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Abstract

BACKGROUND—Chronic alcohol consumption reduces brain serotonin and alters the synaptic
mechanisms involved in memory formation. Hippocampal 5-HT 1 5 receptors modulate these
mechanisms, but the neuroadaptive response of 5HTq 4 receptors to chronic alcohol self-
administration is not well understood.

METHODS—Hippocampal tissue from monkeys that voluntarily self-administered ethanol for 12
months (n=9) and accompanying controls (n=8) were prepared for in vitro receptor
autoradiography and laser capture microdissection. The 5-HT 4 receptor antagonist, [2BH]MPPF,
and the agonist, [3H]8-OH-DPAT, were used to measure total and G-protein coupled 5-HT
receptors respectively. The expression of the genes encoding the 5-HT1 4 receptor and its
trafficking protein Yif1B was measured in microdissected dentate gyrus (DG) granule cells and
CAL pyramidal neurons.

RESULTS—An increase in G-protein coupled, but not total, receptors was observed in the
posterior pyramidal cell layer of CA1 in ethanol drinkers compared to controls. Chronic ethanol
self-administration was also associated with an up-regulation of total and G-protein coupled 5-
HT 14 receptors in the posterior DG polymorphic layer. Changes in receptor binding were not
associated with concomitant changes in 5-HT 14 receptor mMRNA expression. Chronic ethanol self-
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administration was associated with a significant increase in Yif1B gene expression in posterior
CAL pyramidal neurons.

CONCLUSIONS—Chronic, ethanol self-administration up-regulates hippocampal 5-HT1a
receptor density in a region-specific manner that does not appear to be due to alterations at the
level of transcription but instead may be due to increased receptor trafficking. Further exploration
of the mechanisms mediating chronic ethanol-induced 5-HT1 4 receptor up-regulation and how
hippocampal neurotransmission is altered is warranted.
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1. INTRODUCTION

The hippocampus plays an important role in the development of alcohol dependence. It
modulates mesolimbic dopamine system-mediated reward via projections to several brain
regions including the nucleus accumbens (Friedman et al., 2002; Haber and Knutson, 2009)
and plays a significant role in the acquisition and retrieval of drug-related memories, which
are thought to drive compulsive drug-seeking and continued consumption (Hyman and
Malenka, 2001; Robbins et al., 2008). Many of the neurobiological processes altered by
chronic alcohol also mediate memory formation (Kauer and Malenka, 2007; Nestler et al.,
2002), including long-term potentiation (LTP; Roberto et al., 2002).

Serotonin plays a well-recognized role in regulating alcohol consumption (LeMarquand et
al., 1994; Johnson, 2004; Sari et al., 2011). For example, chronic ethanol exposure is
associated with a decrease in serotonin levels (Wu et al., 1986; Bare et al., 1998) and
likewise, low serotonin is associated with increased ethanol preference and intake (Murphy
et al., 1982; Gongwer et al., 1989; Linnoila et al., 1989). Furthermore, degeneration of
ascending serotonergic neurons has been observed in the brains of alcoholics (Halliday et
al., 1993) suggesting that low levels of serotonin may be a risk factor for, as well as a
consequence of, chronic ethanol consumption.

Among the various receptors that mediate the effects of serotonin within the hippocampus,
G-protein coupled 5-HT1 5 heteroreceptors have drawn particular interest. Located on the
dendrites and axon hillock of dentate gyrus granule cells and CA1/2 pyramidal neurons
(Azmitia et al., 1996), 5-HT 1 5 receptors decrease cell firing (Pugliese et al., 1998) and
modulate neuroadaptive responses, like LTP, in hippocampal neurons (Kojima et al., 2003).

Despite their pivotal role, there is a paucity of information regarding the relationship
between chronic ethanol and hippocampal 5-HT 14 receptors. Ulrichsen (1991) reported that
exposing rats to ethanol for five days resulted in reduced hippocampal 5-HT1 5 receptor
binding to the agonist, [3H]8-OH-DPAT compared to ethanol naive controls. Nevo et al.
(1995) reported similar results using both [3H]8-OH-DPAT and the antagonist, [BH]WAY
100635 in rats exposed to 14 days of ethanol compared to controls. This combination is
particularly advantageous because it permits quantification of the entire 5-HTq A receptor
population including G-protein coupled and uncoupled receptors. Nevo et al. (1995) did not,
however, report a subregion and layer specific analysis of the hippocampus. Because the
discrete functional subdivisions of the region each contribute uniquely to the hippocampal
microcircuitry, a more anatomically comprehensive approach is warranted (Amaral and
Lavenex, 2007).

