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Abstract
In this paper, we consider the problem of the accuracy of estimating the location and other
attributes of a moving single molecule whose trajectory is imaged by fluorescence microscopy. As
accuracy in parameter estimation is closely related to the Fisher information matrix, we first give a
general expression of the Fisher information matrix for the estimated parameters for a single
object moving in three-dimensional (3D) space. Explicit Cramér-Rao lower bound (CRLB)
expressions are then obtained from the Fisher information matrix for a single object moving in the
two-dimensional (2D) focus plane with the object trajectory being either linear or circular. We
also investigate how extraneous noise sources, pixelation, parameters of the detection system and
parameters of the trajectory affect the limit of the accuracy. The results obtained in this paper
provide insights that enable the experimentalists to optimize their experimental setups for tracking
single molecules in order to achieve the best possible accuracy. They are also applicable to the
general problem of tracking an object using quantum limited detectors.

Index Terms
Cramér-Rao lower bound (CRLB); Fisher information matrix; fluorescence microscopy; limit of
the accuracy; moving object; quantum limited imaging; single-molecule microscopy

I. Introduction
In recent years, single-molecule fluorescence microscopy has become an important
biological research tool in cell biology, biochemistry and biophysics and is experiencing a
rapid growth in its applications [1]–[6]. It provides, for example, quantitative information on
the behaviour of molecules in cells, which is seldom available through bulk studies due to
averaging effects [7], [8]. One way of gaining new insights into biological and cellular
processes is to optically track the molecules as they move over time [9]–[11]. It is therefore
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important to know the accuracy with which the location and other attributes of a single
molecule can be determined with fluorescence microscopy. It has been shown in [12] that
the localization accuracy has to be taken into account when analyzing the diffusion
behaviour of single molecules, as otherwise noisy measurements of the single molecule
locations could be misinterpreted as sub-diffusion. In addition to the noise, the molecular
motion during the finite acquisition time also contributes to the localization error [13].
Hence, knowing the limit of the accuracy of the parameters concerned not only helps to
validate the results obtained but also provides a means to evaluate and optimize the single-
molecule tracking experimental setups and various algorithms used [14].

To obtain the lower bound on the accuracy of parameter estimation, Ober et al. [15] and
Ram et al. [16] derived the Cramér-Rao lower bound (CRLB), i.e., the inverse of the Fisher
information matrix. The general expression of the Fisher information matrix derived in [16]
is applicable to both stationary and moving point sources. They applied their methodology
to the case of a stationary point source and performed an extensive investigation on the
effect of noise, image function, pixelation, detector size and pixel size on the limits of the
accuracy of the parameter estimates [15], [16].

In this paper, we apply the general framework developed in [16] to the case of a moving
point source, which is used to model a single molecule here. We express the Fisher
information matrix, from which the performance limit that quantifies the capabilities of an
optical microscope is determined, in terms of the image function and object trajectory.
Explicit CRLB expressions are obtained for a moving single object with the object trajectory
being either linear or circular. In the case of a 2D pixelated detector, we show through
simulations how extraneous noise sources, pixelation, parameters of the detector system, and
parameters of the trajectory affect the performance of an optical microscope. Some of the
results obtained are unique to a moving point source as no counterparts exist for a stationary
point source. For example, in the case of a linear trajectory, the practical limit of the
accuracy for the estimation of the starting location depends not only on the acquisition time,
but also on the speed of the moving point source. In the case of a circular trajectory, for
certain starting points, there is a noticeable disparity between the limits of the localization
accuracy for estimating the coordinates of its center xc and yc when the radius of the circular
trajectory is small.

The organization of this paper is as follows. In Section II, we derive an expression of the
Fisher information matrix for a nonpixelated detector of infinite size in terms of the image
function and object trajectory in 3D space. We then obtain explicit expressions for the
fundamental limit of the accuracy of parameter estimation for specific image functions and a
single object moving in the two-dimensional (2D) focus plane with the object trajectory
being either linear or circular. In Section III, we consider a pixelated detector of finite size
and derive the general expression of the Fisher information matrix for two stochastic models
when various types of noise are present. We also investigate the effect of extraneous noise
sources, pixelation, parameters of the detector system and parameters of the trajectory on the
performance of an optical microscope, and provide guidelines for experimentalists to
optimize their experimental setups for tracking single molecules in order to achieve the best
possible results. Conclusions are presented in Section IV. Proofs are given in the Appendix.

II. General Framework
In a basic optical microscope setup, we consider an object of interest moving in the object
space, imaged by a lens system and its image captured by a detector in the detector space.
The detector detects photons emitted by the fluorescent-labelled object during a fixed
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acquisition time. Since this detection process of the emitted photons is inherently a random
phenomenon, the recorded image of the object is stochastic in nature.

From the acquired data, using a specific estimation technique such as the maximum
likelihood method, we can estimate object attributes such as the location and orientation and
in the case of a moving object, its speed, direction of movement, etc. The accuracy of these
estimates can be determined by calculating their standard deviations from the true parameter
values upon repeated experiments [11], [14], [16], [17]. However, in any estimation
problem, it is important to have a benchmark against which the accuracy of the estimate of
the desired attribute can be measured. According to the Cramér-Rao inequality [18]–[20],
the (co)variance (matrix) of any unbiased estimator θ̂ of an unknown vector parameter θ is
bounded from below by the inverse of the Fisher information matrix I(θ), i.e., Cov(θ̂) ≥
I−1(θ). Hence, we can obtain the benchmark, which provides the limit of the accuracy, by
taking the square root of the diagonal elements of the inverse of the Fisher information
matrix for the underlying random process that characterizes the acquired data. It should be
noted that the Fisher information matrix is independent of any estimation technique used and
only depends on the statistical nature of the acquired data.

