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Abstract
The World Health Organization (WHO) guidelines for monitoring the effectiveness of HIV
treatment in resource-limited settings (RLS) are mostly based on clinical and immunological
markers (e.g., CD4 cell counts). Recent research indicates that the guidelines are inadequate and
can result in high error rates. Viral load (VL) is considered the “gold standard”, yet its widespread
use is limited by cost and infrastructure. In this paper, we propose a diagnostic algorithm that uses
information from routinely-collected clinical and immunological markers to guide a selective use
of VL testing for diagnosing HIV treatment failure, under the assumption that VL testing is
available only at a certain portion of patient visits. Our algorithm identifies the patient sub-
population, such that the use of limited VL testing on them minimizes a pre-defined risk (e.g.,
misdiagnosis error rate). Diagnostic properties of our proposal algorithm are assessed by
simulations. For illustration, data from the Miriam Hospital Immunology Clinic (RI, USA) are
analyzed.
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1. INTRODUCTION
According to a recent report of the World Health Organization (WHO) (WHO 2010a),
almost 40 million people world-wide are infected with human immunodeficiency virus
(HIV). Among them, over 97% live in resource-limited settings (RLS), particularly in sub-
Saharan Africa (UNAIDS 2010). Although the number of people living with HIV remains
high, the mortality rate due to acquired immune deficiency syndrome (AIDS) has started to
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decline since 2006 (UNAIDS 2009), due in large part to the successful rollout of HIV
antiretroviral treatment (ART) in RLS (WHO 2010b).

With more and more people having access to ART, treatment failure is inevitable and must
be anticipated. Treatment failure occurs when antiretroviral medications fail to control HIV
replication in infected patients. Common causes of treatment failure include lack of proper
medication adherence and development of drug resistance. The former may be addressed by
reinforcing adherence (Gardner et al. 2009), while the latter usually mandates a switch to a
more effective “next line” ART regimen (e.g., from a first- to a second-line regimen).

Monitoring the effectiveness of HIV treatment and correctly diagnosing treatment failure in
a timely manner is critical for preventing HIV-related morbidity and mortality and
transmission of the virus. Incorrect diagnosis of treatment failure can lead to undesired
consequences and compromise the success that has been achieved by rolling out ART in
RLS. Specifically, failure to diagnose treatment failure can result in continued viral
replication, deterioration of patient’s immune system, extra clinical costs such as treatment
of opportunistic infections, increased risk of HIV transmission, selection of resistant strains,
and death (Anderson and Bartlett 2006; Calmy et al. 2007; Vekemans et al. 2007).
Meanwhile, incorrectly diagnosing patients as having treatment failure when in fact they do
not can prompt a premature switch to the next-line ART. This generates unnecessary
financial burden (second-line therapies cost up to ten times more than first-lines) and
potentially accelerates progression toward resistance to next-line therapies, which are most
probably the last line in RLS (Vekemans et al. 2007).

In resource-rich countries such as those in much of western Europe and North America, viral
load (VL) testing is routine for HIV treatment monitoring (Thompson et al. 2010; DHHS
2011). In this paper, VL refers to the amount of HIV in the blood as measured using nucleic
acid amplification (Hammer et al. 2006). It is a marker that directly reflects the effectiveness
of HIV treatment. Although HIV cannot be eradicated now, patients with adequate
adherence can be expected to have viral suppression, which generally means that VL is
below the lower detection limit of the assay being used (assays used for clinical purposes
have lower detection limits of between 20 and 1000 copies/mL). A patient on adequate ART
who has detectable VL after having previously reached an undetectable level is said to have
virological treatment failure (hereafter “viral failure” or “treatment failure”), an indication
that the particular treatment regimen may no longer be effective.

In RLS, VL testing is either limited or not available due to factors such as cost, lack of
facilities, and lack of properly trained personnel (Fiscus et al. 2006; Calmy et al. 2007;
Schooley 2007). Therefore, diagnosis of HIV treatment failure is commonly made using
lower-cost and less accurate markers such as current CD4 cell count, CD4 percent among all
lymphocytes, and relative changes in these measures since last visit; and clinical indicators
such as opportunistic infections, weight loss, and HIV-related malignancies. Indeed, these
immunological and clinical markers form the basis of HIV treatment monitoring guidelines
as recommended by the WHO (Calmy et al. 2007; WHO 2010a). These guidelines are
widely adopted by countries in sub-Saharan Africa (e.g., Malawi 2003; Uganda 2003;
Zambia 2004; Kenya 2005) and other developing regions.

Although CD4-based markers are generally associated with VL, a consensus has been
reached recently that their use for diagnosing HIV treatment failure is prone to high
misclassification rates (Deeks et al. 2000, 2002; Moore et al. 2005; Bisson et al. 2006;
Schechter and Tuboi 2006; Tuboi et al. 2007; Bisson et al. 2008; Mee et al. 2008;
Castelnuovo et al. 2009; Kantor et al. 2009; Keiser et al. 2009; Meya et al. 2009; Reynolds
et al. 2009; Kiragga et al. 2012). Data from a recent study of patients receiving care through
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the Academic Model Providing Access to Healthcare (AMPATH) in western Kenya show
that almost 40% of those having treatment failures would have been incorrectly diagnosed
based on the WHO guidelines (Kantor et al. 2009).