In contrast to existing rodent studies, Martinez et al. (2009) reported no difference in
hippocampal 5-HT 1 receptor availability in alcohol dependent individuals versus controls
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using positron emission tomography. Technical resolution, ethanol exposure parameters,
time since last ethanol exposure, and species differences may contribute to the discrepant
findings. Nevertheless, the effect of ethanol on the expression of 5-HTq 4 receptors remains
unclear.

Little attention has focused on the mechanism(s) underlying ethanol’s effect on 5SHT 5
receptor density, which may include changes in receptor gene expression or trafficking. The
present study takes advantage of a well-characterized nonhuman primate model that
accurately reflects human alcohol consumption (Grant et al., 2008; Vivian et al., 2001) to
investigate the effects of chronic ethanol self-administration on hippocampal 5-HT 5
receptors using a comprehensive subregion, layer and level specific approach.

2. MATERIALS AND METHODS

2.1 Subjects

The subjects and ethanol self-administration methods used in the current study have been
described in detail previously (Burnett et al., 2012). Nine individually housed adult male
cynomolgus macaques (Macaca fascicularis) voluntarily self-administered ethanol, water
and banana flavored food pellets (Research Diets Incorporated, New Brunswick, NJ) 22 hr/
day for 12 months using an operant panel permanently attached to their home cage. Each
animal’s intake varied throughout the study with average daily intakes ranging from 1.17—
4.25 g/kg (see Burnett et al., 2012 for details). Blood ethanol concentrations (BECs) were
taken every fifth day at 7 hr following the onset of the drinking session. Intakes at the time
of blood draw correlated positively with BEC (r2=0.87; p<0.01).

Controls consisted of two separate groups of ethanol naive monkeys. Four “caloric controls”
were housed in the same room as the ethanol group, received the same diet, and self-
administered a volume of a maltose-dextrin solution that was matched in calories to the
ethanol-caloric intake of an assigned ethanol monkey. Four “housing controls” were housed
in a room identical to the ethanol self-administration room and remained on regular
laboratory diet (Purina monkey chow).

Monkeys were necropsied at the end of their final 22-hour self-administration session as
described previously (Burnett et al., 2012). The brain was quickly removed, blocked, flash
frozen, and stored at —80°C until ready for sectioning. All procedures were approved by the
Wake Forest University School of Medicine and Oregon Health & Sciences University
Institutional Animal Care and Use Committees and adhered to NIH’s Guide for the Care and
Use of Laboratory Animals.

2.2 In vitro receptor autoradiography

Blocks containing the hippocampus were sectioned coronally at 20 microns using a cryostat
maintained at —20°C. Sections were thaw mounted to Frost-plus slides, placed on wet ice
and then in a desiccator overnight at 4°C before being placed at —80°C.

5-HT1A receptor density was determined using the agonist [3H]8-hydroxy-2-(di-n-
propyl)aminotetralin (8-OH-DPAT) or antagonist [3H]4-(2’-methoxy-)-phenyl-1-[2’-(N-2"-
pyridal)-p-fluorobenzamido]ethyl-piperazine (MPPF; PerkinElmer, Inc., San Jose, CA).
Specific binding was determined in two adjacent sections at two levels along the
rostrocaudal extent of the hippocampus corresponding to approximately A8-10
(midrostrocaudal) and A4—6 (caudal) in the atlas of Szabo and Cowan (1984) per animal.
Nonspecific binding (NSB) was determined using a single adjacent section per level per
animal. The anterior and posterior hippocampus are distinguished from each other based on
functional differences, but recent work suggests that the hippocampus can be divided into at
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least three structurally and functionally distinction regions designated as anterior, posterior
and intermediate (Fanselow and Dong, 2010). While additional work is needed to clearly
define these boundaries, the levels chosen for the present study correspond approximately to
the intermediate and posterior hippocampus respectively.