Following [16], the acquired data is modelled as a space-time random process [21] which we
will refer to as the image detection process . The temporal part describes the time points of
the photons detected by the detector and is modelled as a temporal Poisson process with
intensity function Λθ. The spatial part describes the spatial coordinates of the arrival location
of the detected photons and is modelled as a family of mutually independent random
variables { τ}τ≥t0 with probability densities {fθ,τ}τ≥t0 defined on the detector , where τ
denotes the time point of a detected photon. The time dependence of the random variables
{ τ}τ≥t0 denotes the fact that the spatial distribution of the detected photons can change
with time as is the case with a moving object. Although not explicitly denoted as such, the
probability densities {fθ,τ}τ≥t0 can also depend on the focus level zθ(τ) and orientation oθ(τ),
τ ≥ t0, of the object. Throughout the paper, we let t0 ∈ ℝ and θ ∈ Θ, where Θ denotes the
parameter space that is an open subset of ℝn with n being the dimension of θ which consists
of the location and other attributes of the moving object that are to be estimated. We assume
that the spatial and temporal parts of  are mutually independent of each other and that the
probability density function fθ,τ satisfies certain regularity conditions that are necessary for
the calculation of the Fisher information matrix (see [16] for details).

In the following theorem and throughout this section, we consider the case of a nonpixelated
detector of infinite size, i.e.,  = R2. This idealized detector provides us with the best case
scenario where all the photons from the moving object are detected and pixelation does not
deteriorate the accuracy of the photon impact measurements. In addition, in this case we
assume that there are no extraneous noise sources that negatively influence the quality of the
acquired data. Therefore, this scenario allows us to evaluate what is theoretically possible. In
Section III we will consider the “practical” scenario that also models the experimental
factors that are not considered here. Comparison of the results from the two models provides
important insights to what extent the specific experimental settings, such as pixel size, array
size and the noise levels adversely affect the quality of the estimates. In the following
theorem an expression for the Fisher information matrix is given for data acquired as a
space-time random process. It is a slightly simplified version of a more general result
presented in [16].

Theorem 1 [16]—Let (Λθ, {fθ,τ}τ≥t0, ) be an image detection process. Assume that the
photon distribution rate Λθ(τ), τ ≥ t0, is independent of the parameter vector θ. Then for θ ∈
Θ, the Fisher information matrix I(θ) of  for the time interval [t0, t] is given by
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In the remainder of the section this result will be used to derive expressions for the Fisher
information for the estimation of parameters related to moving objects as observed using
highly sensitive microscopy techniques. As the next step of the derivation we make the
assumption that the photon distribution profile fθ,τ can be expressed as a scaled and shifted
version of the image of the object since in an optical microscope, the image of an object can
often be considered to be invariant with respect to shifts in the object location. In the case of
a moving object, fθ,τ can then be written as

where qzθ(τ),oθ(τ) denotes an image function, M > 0 denotes the lateral magnification and
(xθ(τ), yθ(τ)), τ ≥ t0, denotes the time dependent trajectory of the object. The image function
qzθ(τ),oθ(τ), which is dependent on its focus level zθ(τ) and orientation oθ(τ), describes the
image of an object on the detector plane at unit lateral magnification when the object is
located along the z axis in the object space and is assumed to be normalized such that

, τ ≥ t0.

The following theorem provides a more concrete expression for the Fisher information
matrix than that given in Theorem 1 by illustrating its dependence on the trajectory of the
tracked object.

Theorem 2. (Appendix A)—Let (Λ,{fθ,τ}τ≥t0, ℝ2) be an image detection process. For θ
∈ Θ, assume that

A1) there exists an image function qzθ(τ),oθ(τ) such that for M > 0, the photon
distribution profile fθ,τ of a moving object is given by fθ,τ (x, y) = 1/
M2qzθ(τ), oθ(τ) (x/M − xθ(τ), y/M − yθ(τ)), (x, y) ∈ ℝ2, τ ≥ t0;

A2) |xθ(τ)| and |yθ(τ)| are uniformly bounded for t0 ≤ τ ≤ t;

A3) ∂qzθ(τ), oθ(τ)(x/M − xθ(τ), y/M − yθ(τ))/∂p(τ) exists for (x, y) ∈ ℝ2, zθ(τ), oθ(τ) ∈

ℝ, τ ≥ t0 where .

Then for θ ∈ Θ, the Fisher information matrix I(θ) of  for the time interval [t0, t] is given
by

(1)

where
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The inner integral

of the Fisher information matrix in Theorem 2 is essentially the same as the spatial integral
of the time-invariant case [16]. Thus the time-varying case can be obtained by integrating

the time-invariant result over time with weighting functions Vθ(τ) and . The weighting
function Vθ(τ) is the derivative of the object trajectory with respect to the parameters
concerned. The significance of this theorem is that we can now calculate the Fisher
information matrix of the underlying random process that characterizes the acquired data
from a moving object by assuming the image function to be stationary in the x – y plane,
such that its origin is located along the z axis, i.e., the optical axis of the objective lens. To
calculate the Fisher information matrix of an object moving in 3D space, we simply use the
derivative of the parametric expressions of the object trajectory and its image at the
corresponding locations along the optical axis. This expression can be applied to an arbitrary
trajectory in 3D space. Note that the image function used is quite general.

In the following proposition, we consider a 2D time-varying case where the image function
qzθ(τ), oθ(τ) does not depend on the focus level zθ(τ) and the orientation oθ(τ) and is simply
denoted as q. This leads to a further simplification of the expression for the Fisher
information matrix.

Proposition 3. (Appendix B)—Let (Λ,{fθ,τ}τ≥t0, ℝ2) be an image detection process.
For θ ∈ Θ, assume that

A1) there exists a radially symmetric image function q, i.e., q(x, y) = q̃(r2) = q̃(x2 +
y2), for a function q̃: ℝ → ℝ, that does not depend on zθ(τ) and oθ(τ) such that
for M > 0, the photon distribution profile fθ, τ of a moving object is given by

A2) ∂q(x, y)/∂x and ∂q (x, y)/∂y exist for every (x, y) ∈ ℝ2.

