage of matches. The contributions (in nats) of patterns, denoted by subLLR(j,h), are given in the far right

column.
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patterns and matching other of these patterns that background nodes in subtree 40 (and, to a lesser extent,

subtree 48) also match. This again supports hierarchy B as the better model.

Because the heat maps in Figure 5B and C suggest that subtree 3 may be more closely related to subtree 2 than

to subtree 29, Figure 6C examines subtree yy in hierarchy C, which links subtrees 2 and 3. The heat map indicates

that many of the foreground patterns shared by subtrees 2 and 3 are also conserved in subtrees 48 and 40.

Furthermore the subLLR(z,h) plot again indicates that subtree 3 contributes negatively, as in Figure 6B. Together,

these analyses suggest that hierarchy B is the best. However, the observed patterns of sequence conservation

and divergence in this domain class appear to create ambiguities leading to alternative, nearly optimal trees.

Moreover, as discussed below, a single tree-based hierarchy appears to inadequately model all such patterns.

4.5. Examining signature residues and evaluating alignment quality

The heat maps in Figures 4–6 are based on the discriminating patterns associated with specific levels of a

hierarchy. These patterns also provide useful information regarding sequence determinants of protein

function. This is illustrated in Figure 7. Figure 7A shows the hierarchical path from the root to node 14. A

contrast alignment is associated with each node along such a path, each of which reveals those conserved

residues that most distinguish the subtree associated with that node from closely related sequences

FIG. 5. Heat maps of contrast alignment sequence-to-pattern matches for major subtrees within the de novo (opti-

mized) PRTaseII hierarchy in Figure 3B and, for three of these, subLLR(z,h) plots. Rows and columns in each heat map

correspond to patterns and nodes, respectively, as in Figure 4. Using the same color scheme as in Figure 3, the blocks

above each map indicate to which subtree the node in that column belongs. The blue and red horizontal bars directly

below each map correspond, respectively, to the foreground and background partitions for each contrast alignment; the

short black bar corresponds to the rejected sequence node; the remaining nodes are assigned to the nonparticipating

partition. (A) The heat map and plot associated with the subtree rooted at node 49. (B) Subtree 3 heat map. The

subLLR(z,h) is > 1,571 nats for each foreground node z. Note that background nodes for subtrees 2, 29, and 40, but not

48, share some pattern matches with the foreground. (C) Subtree 2 heat map and plot. (D) Subtree 40 heat map. The

subLLR(z,h) is > 2,352 nats for all foreground nodes. (E) Subtree 29 heat map and plot. Note that the subLLR(z,h) for

both nodes 35 and 46 is slightly negative (plotted in red). (F) Subtree 48 heat map. The subLLR(z,h) is > 444 nats for all

foreground nodes.
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associated with its parent and the parent’s other descendant nodes. Figure 7C shows the contrast alignments

for the first three nodes on this path to node 14. The height of the red bar above each highlighted aligned

column j corresponds to the value of subLLR(j,h) for the pattern at that position. Figure 7B shows the

structural locations of the residues matching the highest scoring patterns in these contrast alignments;

notably, they all occur within the substrate-binding pocket. This is typical of conserved residues associated

with nodes higher up in a hierarchy for substrate-binding proteins; thus, such subLLR scores can provide

clues to biological function, which is unsurprising, of course, given that strong selective pressures are

presumably maintaining these patterns. The highest scoring patterns lower down in the hierarchy pre-

sumably are also involved in biological functions subject to strong selective pressure, though it is typically

unclear what these functions might be. Identifying such residues, however, is a helpful first step toward

characterizing underlying determinants of biochemical functions and mechanisms.

Such contrast alignments are associated, of course, with every node in a hierarchy. Collectively, these

provide extensive information, not only regarding biologically relevant protein properties, but also re-

garding the quality of the input alignment used to construct the hierarchy. Thus, these contrast alignments

can be used to evaluate and improve the alignment, ideally in conjunction with crystal structure data.