Labeling with [3H]8-OH-DPAT was performed using the procedures of Lu and Bethea
(2002). Sections were preincubated for 30 minutes at room temperature (RT) in 170 mM
Tris-HCI buffer containing 4 mM CaCl, (pH 7.6). Total binding was determined by
incubation for 60 minutes in the same buffer containing 2 nM [3H]8-OH-DPAT (187.4 Ci/
mmol), 0.01% L-ascorbic acid, 10 uM pargyline and 10 uM fluoxetine. NSB was
determined in the presence of 2 uM serotonin. Sections were subsequently washed in ice-
cold preincubation buffer (2 x 4 minutes) followed by a rinse in ice-cold distilled water.

Labeling with [3H]MPPF was performed using the procedures of Hensler (2002). Sections
were preincubated for 30 minutes at RT in 170 mM Tris-HCI buffer (pH 7.6). Total binding
was determined by incubation for 90 minutes in the same buffer containing 10 nM
[3BH]MPPF (74.2 Ci/mmol). NSB was determined in the presence of 10 uM WAY 100635.
Sections were subsequently washed in ice-cold preincubation buffer (2 x 5 minutes)
followed by two rinses in ice-cold distilled water for one minute and 30 seconds,
respectively.

Sections were dried overnight in a hood under a stream of cool air and then apposed with
[3H] standards (American Radiolabeled Chemicals, Inc., St. Louis, MO) to [3H]Hyperfilm
for 4 weeks for [2H]8-OH-DPAT and 5 weeks for [?H]MPPF. Films were developed with
Kodak GBX developer, stopbath and Kodak Rapid Fixer.

Autoradiograms were analyzed by quantitative densitometry using MCID (Imaging
Research, St. Catherines, Ontario, Canada). Curves from [3H] standards were used to
convert optical density values to tissue equivalent values (fmol/mg wet weight tissue). Two
adjacent measurements of total binding were taken from each section, in each region, at each
level (i.e., four measurements per region per level per animal). Specific binding was
determined by subtracting NSB from total binding in adjacent sections. Adjacent nissl
stained sections were used to confirm the anatomical placement of the measurements taken.

2.3 LCM, RNA isolation & cDNA synthesis

Sections adjacent to those used for in vitro receptor autoradiography were cut coronally at
10 microns, thaw mounted to plain glass slides, placed on dry ice and stored at —80°C until
ready for processing.

Cells for microdissection were visualized using an RNA-compatible nissl stain. Sections
were thawed to RT for 30 seconds and then submerged in 75% ethanol, nuclease free water
(NFW), 0.005 M thionin, NFW, 75%, 95%, and 100% ethanol for 30 seconds each,
dehydrated in xylene for five minutes and air dried under a hood for five minutes.

Individual CA1 pyramidal neurons and the entire dentate gyrus (DG) granule cell layer were
microdissected using the Arcturus XT LCM Instrument (Life Technologies Corporation,
Carlsbad, CA). Cells of interest were identified by neuroanatomical location, size and
morphology. Average dissection parameters were: pyramidal neurons: power=68,
duration=8, spot size=18-20; granule cell layer: power=75, duration=50, spot size=65.
Approximately 1,200-1,600 pyramidal neurons and 4-5 granule cell layers were
microdissected from 4—6 sections per level per animal.
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After dissection, cells were lysed and RNA was extracted using the Arcturus PicoPure
Frozen RNA Isolation Kit (Life Technologies Corporation). Isolated RNA was eluted into
30 uL of elution buffer. Samples from a single subject were pooled together and RNA was
quantified using NanoDrop 1000 (Thermo Scientific, Wilmington, DE). RNA quality was
assessed for each subject from adjacent sections using the Agilent 2100 Bioanalyzer with
RNA 6000 Pico Kit (Agilent Technologies, Santa Clara, CA). Total RNA (100 ng) was
transcribed for each subject using random primers and Superscript 111 (Life Technologies
Corporation). Aliguots of RNA from each subject for each discrete cell population were
pooled prior to reverse transcription for use as standards. An additional pooled aliquot was
reverse transcribed in the absence of Superscript 111 to serve as a no reverse transcription
control (NRTC) for detection of genomic DNA. Resulting complimentary DNA (cDNA)
was diluted 1:50 for gPCR and standards were generated from the pooled cDNA and serially
diluted in two fold dilutions from 1:10 to 1:320.