Let (xθ(τ), yθ(τ)), τ ≥ t0, denote the time dependent trajectory of the object with respect to its
starting location (x0, y0). Then for θ ∈ Θ, the Fisher information matrix I(θ) of  for the time
interval [t0, t] is given by

(2)

The expression of I(θ) in Proposition 3 is now separable in terms of the spatial and temporal
integrals, similar to the case of a stationary object [16]. The spatial integral includes the
image function and its derivative while the temporal integral includes the photon detection
rate and the derivative of the trajectory. Thus, to calculate the Fisher information matrix of
an object moving in the 2D focus plane or in a relatively flat structure, we can assume that
its trajectory is decoupled from its image. The significance of this expression is that it
greatly simplifies the calculation of the Fisher information matrix since it is now simply a
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product of two entities and hence it can be easily applied to an arbitrary trajectory in the 2D
focus plane provided that the image function is radially symmetric. Note that there is a
major difference between the expressions of the Fisher information matrix for the time-
invariant and the time-varying cases. In the former case, its Fisher information matrix is
affected by the image function and the photon detection rate whereas in the latter, other than
the image function and the photon detection rate, it is also affected by the parameters of the
trajectory to be estimated.

We now illustrate the result in Proposition 3 by considering specific image functions that
describe the image of a moving object, more specifically a moving point source. According
to optical diffraction theory, when a point source is in focus with respect to the detector, the
intensity distribution of the image of the point source is described by the Airy profile. The
2D Gaussian profile, on the other hand, has been widely used to approximate the Airy
profile as it is argued that the Gaussian profile provides a good approximation to the Airy
profile in the central region and its use simplifies the analysis [17], [22], [23]. As such, we
will consider two different image profiles, specifically a Gaussian image profile and an Airy
profile, for both the linear and circular trajectories. For both trajectories, we use the
expression of I(θ) in Proposition 3 to derive general expressions for the lower bound to the
best possible accuracy for the parameters to be estimated. We will also obtain an explicit
analytical expression for the lower bound for a special case where the photon detection rate
is assumed to be a known constant. Following [16], this lower bound is referred to as the
fundamental limit of the accuracy for the particular parameter vector, or in short, the
fundamental limit. The term fundamental is used to describe the fact that the model which
underlies the expressions for calculating the lower bound does not take into account any
deteriorating effects of the acquisition system such as pixelation of the detector and the
various noise sources that typically occur in experimental settings. The fundamental limit
has practical value as it provides us with a quantity of what is theoretically possible in the
absence of deteriorating factors and thus serves as a benchmark for practical cases. Since the
fundamental limit only takes into consideration the basic optical and stochastic phenomena
that are inherent in any single-molecule experiment, it can easily be used to study the impact
of the important optical and physical parameters without being confounded by the influence
of extraneous parameters such as noise, detector properties, etc. In particular, comparisons
with the practical limits (see Section III) allow us to evaluate by how much the experimental
conditions, e.g., detector array size, pixel size, readout noise level, deteriorate the
theoretically best possible results.

In the following corollary, we consider the case of a linear trajectory where the object moves
from a given initial position (x0, y0) in the direction of movement φ at a constant speed v.
We derive the fundamental limits of the estimated parameters for the corresponding time
interval [t0, t], and then specialize the results to the case where the photon detection rate of
the image detection process is a known constant.

Corollary 4. (Appendix C)—Let (Λ,{fθ,τ}τ≥t0, ℝ2) be an image detection process. The
parametric expressions for the linear trajectory of the object for the time interval [t0, t] are
given by xθ(τ) = x0 + v(τ − t0) cos φ, yθ(τ) = y0 + v(τ − t0) sin φ, t0 ≤ τ ≤ t. For τ ≥ t0 and M
> 0, assume that there exists a radially symmetric image function q(x, y) such that fθ,τ(x, y) =
1/M2q(x/M − xθ(τ), y/M − yθ(τ)), (x, y) ∈ ℝ2 with q(x, y) = q̃(r2) = q̃(x2 + y2), for a function

q̃: ℝ → ℝ and let .

1. For θ = (x0, y0, φ, v) ∈ Θ, the fundamental limit of the localization accuracy δx0
(δy0) of x0 (y0), the fundamental limits δφ and δv of φ and v are given, respectively,
by
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(3)

where

(4)

In the case of the 2D Gaussian image function q(x, y) = 1/2πσ2 exp(−(x2 + y2)/2σ2),
σ > 0, (x, y) ∈ ℝ2, γ: = 1/σ. As for the Airy image function

, (x, y) ∈ ℝ2, γ: = 2πna/λ, where na and λ denote
the numerical aperture and emission wavelength respectively and J1 denotes the
first order Bessel function of the first kind.

2. If Λ(τ) = Λ0, τ ≥ t0, where Λ0 is a positive constant, then for θ = (x0, y0, φ, v) ∈ Θ,
the fundamental limit of the localization accuracy δx0 (δy0) of x0 (y0), the
fundamental limits δφ and δv of φ and v are given, respectively, by

(5)

where N: = Λ0(t − t0) denotes the expected number of detected photons for the time
interval [t0, t].

From Corollary 4, it can be seen that for both the Airy and the Gaussian image functions, the
fundamental limits of x0, y0 and v are independent of θ whereas the fundamental limit of φ is
only independent of x0, y0 and φ. When the photon detection rate is assumed to be a
constant, the expressions for the fundamental limit of the parameter estimates further
simplify to expressions comprising some properties of the photon emission process of the
single-molecule, parameters of the detection system and parameters of the trajectory. There
are also several interesting common observations for both image functions. The fundamental
limit exhibits an inverse square root dependence on the expected number of detected
photons. This result is similar to the case of a stationary object [16]. As for δφ, and δv, not
only are they inversely proportional to , the former is also inversely proportional to the
distance moved by the object of interest v(t − t0) while the latter to the acquisition time
interval (t − t0). The fundamental limit of the localization accuracy δx0 or δy0 derived here is
twice that of δx0 or δy0 for a stationary object [16]. Therefore, in the case of an object
moving in a straight line, we are able to estimate the unknown parameters δφ and δv at the
expense of reducing the estimation accuracy of x0 and y0.