Misaligned regions typically show up as sequence regions that lack matches to pattern residues at various

levels of the hierarchy. Once an input alignment that is misaligned is corrected in this way, an omcBPPS

analysis can be repeated to improve the hierarchy, and this process can be repeated iteratively until a high-

quality input alignment and corresponding hierarchy is obtained.

FIG. 6. Heat maps of contrast alignment sequence-to-pattern matches and subLLR(z,h) plots for major subtrees within

the lower scoring PRTaseII hierarchies A and C of Figure 3. In each map, the red vertical line divides positively

contributing foreground nodes (green bars in the plot on the right) from those with negative contributions (red bars). See

the legends to Figures 4 and 5 for further descriptions. (A) Heat map and plot for subtree h = X of hierarchy A. (B) Heat

map and plot for subtree h = Y of hierarchy C. (C) Heat map and plot for subtree h = yy of hierarchy C.
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FIG. 7. A hierarchy of contrast alignments revealing pattern residues. (A) The path from the root to node 14 in PRTaseII

hierarchy B. (B) Pattern residue structural locations within Mycobacterium tuberculosis quinolinate phosphoribosyl-

transferase in complex with phthalate and a substrate analog, PRPCP (1QPR) (Sharma et al., 1998). The highest scoring

pattern residues in (C) are shown. (C) Contrast alignments associated with the root and with nodes 48 and 47. Re-

presentative aligned sequences (which were assigned to node 14) are highlighted to reveal pattern residues; the red dots

indicate the residues shown in (B). Foreground and background residues at each position are shown below each alignment,

and directly below these, corresponding frequencies are given in integer tenths (a ‘‘7,’’ for example, indicates 70–80%

conservation). The bar height above each highlighted column j corresponds to subLLR(j,h).
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4.6. Analysis of sequence contributions

Examining sequence subLLR contributions can identify those sequences most typical of a subgroup and

thereby facilitate biological interpretation in the light of crystal structure data and of the biological liter-

ature. It can also determine whether most of the sequences assigned to a specific subgroup share the

features of that subgroup in roughly equal measure or whether there is considerable variability between

sequences. Sequences may diverge from signature patterns because of true functional divergence, in which

case there may be insufficient numbers of such sequences to form a separate subgroup causing them,

instead, to be assigned to the most closely related subgroup. Alternatively, such divergence may be caused

by random mutations within pseudogenes or to sequencing errors.

Figure 8 illustrates how the sequence subLLR metric can be used to identify and characterize sequence

divergence. It focuses on node 73 of PRTaseII hierarchy B, the path to which from the root node is shown

in Figure 8A. Figure 8B shows a histogram of the LLR contributions of each of the sequences assigned to

FIG. 8. Contributions of individual sequences. (A) Path from the root to node 73 in PRTaseII hierarchy B. (B)

Histogram showing the LLR contributions of the sequences assigned to node 73. This reveals a bimodal distribution,

with 8 negative and 34 positive subLLR(i, h = 73) contributors. These sequence sets are denoted as Set73N and Set73P,

respectively. (C) Heat map of foreground (Set73P, Set73N) and background (Set15, Set27) sequence sets associated

with the node 73 contrast alignment. (D) Bar graph showing the subLLR(i,h) contributions and percentile rank of the

poorest scoring sequence in (B), namely, nicotinate phosphoribosyltransferase from Bacillus methanolicus PB1; below

are shown the corresponding nodes, which occur along the path shown in (A). (E) Histogram showing the LLR

contributions of the sequences assigned to subtree 15. The red arrow indicates the score for the sequence in (D).
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this leaf node; this reveals a bimodal distribution for which the contributions of 8 out of the 42 assigned

sequences are negative (termed Set73N) and positive for the rest (termed Set73P). The heat map shown in

Figure 8C, which partitions this sequence set into negative and positive contributors, reveals that the

sequences in Set73N lack roughly half of the signature patterns characteristic of node 73. This divergence

does not appear to be due to sequencing errors or to pseudogenes because the subLLR scores for the six

other contrast alignments, in which these sequences are assigned to the foreground partition, are all positive

(Fig. 8D). Presumably, mutations in genes lacking selective pressure or sequencing errors would occur

more or less uniformly across all of these categories, which is not the case here. Thus, it appears that the

sequences in Set73N constitute a sub-subgroup that is currently too small to form a distinct node.