Standard Human Tagman Gene Expression Assays (Applied Biosystems, Carlsbad, CA)
were used for the measurement of 5-HTa receptor and YiflB levels as well as endogenous
controls. The assays used and their percent homology with the Macaca genus, as determined
by NCBI Genome BLAST, are as follows: 5-HT1 receptor (HTR1A) — Hs00265014_s1
(97%); Yif1B (YIF1B) — Hs00293051_m1 (96%); 18S —Hs99999901_s1 (99%); B-actin
(ACTB) — Hs99999903_m1 (97%); B-2 microglobulin (B2M) — Hs99999907_m1 (92%);
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) — Hs99999905 _m1 (97%); B-
glucuronidase (GUSB) — Hs99999908_m1 (94%); hypoxanthine phosphoribosyltransferase
1 (HPRT1) — Hs99999909 m1 (99%); phosphoglycerate kinase 1 (PGK1) —
Hs99999906_m1 (97%); peptidylprolyl isomerase A (cyclophilin A) (PPIA) —
Hs99999904_m1 (97%); ribosomal protein, large (RPLPO) — Hs99999902_m1 (99%);
TATA box binding protein (TBP) — Hs99999910_m1 (96%); transferrin receptor (TFRC) —
Hs99999911 m1 (95%).

ABI Prism 7900HTS real-time detector (Applied Biosystems) was used to analyze 384-well
plates containing 0.5 uL Tagman Gene Expression Assay (20X), 5.5 uL ABsolute QPCR
ROX Mix (Thermo Scientific) and 4.5 uL diluted cDNA mixed together in each well. In
addition to the NRTC, a no template control (NTC) consisting of water instead of cDNA
was used. Samples were run in triplicate using thermocycle conditions and quantified
according to methods described previously (O’Conner et al., 2007). Endogenous controls
(ECs) were selected for each experiment from a set of eleven candidate reference transcripts
(see above) using the geNorm algorithm (Vandesompele et al., 2002). HPRT1, PGK1, PPIA,
and TBP were used as ECs for experiments using DG granule cells while 18S, HPRT1,
PGK1, and PPIA were used for CA1 pyramidal neurons. Data for each gene of interest were
expressed as mean quantity over geometric mean of the mean quantity of the selected ECs
for each experiment. Normalized values are expressed as percent control.

2.5 Statistical analysis

SigmaStat 3.1 (Systat Software, Inc., Point Richmond, CA) was used for statistical analyses.
All data were analyzed following log transformation for normalization. Two-way repeated
measures analysis of variance was employed for each region measured in receptor
autoradiography experiments with group (ethanol versus control) and level (intermediate
versus posterior) as the factors and level as the repeated measure. Post-hoc pairwise multiple
comparisons were conducted using a Bonferroni t-test. Data from each discrete cell
population in the gene expression experiments were analyzed separately in a similar manner.
Linear regression was used to identify the relationship between binding and gene expression
data.
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3. RESULTS

3.1 Comparison of caloric and housing controls

There were no significant differences between control groups for any region in [3H]MPPF
binding or 5-HTq A receptor or YiflB gene expression. Consequently, data from both groups
were pooled and used as a single control group to assess the effect of ethanol self-
administration on these measures. A single difference between the two control groups was
observed in [3H]8-OH-DPAT binding in the DG granule cell layer (DGgcl) [F(1,15)=5.988,
p=0.050; Figure 1]. A closer examination of the data revealed that the effect was driven by
two housing controls that exhibited far greater (49%) [3H]8-OH-DPAT binding than the
other six controls and all nine ethanol drinkers. Based on these findings, the two outliers
were removed from all comparisons of [3H]8-OH-DPAT binding. The six remaining
controls were pooled and used for comparison against the ethanol group.

3.2 Effect of chronic ethanol on [BH]MPPF binding

[3H]MPPF binding reflected the normal distribution of 5-HT A receptors reported in the
primate hippocampus (Figure 2B and 2C; Varnas et al., 2004) with the greatest density in
CA1/CA2 and moderate to high levels in the dentate gyrus (DG). Based on this distribution,
measurements were taken in all four layers of CAL: stratum oriens (so), pyramidal cell layer
(pcl), stratum radiatum (sr) and stratum lacunosum molecular (slm), and all three layers of
the DG: molecular layer (mol), granule cell layer (gcl) and polymorphic layer (pol).