In the next corollary, we consider the case of a nonlinear trajectory, specifically a circular
trajectory [24], [25]. The object is assumed to start moving at (x0, y0), which is angularly
offset at ψ0 degrees with respect to the x axis. It revolves at a constant angular velocity ω at
a fixed radius R about the center of its trajectory (xc, yc). For the corollary that follows, we
derive the Fisher information matrix for the corresponding time interval [t0, t] using a
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similar approach to that of the linear trajectory. We also consider a special case where the
length of the time interval [t0, t] is assumed to equal the period with respect to the angular
velocity and the photon detection rate Λ of the image detection process is assumed to be a
known constant.

Corollary 5. (Appendix D)—Let (Λ, {fθ,τ}τ≥t0, ℝ2) be an image detection process. The
parametric expressions for the circular trajectory of the object of interest for the time
interval [t0, t] are given by xθ(τ) = xc + R cos(ω(τ − t0) + ψ0), yθ(τ) = yc + R sin(ω(τ − t0) +
ψ0); t0 ≤ τ ≤ t, where (xc, yc) denotes the center of the circular trajectory R ω and ψ0, its
radius, angular velocity, and angular offset of the starting point (x0, y0) from the x axis,
respectively. For τ ≥ t0 and M > 0, assume that there exists a radially symmetric image
function q(x, y) such that fθ,τ(x, y) = 1/M2q(x/M − xθ(τ), y/M − yθ(τ)), (x, y) ∈ ℝ2 with q(x, y)

= q̃(r2) = q̃(x2 + y2), for a function q̃: ℝ → ℝ. Let .

(6)

1. For θ = (R, xc, yc, ω, ψ0) ∈ Θ, the Fisher information matrix of  for the time
interval [t0, t] is given by (6), where ψ: = ω(τ − t0) + ψ0, τ ≥ t0. In the case of the
2D Gaussian image function q(x, y) = 1/2πσ2 exp (−(x2 + y2)/2σ2), σ > 0, (x, y) ∈

ℝ2, γ = 1/σ. As for the Airy image function , (x,
y) ∈ ℝ2, γ = 2πna/λ, where na and λ denote the numerical aperture and emission
wavelength respectively and J1 denotes the first order Bessel function of the first
kind.

2. Let Tp denote the length of the time interval [t0, t], i.e., Tp: = t − t0, and assume that
Tp equals the period with respect to the angular velocity, i.e., Tp = 2π/ω. Assume
also the photon detection rate to be a known constant, i.e., Λ(τ) = Λ0, t0 ≤ τ ≤ t.
Then the fundamental limit δxc (δyc) of xc (yc) and the fundamental limits δR, δω and
δψ0 of R, ω and ψ0 are given by

(7)
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where NTp: = Λ0Tp denotes the expected number of detected photons for the period
Tp.

The general expression to calculate the Fisher information matrix I(θ) of  corresponding to
the time interval [t0, t] for an object with a circular trajectory is given in the first part of the
above corollary. By taking the square root of diagonal elements of the inverse of Fisher
information matrix, we obtain the fundamental limits of the parameter estimates. Unlike the
linear trajectory case, it seems that no simple analytical expression is available for the
fundamental limits in the case of a general circular trajectory.

However, in the special case where the length of the time interval [t0, t] is the period Tp with
respect to the angular velocity and the photon detection rate is a known constant Λ0, the
fundamental limit of θ = (R, xc, yc, ω, ψ0) simplifies to that shown in result 2 of Corollary 5
with analytical expressions given in (7). These expressions are given in terms of some
properties of the photon emission process of the single-molecule, parameters of the detection
system and parameters of the trajectory. Similar to the case of the linear trajectory, the
fundamental limits for all the five parameters are dependent on the inverse square root of the
expected number of detected photons and independent of the acquisition starting time.
However, the fundamental limits of the δxc and δyc are periodic in nature and dependent on
the angular offset of the starting point ψ0. On the other hand, the fundamental limits δω, δψ0
and δR are independent of ψ0. Moreover, both δω and δψ0 are inversely proportional to the
radius of the circular trajectory and in addition, δω is inversely proportional to Tp.

III. Effects of Pixelation and Simulation Results
So far we have only considered a moving object where its image is acquired by a
nonpixelated detector of infinite size without extraneous noise sources. In fluorescence
single-molecule microscopy, CCD cameras are commonly used for acquiring images of
fluorescent-labelled molecules. The detectors of CCD cameras are of finite size and
pixelated, i.e., they consist of a matrix of light sensing elements (pixels) where photo-
electrons are accumulated during an exposure interval. We will henceforth refer to it as a
pixelated detector of finite size p or in short, just a pixelated detector since a pixelated
detector is always of finite size in practice.

As for the acquired data, it comprises the detected photons from the object of interest and
noise from a variety of sources. The detected photons from the object of interest and the
external background radiation introduce a Poisson signal from the object of interest and

from the background component respectively. Hence we let 
denote an image detection process for the detected photons from the object of interest and

 for the background component. Readout noise, which is
characterized as a Gaussian random process, further contributes to the degradation of the
images acquired. As such, we consider two stochastic models for the pixelated detector, one
purely in terms of Poisson random variables while the other is in terms of Poisson and

Gaussian random variables. As for the photon distribution profile  of 2, it is assumed to
be independent of the time point τ and is denoted by f(2).

In the following theorem, we provide expressions to calculate the Fisher information matrix
of the acquired data from a pixelated detector in terms of its image function, photon
detection rate and object trajectory for two different scenarios: one where its acquired data
comprise only Poisson random variables and the other, its acquired data comprise both
Poisson and Gaussian random variables.