Again, it should be noted that a negative subLLR score does not necessarily mean that the sequence does

not belong in the assigned subgroup. The sampler could have moved it further up the hierarchy or assigned

it to the ‘‘reject’’ category instead of to that subgroup. Thus, the sampler (with simulated annealing)

presumably found a nearly optimal assignment for that sequence versus the various other options. (Note

that the subLLR is computed by eliminating the sequence from the alignment hierarchy, which is not an

option during sampling. Thus, if eliminating a sequence enhances conservation of pattern residues in the

remaining sequence set, then the subLLR contribution of that sequence will be negative.) Thus, Set73N

appears to correspond to atypical members of the node 73 subgoup. Nevertheless, our confidence in

subgroup assignments will, of course, be lower for sequences with negative subLLR scores.

5. DISCUSSION AND CONCLUSION

Proteins appear to evolve in fits and starts inasmuch as related sequences tend to cluster into subgroups each

of which share conserved patterns distinguishing them from other, related sequences. This has motivated the

construction of protein domain hierarchies, each of which arranges related subgroups into a tree for which

descendent nodes generally conserve patterns present in their ancestral nodes. Until recently, constructing such

hierarchies has been performed manually, even though doing so optimally is a very challenging algorithmic

problem. Indeed, for the most challenging domains, even independent runs of our automated sampler tend to

converge on somewhat different hierarchies, thereby underscoring the difficulty of this problem.

For a hierarchy characterized by a complex arrangement of nodes, it is possible that combining various

aspects of differing hierarchies could lead to a further improved, recombinant hierarchy. This requires the

ability to compare various hierarchies and to measure the contribution to the total LLR of each subfeature

to be recombined. Such comparisons and measures can also provide a deeper understanding of the nature of

functional divergence within a protein class and thus may lead to new evolutionary insights and/or to the

identification of subgroup-specific sequence determinants of protein function. Such measures can also

provide rapid estimates of levels of confidence regarding assigned functional classifications, which is

relevant to genome annotation. Likewise, an analysis of taxonomic and sequence diversity can ensure that

curation criteria are applied in a consistent manner. For these reasons the approaches described here for

evaluating, comparing, and interpreting domain hierarchies should be helpful.

These approaches can also reveal ways to improve automated methods for constructing and utilizing

hierarchies. For example, the subLLRs associated with the major subtrees of the two nearly optimal

PRTaseII hierarchies (B and C in Fig. 3) suggest that recombining aspects of both might lead to an

improved hierarchy. This suggests that development of a genetic-algorithm version of the omcBPPS

sampler would be useful. These approaches can also provide algorithmic insights leading to more efficient

sampling operations, which could provide accurate estimates both of a hierarchy’s relative entropy and of

predictive probabilities for sequence subgroup assignments and other hierarchical features.

The PRTaseII analysis (and similar analyses not described here) reveals that patterns of conserved and

divergent residues may not follow a single tree-based hierarchy. As a result, certain conserved patterns may

be assigned inappropriately or not at all. One way to accommodate such misfit patterns is to redefine the

underlying statistical model using the mathematically more general notion of a hierarchy as a directed

acyclic graph (DAG). This would avoid presuppositions regarding what sort of evolutionarily events are

possible and would thereby accommodate (and, in fact, reveal) confounding events, such as paralogous

recombination or loss of certain ancestral properties. A DAG-based sampler would accommodate such

events by defining additional internal nodes linked arbitrarily to subtrees that harbor confounding patterns

further down the hierarchy. This could reveal biologically important residues conserved across
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evolutionarily distant subgroups in an inconsistent manner. With these benefits in mind, the approaches

described here are being incorporated into the NCBI CDD curation pipeline.
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