A main effect of level was observed in CAlsr and CAlpcl [F(1,33)=29.947, p<0.001,;
F(1,33)=47.348, p<0.001 respectively]. Post-hoc comparisons revealed greater [?H]MPPF
binding in the posterior than the intermediate level in both layers for both groups (p<0.01).
No main effect of level was observed in CAlso or CAlsIm. No main effect of group was
observed for any of the layers in CAl (Figure 2E-G).

A main effect of group was observed in DGmol [F(1,33)=4.628, p=0.048] and DGpol
[F(1,33)=14.184, p=0.002]. Post-hoc comparisons revealed greater [SH]MPPF binding in the
ethanol group than controls in the intermediate DGmol (18%; p=0.046) and both
intermediate (34%; p=0.007) and posterior (37%; p=0.003) DGpol. Ethanol drinkers
exhibited greater [3H]MPPF binding in posterior DGmol (14%) but this effect did not reach
statistical significance (p=0.096; Figure 2H-J).

3.3 Effect of chronic ethanol on [3H]8-OH-DPAT binding

The distribution of hippocampal [3H]8-OH-DPAT binding was similar to that of [SH]MPPF
(Figure 3B and 3C) so measurements were taken from the same layers and subregions.
Measurements were not taken, however, from one section for three control animals due to
tissue loss resulting in the average of two measurements instead of four for each region for
these subjects.

A main effect of level was observed in CAlpcl [F(1,29)=5.513, p=0.035]. Like the
[®H]MPPF findings, post-hoc comparisons indicated that the ethanol group exhibited greater
binding in the posterior than the intermediate level (p=0.022), while controls exhibited
similar densities between levels. No effect of group or level was observed in CAlso, CAlsr
or CAlslm (Figure 3D-G).

A main effect of group was observed in DGpol [F(1,29)=8.680, p=0.011] with the ethanol
group exhibiting greater binding at both intermediate (32%) and posterior (78%) levels
compared to controls. This effect reached significance only at the posterior level (p=0.006).
No effect of group or level was observed in DGmol or DGgcl (Figure 3H-J).
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3.4 Effect of chronic ethanol on 5-HT receptor gene expression

A main effect of level was observed in HTR1A expression in CA1 pyramidal neurons
[F(1,33)=5.462, p=0.034; Figure 4]. Post-hoc comparisons revealed significantly lower
HTR1A expression in CA1 of ethanol drinkers in the intermediate than the posterior level
(p=0.040) while controls exhibited similar HTR1A expression between levels. No effect of
level or group was observed in the DG. In addition, no significant correlation was observed
between [3H]MPPF or [3H]8-OH-DPAT binding and HTR1A expression in areas where an
effect of ethanol was observed on receptor density (data not shown).

3.5 Effect of chronic ethanol on YIF1B gene expression

A main effect of level was observed in CA1 pyramidal neurons [F(1,32)=6.964, p=0.019;
Figure 4] with the ethanol group exhibiting greater YIF1B gene expression in the posterior
than intermediate hippocampus (p=0.024) whereas controls exhibited a similar magnitude of
expression at both levels. A similar effect of level was noted in the DG although it did not
reach statistical significance [F(1,33)=3.398, p=0.085]. No effect of group was observed for
either cell population. No significant correlation was observed between YIF1B gene
expression and 5-HT1 4 receptor density measures (data not shown).

3.6 Relationship between hippocampal 5-HT15 receptors and ethanol intake

Despite the numerous findings of a main effect of daily voluntary ethanol consumption on 5-
HT 14 receptor density listed above, no significant correlations were found between daily
ethanol intake (g/kg/day) or BECs taken at 7 hrs after the onset of every fifth session
averaged over the 12 months of 22 hr/day access or lifetime ethanol intake (mL or g/kg) and
any measure of receptor binding or gene expression. The absence of a correlation with
global measures of ethanol intake suggests either that these measures are not sensitive to
endpoint measurements of 5-HT 5 receptor binding and gene expression or that a larger
number of subjects are needed to observe significant correlations.