Wong et al. Page 9

IEEE Trans Signal Process. Author manuscript; available in PMC 2014 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Theorem 6 (Appendix E)—Let  and (2) (Λ(2), {f(2)}, ℝ2) be
two independent image detection processes for the object of interest and the background
component, respectively. Let the pixelated detector p be defined as a collection {C1, …,

CNp} of open, disjoint subsets of ℝ2 such that  , where Np denotes the total
number of pixels. For θ ∈ Θ, assume that

A1) the photon detection rates of (1) and (2) are known;

A2)
there exists an image function  such that for M > 0, the photon

distribution profile  of a moving object is given by

and for q(2), which is assumed to be independent of the focus level and the
orientation, the photon distribution profile f(2) of the background component is
given by

1. Let ℐθ,k = Sθ,k + Bk, k = 1, …, Np, where Sθ,k and Bk are Poisson
random variables from the object of interest and background
component, respectively. For θ ∈ Θ, the Fisher information matrix for
{ℐθ,1, …, ℐθ,Np} for the time interval [t0, t] is given by

(8)

(9)

2. Let ℐθ,k = Sθ,k + Bk + Wk, k = 1, …, Np, where Sθ, k and Bk are Poisson
random variables from the object of interest and background
component, respectively, and Wk denotes the Gaussian random variable
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with mean ηk and variance , which models the measurement noise.
For θ ∈ Θ, the Fisher information matrix for {ℐθ,1, …, ℐθ,Np } for the
time interval [t0, t] is given by (9). The Poisson-Gaussian mixture
probability density function, pθ,k(z), is given by

We define the square roots of the diagonal elements of the inverse of the Fisher information
matrix associated with a pixelated detector of finite size as the practical limits of the
accuracy for the particular parameter vector, or in short just as the practical limits. The word
“practical” is used here to differentiate it from the fundamental limit of the accuracy which
is associated with a nonpixelated detector of infinite size. Moreover, for simplicity, the term
“limit of the accuracy” is used when we refer to both the fundamental and practical limit of
the accuracy.

In the following simulations, we use the results of Theorem 6 to show how extraneous noise
sources, parameters of the detection system and parameters of the trajectory affect the
practical limit of the accuracy of θ. The practical limits will be benchmarked against their
corresponding fundamental limits.

Consider a single exposure/image for the time interval [t0, t]. The photon detection rate of a

moving point source is assumed to be a known constant, i.e., , τ ≥ t0, and
its image function to be a Gaussian, i.e., q(1)(x, y) = 1/2πσ2 exp(−((x/M − xθ(τ))2 + (y/M −
yθ(τ))2)/2σ2), (x, y) ∈ ℝ2, τ ≥ t0. The photon detection rate of the background component is

also assumed to be a known constant , τ ≥ t0, and the detected photons
from the background component are assumed to be uniformly distributed. Since we are
considering the 2D case where the image function is independence of zθ(τ) and oθ(τ), the
column vectors p(1)(τ) and Vθ(τ) in Theorem 6 are reduced to p(1)(τ): = [x/M − xθ(τ) y/M −
yθ(τ)]T and Vθ(τ): = [−∂xθ(τ)/∂θ − ∂yθ(τ)/∂θ]T. For both the linear and circular trajectories
illustrated in Fig. 1, we consider the noise-free and the noise-corrupted cases. In our context,
noise-free refers to the case where only “Poisson noise” or “shot noise” [26] from the object
of interest is present. This noise arises due to the stochastic nature of the acquired data. As
for the noise-corrupted case, it includes Poisson noise from the background component and
Gaussian noise from the readout process.

A. Linear Trajectory
For the case of a linear trajectory, we assume that the object commences to move with a
constant speed v from a given initial position (x0, y0) at an angle φ between the linear
trajectory and the x axis. During the acquisition, the image of the object is well within the
bounds of the pixelated detector, as shown in Fig. 1(a). Its parametric expressions are given
by xθ(τ) = x0 + v(τ − t0) cos φ, yθ(τ) = y0 + v(τ − t0) sin φ, t0 ≤ τ ≤ t.

Then for θ = (x0, y0, φ, v) ∈ Θ, ∂μθ(k, t)/∂θ = [∂μθ(k, t)/∂x0 ∂μθ(k, t)/∂y0 ∂μθ(k, t)/∂φ ∂μθ(k, t)/
∂v], where
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(10)

To calculate the Fisher information matrix, we substitute the expressions in (10) into the
results of Theorem 6. Inverting the Fisher information matrix and taking the square roots of
the diagonal elements, we obtain the practical limits of θ = (x0, y0, φ, v).

To study the effect of the speed of the object on the practical limit of θ, we fix the
acquisition time and consider a range of speeds. It can be observed in Fig. 2(a) and (c) that
the practical limits of x0, y0, and v improve initially but deteriorate subsequently as the speed
increases. The improvement in the practical limit is due to the increase in the number of
pixels that sample the image as the speed increases. Meanwhile, fewer photons are detected
per pixel because the same number of photons is now distributed over a greater number of
pixels. When the number of detected photons from the object decreases in relation to the
photons from the extraneous noise sources, the practical limit deteriorates. The deterioration
is more pronounced in the noise-corrupted case where the extraneous noise is present as
compared to the noise-free case where only the Poisson signal is present. It can also be
observed that there is a disparity between the practical limits of x0 and y0 in Fig. 2(a) as the
trajectory influences the practical localization limits differently. For the practical limit of φ,
it improves monotonically as the speed increases. Hence for a fixed acquisition time, the
improvement in the practical limit is dependent on the tradeoff between the number of pixels
that sample the image and the number of detected photons per pixel.

We next investigate the effect of magnification on the practical limit of θ. At low
magnification, the photons from the object of interest are concentrated over a small number
of pixels and the projected distance moved by the object in the pixel array is short. As the
magnification increases, the image magnifies and the projected distance moved increases
too. This causes the photons from the object of interest to be distributed over a larger
number of pixels. Thus in the noise-free case, for a fixed acquisition time, the trade-off
between the number of pixels that sample the image and the number of detected photons per
pixel results in the improvement of the practical limit of θ as the magnification increases.
However, in the noise-corrupted case, the practical limit deteriorates as the magnification
increases and, as a result, the number of detected photons from the object decreases in
relation to the photons from the extraneous noise sources, as shown in Fig. 3. It is noted that
in the stationary case, the distribution of photons over the pixel array is due to the change in
its image size whereas in the moving case, the distance moved by the object affects the
photon distribution too.