4. DISCUSSION

Chronic ethanol self-administration of 1.2-4.2 g/kg (approximately 7-17 drinks/day) up-
regulated 5-HTj 5 receptor density in specific subregions, layers and levels of the
hippocampus. These changes could not be accounted for by alterations in receptor gene
expression, but alterations in receptor trafficking may have played a regionally specific role
since ethanol induced an increase YIF1B gene expression in posterior CA1, where there was
also an increase in 5-HT A receptor binding.

4.1 5-HT4a receptor density

Total 5-HT1 receptor density, measured by [BH]MPPF, was greater in posterior than
intermediate CAlsr and CAlpcl in both ethanol drinkers and controls, indicating the
presence of layer-specific rostrocaudal differences in 5-HT1a receptor density. In addition,
greater [3H]8-OH-DPAT binding was observed in the CAlpcl of ethanol drinkers compared
to controls, suggesting an ethanol-induced 5-HT1 5 receptor upregulation in this layer due to
an apparent transition from uncoupled reserve receptors to functionally coupled receptors.

We did not observe rostro-caudal differences in 5-HTa binding in the DG. Nevertheless,
chronic ethanol self-administration produced a similar layer-specific up-regulation of 5-
HT1a receptors with greater total receptor number in both DGmol and DGpol. [3H]8-OH-
DPAT binding was also greater in the posterior DGpol suggesting that the ethanol-induced
increase in total 5-HTqa receptors in this region is due to an increase in coupled receptors.
In contrast, the lack of a corresponding increase in [°H]8-OH-DPAT binding in DGmol and
intermediate DGpol suggests that the ethanol-induced increase in 5-HT1 4 receptors in these
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regions is not due to an increase in coupled receptors. It is unclear from the present data
whether the increase in uncoupled 5-HT 1 receptors in these layers is due to an increase in
receptor reserve or desensitized receptors that have not been fully degraded. Although the
effect did not reach statistical significance, [3H]8-OH-DPAT binding was greater in the
DGmol and intermediate DGpol in the ethanol group than in controls suggesting that
increased receptor reserve is the more likely explanation.

The 5-HT 14 receptor up-regulation observed in the present study challenges previous
studies in rodents that report a decrease in hippocampal 5-HT 1 receptors following chronic
ethanol exposure (Nevo et al., 1995; Ulrichsen, 1991). Both studies, however, exposed
animals to ethanol in a non-contingent manner, which is known to produce different effects
from voluntary drug self-administration (Hemby et al., 1997; Jacobs et al., 2003). In
addition, the exposure paradigms lasted 5-10 days while the present study lasted 12 months.
Furthermore, in rodents, 5-HT 4 receptors are most abundant in the DGmol and moderately
abundant in CA1 whereas primates exhibit the reverse relationship (Duncan et al., 1998;
Kobhler et al., 1986). Thus, species and methodological differences therefore likely
contribute to the contradictory results.

Chronic ethanol produces a decrease in extracellular seratonin levels in the brain (Borg et
al., 1985; Branchey et al., 1981) that may be due to ethanol-induced degeneration of
serotonergic fibers (Halliday et al., 1993). Indeed, we have reported decreased hippocampal
serotonin transporter (SERT) density in these same animals (Burnett et al., 2012), and SERT
density has been reported as an accurate indicator of serotonin fiber density (Nielsen et al.,
2006). These findings suggest that the up-regulation of 5-HT; 5 receptors reported here may
be a compensatory response to decreased serotonin. Similar to our current findings, the
effect of chronic ethanol on SERT was greatest in the DG (Burnett et al., 2012) further
supporting this conclusion.

An increase in 5-HTqa r receptor density would result in increased inhibition of excitatory
neurotransmission. Given the 5-HT 4 receptor’s role in inhibiting LTP (Kojima et al.,
2003), the proposed increase in receptor activation may also contribute to the reduced LTP
production associated with chronic ethanol. Additional work is necessary to determine the
specific functional consequences of 5-HTqa receptor upregulation in these regions.