We now benchmark the practical limits against the fundamental limits from Corollary 4.
From Fig. 2, the practical limits of the accuracy of x0, y0 and v first approach and then
deviate from their respective fundamental limits as the speed increases. Note that their
fundamental limits remain constant throughout because they are independent of the speed of
the object. As for the practical limit of φ, it approaches its fundamental limit, which
improves monotonically as the speed increases. From Fig. 3, when the magnification
increases, the practical limit of θ approaches its fundamental limit for the noise-free case
while it deviates from its fundamental limit for the noise-corrupted case. It should be noted
that the fundamental limit of θ is independent of magnification and thus it remains constant
regardless of the magnification M.
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For relatively low speeds, such as when the particle moves at 200 nm/s, the practical limits
of both x0 and y0 are quite large for the noise-corrupted case in comparison to the
fundamental limits, the actual values of the parameters and the sizes of the pixels in object
space. For example, at this speed the practical limits are larger than 243 nm while the size of
an area in the object space corresponding to a pixel in the detector is only about 40 nm × 40
nm. In this particular scenario it is clear that a parameter estimate would be highly
questionable. For significantly larger speeds the practical limits that also account for
extraneous noise are much lower, although they never reach even single pixel precision. In
contrast, for the practical limits that are computed ignoring extraneous noise sources, the
predicted accuracies are of acceptable levels, for speeds over around 1000 nm/s. They are
not significantly above the fundamental limits. This suggests that, for this range of speeds,
no significant improvements in accuracy can be achieved by changing the detector size,
magnification and pixel size. This is in stark contrast to the range of speeds below 1000 nm/
s. For these speeds the difference between the fundamental limit and the practical limit that
excludes noise sources is rather large. Therefore changing the experimental conditions
promises major improvements. However, for all speeds there is a significant difference
between the practical limits that include extraneous noise sources and those without. This
suggests, that in a concrete experimental setting, the extraneous noise sources have to be
significantly reduced in order to obtain estimates that have accuracies close to what is
theoretically possible as specified by the fundamental limit.

B. Circular Trajectory
For the case of a circular trajectory, we assume that the center of the circular trajectory is
located at the center of the pixelated detector as shown in Fig. 1(b). Its parametric
expressions are given by xθ(τ) = xc + R cos(ω(τ − t0) + ψ0), yθ(τ) = yc + R sin (ω(τ − t0) +
ψ0), t0 ≤ τ ≤ t. For θ = (R, xc, yc, ω, ψ0) ∈ Θ, ∂μθ(k, t)/∂θ = [∂μθ(k, t)/∂R ∂μθ(k, t)/∂xc ∂μθ(k,
t)/∂yc ∂μθ(k, t)/∂ω ∂μθ(k, t)/∂ψ0], where

(11)

To calculate the Fisher information matrix, we substitute the expressions in (11) into the
results of Theorem 6. Inverting the Fisher information matrix and taking the square root of
the diagonal elements, we obtain the practical limit of θ = (R, xc, yc, ω, ψ0).

We first investigate the effect of the radius of the circular trajectory and then the effect of
the angular offset of the starting point on the practical limit of θ. To investigate the
dependence on the radius of the circular trajectory, we fix the constant angular velocity for a
range of radii and also fix the acquisition time as one period with respect to the angular
velocity. As the radius of the circular trajectory increases, for the noise-free case, the
practical limits of R, xc and of yc approach their respective fundamental limits, whereas for
the noise-corrupted case, they improve initially but deteriorate subsequently as shown in
Fig. 4(a) and (b), respectively. Similar to the case of the linear trajectory, this improvement
is due to the increase in the number of pixels that sample the image as the radius increases.
Meanwhile, fewer photons are detected per pixel because the same number of photons is
now distributed over a larger number of pixels. When the number of detected photons from

Wong et al. Page 13

IEEE Trans Signal Process. Author manuscript; available in PMC 2014 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the object decreases in relation to the photons from the extraneous noise sources, the
practical limits deteriorate. For ω and ψ0, their practical limits improve as the radius of the
circular trajectory increases, following the same trend of the fundamental limits.

We notice that there is also a disparity between the practical limits of xc and yc, as shown in
Fig. 4(b). This disparity diminishes as the radius of the circular trajectory increases. This
phenomenon can also be observed in the case of the angular offset of the starting location as
shown in Fig. 5(b) and (c). Hence, it is seen that the trajectory has a strong influence on the
practical limit. As in the case of the linear trajectory, the practical limit of the accuracy for
the circular case is also dependent on the tradeoff between the number of pixels that sample
the image and the number of detected photons per pixel.

We now benchmark the practical limits against the fundamental limits of θ from Corollary 5.
From Fig. 4, for the noise-corrupted case, the practical limits of R, xc and yc first approach
and then deviate from their respective fundamental limits as the radius of the circular
trajectory increases. Note that the fundamental limits of R, xc and yc are independent of the
radius of the circular trajectory and hence they remain constant as the radius increases. As
for the practical limits of ω and ψ0, they approach their respective fundamental limits, which
improve monotonically as the radius increases. From Fig. 5, the practical limits of R, ω and
ψ0 are almost independent of the angular offset of the starting point ψ0, and as the radius of
the circular trajectory increases, they approach their respective fundamental limits which are
independent of the angular offset of the starting point ψ0. However, the situation of the
practical limits of xc and yc is quite different as their deviations from the respective
fundamental limits are dependent on the angular offset of the starting point ψ0 and the radius
of the circular trajectory. It should be noted that the fundamental limits of xc and yc are
functions of the angular offset of the starting point ψ0.