4.2 5-HTq1p receptor gene expression

We found no between group differences in HTR1A expression in any comparison.
Similarly, Nevo et al. (1995) found no difference in HTR1A expression following chronic
ethanol despite altered receptor density. Kinoshita et al. (2003) did not observe a difference
in CA1 HTR1A mRNA levels, but did report a significant decrease in HTR1A expression in
both CA3 and DG in rats following five days of intra-gastric ethanol exposure. Again,
experimental methods may contribute to these contradictory findings.

Dissociation between protein and gene expression is commonly reported (Gry et al., 2009;
Guo et al., 2008). Moreover, regulation of 5-HTq A receptor gene expression is complex
(Raymond et al., 1999), and under the control of numerous transcription factors (Albert et
al., 2011). The effect of chronic ethanol on these transcription factors remains unknown,
although stress and depression have both been associated with differential control of
regulators of 5-HT 1A receptor transcription (lyo et al., 2009; Szewczyk et al., 2009, 2010),
suggesting that similar alterations are plausible following chronic ethanol.

DG granule cells and CA1 pyramidal neurons are the primary sites of 5-HT 5 receptor
localization in the hippocampus, however, a small population of 5-HT 1 receptors have
been reported on hippocampal interneurons (Azmitia et al., 1992, 1996; Aznar et al., 2003)
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and astrocytes (Azmitia et al., 1992, 1996). The possibility, therefore, remains that these cell
types contribute to the observed changes in 5-HTqa receptor density. Indeed, in the rodent,
interneurons expressing 5-HTq 4 receptors are reportedly localized to the DGpol (Aznar et
al., 2003), where we observed the most pronounced effects. Whether primate DGpol
interneurons similarly express 5-HTq receptors is unknown. Given the considerable
differences in 5-HTq 4 receptor distribution between rodents and primates (Duncan et al.,
1998) this possibility should be considered cautiously. Alternatively, DGpol 5-HT1a
receptors may reside not only on granule cell apical dendrites, but also on their basal
dendrites, which are present only in primates (Seress et al., 1987).

4.3 5-HTq receptor trafficking

YiflB was recently shown to enable trafficking of 5-HTq receptors from the Golgi
apparatus to neuronal dendrites (Carrel et al., 2008). Increased YIF1B expression in
posterior but not intermediate CA1 pyramidal neurons of ethanol drinkers parallels the up-
regulation of 5-HT 5 receptor density in this group, suggesting that increased receptor
trafficking may be responsible for some of the observed changes in receptor density. There
was, however, no correlation between YIF1B expression and 5-HTqa receptor density.
While very little is known about Yif1B, it is unlikely that it is specific to the 5-HT 15
receptor. In addition, up to six isoforms of Yif1B have been sequenced to date and the
functional differences of each of these isoforms, their distribution, and interaction with the
5-HT A receptor are currently unknown.

4.4 Conclusions

The present study provides strong evidence that chronic ethanol self-administration
upregulates hippocampal 5-HT1 4 receptors in primates in a layer, subregion and level
specific manner. The data are limited, however, by the presence of two different control
groups. While nonhuman primate models afford researchers greater control over many of the
confounds experienced in human research, they, nevertheless, exhibit greater individual
variability than commonly used inbred rodent models. The strength of the model, however,
lies in the remarkable similarities between human and nonhuman primate neurobiology and
behavior. Still, the presence of several outliers in the [3H]8-OH-DPAT experiment require
that these data in particular be interpreted somewhat cautiously. Replication of the present
study, using a single control group and a larger sample will help to increase the power of the
comparisons made and allow firmer conclusions to be drawn. Nevertheless, these data make
a unique contribution to the existing literature with the use of sophisticated methodologies
and a comprehensive anatomical analysis. In addition, the self-administration procedure
used here results in daily drinking to intoxication over long periods of time, which models
well human alcoholic drinking.

Alterations in 5-HTqa receptor density are likely to have significant functional
consequences. Altered 5-HTqa-mediated inhibitory modulation of the mossy fiber projection
from DG granule cells to CA3 via up-regulation of 5-HT 1 receptors in the DGpol is likely
to have a pervasive effect on signaling throughout the rest of the hippocampal
microcircuitry. Likewise, given the essential role of the CA1 region in hippocampal LTP
and subsequent memory formation (Lisman et al., 2012), upregulation of CA1 5-HT1a
receptors is expected to have significant functional consequences at both cellular and
behavioral levels.