IV. Conclusion
In this paper, we have investigated the performance of parameter estimation for moving
single molecules imaged by fluorescence microscopy. The acquired data are modeled as a
space-time random process where the detected photons are Poisson distributed. A
nonpixelated detector of infinite size is first considered. We derive a general expression of
the Fisher information matrix for parameter estimation in terms of its image function and
object trajectory for an object moving in 3D space. We have shown that the Fisher
information matrix can be obtained by integrating the corresponding time-invariant results
with a weighting function that is associated with the derivative of the object trajectory with
respect to the parameters concerned. For an object moving in the 2D focus plane, we have
also shown that the Fisher information matrix is separable in terms of the spatial and
temporal integrals. Furthermore, explicit CRLB expressions have been obtained when the
object moves in the 2D focus plane with the object trajectory being either linear or circular
and for two specific image functions: the Airy image function and the Gaussian image
function.

We next consider a pixelated detector of finite size. From the simulations conducted, we
have obtained insights into how extraneous noise sources, pixelation, parameters of the
detection system, and parameters of the trajectory affect the limits of the accuracy of the
estimated parameters. In the time-varying and linear trajectory case, the number of pixels
that sample the image is proportional to the speed of the object while the number of detected
photons per pixel is inversely proportional for a fixed acquisition time. Consequently, the
practical limits of the parameter estimates depend on the tradeoff between the number of
pixels that sample the image and the number of detected photons per pixel. As for the
magnification, the distribution of photons over the pixel array in the time-varying case is
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dependent on both the image size and the projected distance moved by the object on the
pixel array whereas in the time-invariant case, it is dependent only on the image size. In the
time-varying and circular trajectory case, we have shown that the disparity between the
practical limits of the center coordinates xc and yc diminishes as the radius of the circular
trajectory increases. The effect of the angular offset of the starting point on the practical
limits also diminishes as the radius increases. We also discuss the meanings and practical
implication of the results obtained. We hope that these insights will enable the
experimentalists to optimize their experimental setup in order to achieve the best possible
accuracy. It should be noted that the results here are essentially independent of the
application in single-molecule microscopy and can be applied to the general problem of
tracking an object using quantum limited detectors.
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Appendix A. Proof of Theorem 2
Let

and

where Vθ(τ) is independent of x and y. The photon distribution profile fθ,τ, in terms of the
entries of p̃(τ), can then be rewritten as

(12)

We first show that the existence of ∂qzθ(τ),oθ(τ) (x/M − xθ(τ), y/M − yθ(τ))/∂p(τ) implies the
existence of ∂qz̃θ(τ),õθ(τ)(x̃θ(x, τ), ỹθ(y, τ))/∂p̃(τ).

Using the chain rule, we have

Hence

Therefore, ∂qz̃θ(τ),õθ(τ) (x̃θ(x, τ), ỹθ(y, τ))/∂p̃(τ) exists.

Consequently, the partial derivative of fθ,τ(x, y) with respect to θ can be expressed as
follows:

(13)

Substituting (12) and (13) into the expression of I(θ) in Theorem 1 and simplifying gives the
following equation. Since dx = Mdx ̃θ, dy = Mdỹθ and the assumption of |xθ(τ)| and |yθ(τ)|
being uniformly bounded for θ ∈ Θ, t0 ≤ τ ≤ t, the expression becomes (14). Replacing the
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dummy variables x̃θ with x, and ỹθ with y in the above expression, respectively, and
recalling that z̃θ(τ) = zθ(τ), and õθ(τ) = oθ(τ), we have p̃(τ) = p(τ) in (14) and, hence, obtain
the desired result given in (1).□

(14)

Appendix B. Proof of Proposition 3
As the image function q is independent of zθ(τ) and oθ(τ), p(τ) and Vθ(τ) in Theorem 2

reduce to  and Vθ(τ): = [−∂xθ(τ)/∂θ −∂yθ(τ)/∂θ]T, respectively, and the
corresponding expression of I(θ) becomes

(15)

With the assumption of the image profile q(x, y) being radially symmetric and condition
(A2), it can be readily shown that

(16)

since (∂q̃(x2 + y2)/∂(x2 + y2))2 is also radially symmetric, and that

(17)

Using the polar coordinate system, where x = r cos φ and y = r sin φ, φ, r ∈ ℝ, and with
some algebraic manipulations, we have
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(18)

Similarly, it can be shown that

(19)

Substituting (16)–(19) into (15) gives the equation below (14).□

Appendix C. Proof of Corollary 4
1) Since , the expression of I(θ) in

Proposition 3 can be rewritten as

(20)

The linear trajectory of the object of interest for the time interval [t0, t] is given by

where (x0, y0) is the starting location of the object, φ is the direction of movement, i.e., the
angle between the linear trajectory and the x axis and v is the constant speed of the object.
Then for θ = (x0, y0, φ, v)

(21)

Hence, we obtain (21). By substituting (21) into (20), partitioning the matrix obtained and
considering the limits of integration from 0 to t − t0, I(θ) can be expressed as

(22)

where a1(t), a2(t), and a3(t) are given in (4) and
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As ai (t) ≢ 0, for i = 1, 2, 3 and B1(θ) is the 2×2 identity matrix I2, the inverse of the
partitioned matrix I−1(θ) [27] is given by

(23)

where

Some simple algebraic manipulations give

(24)

(25)

(26)

By substituting (25) and (26) into the inverse Fisher information matrix I−1(θ) in (23) and
taking the square root of its diagonal elements, we obtain the desired result given in (3). For

the case of the 2D Gaussian image function,  [15].
Hence by replacing γ with 1/σ in (3), we obtain the fundamental limit of the accuracy of θ.
Similarly for the Airy profile, we replace γ with 2πna/λ[15].

2) For the special case where the photon detection rate is constant, i.e., Λ(τ) = Λ0, τ
≥ t0, Λ0 ∈ ℝ+, the integrals of the photon detection rate with respect to time for
the expressions in (4) become
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Substituting the above expressions into result 1 of this corollary and letting N = Λ0(t − t0),
we obtain the desired result given in (5).□

Appendix D. Proof of Corollary 5
1) Since , the expression of I(θ) in

Proposition 3 can be rewritten as

(27)

The parametric expressions of the moving object with circular trajectory are given by

where (xc, yc) is the center, R is the radius of the circle, ω is the constant angular velocity of
the object and ψ0 is the angular offset of the starting point (x0, y0) from the x axis. Given that
the unknown parameter vector is θ = (R, xc, yc, ω, ψ0), then we can readily express (28),
where ψ = ω(τ − t0) + ψ0.

(28)

Substituting (28) into (27), we obtain the desired Fisher information matrix given in (6). For

the case of the 2D Gaussian image function,  [15]
and by replacing γ with 1/σ, we obtain its Fisher information matrix I(θ). Similarly for the
Airy profile, we obtain its Fisher information matrix by replacing γ with 2πna/λ[15].

2) Assuming Λ(τ) = Λ0, t0 ≤ τ ≤ t, and t = t0 + Tp where Tp = 2π/ω, we can further
simplify the Fisher information matrix I(θ) in (6) after evaluating the following
expressions:
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(29)

(30)

(31)

Next

(32)

since it is the integration over one period of a cosine. Similarly, .

Using integration by parts and with some simplifications, we also have

(33)

(34)

Substituting (29)–(34) into (6) and making use of ω = 2π/Tp, we have the equation below
(28), where NTp = Λ0Tp and

Hence I−1 (θ) is given by

(35)

(36)
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Adopting the same approach to inverting the 4×4 matrix in (22), which has a similar

structure as I1 (θ) here, we can readily obtain (36). Substituting  in (36) into (35) and
taking the square root of its diagonal elements, we obtain the fundamental limits of the
accuracy of θ = (R, xc, yc, ω, ψ0) as given in (7).□

Appendix E. Proof of Theorem 6
1) Using condition (A1), the mean of the number of detected photons at the kth

pixel due to the object of interest for the time interval [t0, t] is given by [16]

The above expression can then be expressed in terms of its image function  as

(37)

The mean of the number of detected photons at the kth pixel due to the background
component for the time interval [t0, t] is given by [16]

(38)

From [16], vθ(k, t) = μθ(k, t) + β(k, t). Substituting (37) and (38) into vθ(k, t) gives

(39)

(40)

The partial derivative of μθ(k, t) with respect to θ is expressed as shown in (40).
Interchanging the operation of differentiation with that of integration for (40) and adopting a
similar approach used in Theorem 2, the derivative of μθ(k, t) with respect to θ can be
expressed as

(41)

Substituting (39) and (41) into [21]
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we obtain the Fisher information matrix I(θ) in (8) for the pixelated detector  where the
detected photons from the object of interest and background component are independently
Poisson distributed.

2) For the case comprising Poisson and Gaussian random variables, we can

substitute the mean ηk and variance  of the Gaussian random variable, (39)
and (41) into the expression of I(θ) in (9) [16].□
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Fig. 1.
Schematic sketch of a linear trajectory and a circular trajectory.
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Fig. 2.
Limits of the accuracy of the parameter estimates as a function of the speed of a linearly
moving object. (a) Practical limits of x0 (—) and y0 (– · –). (b) Practical limit of φ and (c) of
v. (○) corresponds to the noise-free case and (◇) corresponds to the case where Poisson

noise ( ) of 2 photons/pixel/s and Gaussian noise (σk) of 4 e−/pixel are present. Their
corresponding fundamental limits (*) are included as the references. For the object in all
plots σ = 83 nm, magnification M = 100, its direction of movement φ = 30°, and its starting
coordinates are (x0, y0) = (−268.7, −268.7) nm. The photon detection rate

, acquisition time is 0.2 s, pixel size is 4.03 μm × 4.03 μm and the
array size is 31 × 31 pixels.
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Fig. 3.
Limits of the accuracy of the parameter estimates as a function of the magnification of a
linearly moving object. (a) Practical limits of x0 (—) and y0 (– · –). (b) Practical limit of φ
and (c) of v. (○)corresponds to the noise-free case and (◇) to the case where Poisson noise

( ) of 2 photons/pixel/s and Gaussian noise (σk) of 4 e−/pixel are present. Their
corresponding fundamental limits (*) are included as reference. For the object in all plots σ
= 83 nm, its direction of movement φ = 30°, its speed v = 1800 nm/s, and its starting
coordinates are (x0, y0) = (− 127.3, −127.3) nm. The photon detection rate

, acquisition time is 0.2 s, pixel size is 4.03 μm × 4.03 μm and the
array size is 31 × 31 pixels.
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Fig. 4.
Limits of the accuracy of the parameter estimates as a function of the radius of the circular
trajectory. (a) Practical limit of R. Panel (b) of xc (—) and yc (– · –). Panel (c) of ω and (d) of

ψ0. (○) corresponds to the noise-free case and (◇) to the case where Poisson noise ( ) of
2 photons/pixel/s and Gaussian noise (σk) of 4 e−/pixel are present. Their corresponding
fundamental limits (*), which are independent of the pixel array, are included as reference.
For the object in all plots, σ = 83 nm, magnification M = 100, angular offset of the starting
point ψ0 = 20°, and the coordinates of xc and yc are (0, 0). The photon detection rate

, period Tp = 0.2 s, pixel size is 4.03 μm × 4.03 μm and the array size
is 31 × 31 pixels.
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Fig. 5.
Limits of the accuracy of the parameter estimates as a function of the angular offset of the
starting point ψ0 of an object with a circular trajectory. (a) Practical limit of R. Panel (b) of
xc. Panel (c) of yc. Panel (d) of ω and (e) of ψ0. (○) corresponds to a radius of the circular
trajectory of 350 nm while (*) corresponds to a radius of 50 nm. The line style (– · –)
corresponds to the noise-free case while (—) refers to that of the fundamental limit. For the
object in all plots σ = 83 nm, magnification M = 100, and the coordinates of xc and yc are (0,

0). The photon detection rate , period Tp = 0.2 s, pixel size is 4.03 μm
× 4.03 μm and the array size is 31 × 31 pixels.
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