The mechanism(s) behind chronic ethanol-induced changes in hippocampal 5-HTq A receptor
density are not well understood. Data from the present study suggest that receptor trafficking
may play a more prominent role than changes in gene expression. Additional research

examining the effects of chronic ethanol on transcriptional regulators of the 5-HT 4 receptor

Drug Alcohol Depend. Author manuscript; available in PMC 2015 March 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 10

and 5-HTa trafficking proteins will be necessary to better understand the effects of ethanol
on this system. Doing so may aid in identifying more effective drug targets for the treatment
of alcohol dependence.
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Figure 1. Between group comparison of [3H]8-OH-DPAT binding in the dentate gyrus granule

cell layer

Two way repeated measures ANOVA uncovered a significant difference in [2H]8-OH-

DPAT binding between housing and caloric control groups in the dentate gyrus granule cell

layer at the intermediate level only (*p=0.050). This effect was driven by two housing
controls that exhibited far greater (49%) binding than the other six controls and all nine

ethanol drinkers.
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Figure 2. Effect of chronic ethanol on hippocampal [3H]M PPF binding

(A) Nissl stained section outlining the subregions and layers of the hippocampus.
Representative control (B) and ethanol (C) autoradiograms showing high [BH]MPPF binding
in CA1 and moderate to high binding in the dentate gyrus. Both ethanol and controls
exhibited greater binding in posterior CA1 than intermediate levels in the stratum radiatum
(E) and pyramidal cell layer (F). No differences were observed in the stratum lacunosum
moleculare (D) or stratum oriens (G). Ethanol drinkers exhibited greater binding than
controls in the molecular (H) and polymorphic (J) layers at both intermediate and posterior
levels of the dentate gyrus. No differences were observed in the dentate gyrus granule cell
layer (1). *p<0.05; **p<0.01; #p<0.10. Abbreviations: CA1-3 — cornu ammonis 1-3; DG —
dentate gyrus; gcl — granule cell layer; mol — molecular layer; pcl — pyramidal cell layer; pol
— polymorphic layer; sim — stratum lacunosum moleculare; so — stratum oriens, sr — stratum
radiatum.
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Figure 3. Effect of chronic ethanol on hippocampal [3H]8-OH-DPAT binding

(A) Nissl stained section outlining the subregions and layers of the hippocampus.
Representative control (B) and ethanol (C) autoradiograms showing high [2H]8-OH-DPAT
binding in CA1 and moderate to high binding in the dentate gyrus. Binding was greater in
ethanol drinkers in posterior CAL than intermediate in the pyramidal cell layer (F) while
controls exhibited similar binding between levels for both layers. No differences were
observed in the stratum radiatum (E), stratum oriens (G) or stratum lacunosum moleculare
(D). In the dentate gyrus, ethanol drinkers exhibited greater binding in the polymorphic layer
(J) at the posterior level while no differences were observed in the molecular (H) or granule
cell (1) layers. *p<0.05; **p<0.01. Abbreviations: CA1-3 — cornu ammonis 1-3; DG —
dentate gyrus; gcl — granule cell layer; mol — molecular layer; pcl — pyramidal cell layer; pol
— polymorphic layer; sim — stratum lacunosum moleculare; so — stratum oriens, sr — stratum
radiatum.
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Figure 4. Effect of chronic ethanol on relative HTR1A and Yif1B mRNA expression

Individual CA1 pyramidal neurons (A) and the dentate gyrus granule cell layer (C) were
identified based on location, size and morphology in nissl stained sections. The discrete cell
populations were laser capture microdissected (B, D) after which the isolated cells were
visualized on the LCM cap (insets in B and D). Note that non-neuronal cell populations
remain undissected (arrow heads in B) from cells of interest (arrows in B) using this
technique. Chronic ethanol had no effect on HTR1A (E) or Yif1B (G) expression in the
dentate gyrus. HTR1A expression was significantly lower in ethanol drinkers in
intermediate than posterior CA1 pyramidal neurons (F). In contrast, Yif1B expression was

Drug Alcohol Depend. Author manuscript; available in PMC 2015 March 01.



1duosnuey Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Burnett et al.

significantly greater in posterior than intermediate CA1 pyramidal neurons of ethanol
drinkers (H). *p=<0.05.
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