Several studies have investigated monitoring HIV treatment using markers in addition to or
instead of CD4 cell count (Bagchi et al. 2007; Kantor et al. 2009; Foulkes et al. 2010;
Abouyannis et al. 2011). Bagchi et al. (2007) showed that weight loss is associated with
treatment failure but pointed out that its clinical utility is limited because weight is
influenced by many factors. Kantor et al. (2009) found in a Kenyan cohort that time on
therapy and change in CD4 percent can be potentially incorporated into CD4-based rules to
improve the diagnosis of treatment failure. Abouyannis et al. (2011) developed and tested a
scoring system that incorporates CD4 count, mean cell volume, medication adherence, and
HIV-associated clinical events for diagnosing treatment failure. Foulkes et al. (2010)
proposed a prediction-based classification method that combines multiple time-varying
clinical measures for predicting treatment failure. Each of these studies focuses on
augmenting or replacing CD4 count with other immunological and clinical markers,
assuming that VL testing is completely unavailable. Potential improvements are
demonstrated, but often found to be marginal.

In this paper, we consider augmenting rules of diagnosing treatment failure based on low-
cost markers (such as CD4 cell count) with a selective use of VL testing, under the
assumption that VL testing can be ordered only for a fixed portion of patient visits. Our
approach is motivated by the fact that several HIV care programs in developing countries
have started to conduct VL testing for some of their patients. For example, as a result of the
study by Kantor et al. (2009), AMPATH is currently conducting VL testing at about ten
percent of its patient visits when treatment failure is suspected. Our approach is also
motivated by the expectation that as technology and training advance (e.g., Greengrass et al.
2009), VL testing will be more affordable, even if substantially limited in the near future.

Assuming that VL testing is available but at a fixed portion of patient visits, we propose a
tripartite classification procedure to triage VL testing based on a risk score S derived from
low-cost non-VL markers. Specifically, the resulting tripartite diagnostic rule comprises two
cut-off values l and u on S, with l ≤ u, that classify HIV patients into three mutually
exclusive categories (refer to Figure 1), and correspondingly takes one of the following three
actions for each category.

a. Those with S > u are diagnosed as failing treatment,

b. Those with S ≤ l are diagnosed as non-failing, and

c. Those with l < S ≤ u are designated for VL testing, which will provide an error-free
diagnosis.

The tripartite diagnostic rule is designed to minimize a pre-specified risk (e.g.,
misclassification) subject to the constraint on the availability of VL assays. To identify the
optimal rule, we develop both nonparametric and semiparametric approaches to inference
about l and u. We also develop a receiver operating characteristic (ROC) analysis procedure
for a general assessment of candidate tripartite rules. The ROC curve and the area under the
ROC curve (AUC) provide a comprehensive measure of diagnosis capacity of tripartite
rules, and allow us to evaluate the potential improvement that can be achieved by increasing
VL testing availability. ROC analysis of tripartite rules has many statistical properties that
are similar to conventional ROC analysis of bipartite rules.

The rest of the paper is organized as follows: Notations, definitions, and criteria for rule
development are given in Section 2; nonparametric and semiparametric approaches to
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optimal rule selection are presented in Section 3; ROC analysis of tripartite rules is
described in Section 4; and simulation studies are conducted in Section 5. For illustration,
data from the HIV Immunology Clinic of the Miriam Hospital (RI, USA) are analyzed in
Section 6. We conclude with a summary and discussion of future research in Section 7.

2. NOTATIONS AND DEFINITIONS
2.1 HIV Viral Status and Risk Score

The objective of HIV treatment monitoring is to diagnose viral failure. Let V denote a
patient’s (possibly unmeasured) viral load. Viral failure is said to occur when V exceeds a
pre-specified threshold v*, where v* is typically the lower detection limit of the VL assay
being used. Let Z = 1(V > v*) denote viral status with Z = 1 indicating a viral failure and 0
otherwise, where 1(·) is the indicator function. The prevalence of viral failure is denoted by
p = Pr(Z = 1). At each patient encounter, a set of immunological, clinical, and demographic
markers is usually collected, which may include CD4 count, CD4 percent among all
lymphocytes (and recent changes in both), WHO stage, time on therapy, hemoglobin,
weight, age, gender, and adherence measures. Henceforth, these markers are generically
referred to as low-cost clinical markers and denoted by a vector X.

For each individual, these clinical markers are translated into a scalar risk score S = S(X).
Several recent studies have proposed versions of S(X) for determining the risk of treatment
failure (e.g., Lynen et al. 2009; Meya et al. 2009; Abouyannis et al. 2011). If S(X) is a
predicted probability of viral failure given X, it can be derived using logistic regression,
regression trees, or other types of prediction-based classification methods (e.g., Pepe and
Thompson 2000; Hastie et al. 2001; Foulkes et al. 2010; Justice et al. 2010; van der Laan
2011). In this paper, we assume that the functional form of S(·) is known, but note that
finding and validating an optimal form of S(X) is an important topic of research (see Huang
et al. 2007; Pepe et al. 2008; Steyerberg et al. 2010; Pepe 2011)

Let G1 and G0 denote the distributions of S for patients with viral failure (Z = 1) and viral
suppression (Z = 0), and g1 and g0 denote their associated densities, respectively. The
population distribution of S is therefore a mixture distribution G = (1 − p)G0 + pG1, whose
density is denoted by g. We assume that for independent observations S and S′, where S ~
G1 and S′ ~ G0, S is stochastically greater than S′ in the sense that on average, patients with
viral failure have higher risk scores. An illustration of g0, g1, and g leading to a hypothetical
distribution of S is presented in Figure 1.

2.2 Classification Cut-offs and Tripartite Rules
The tripartite diagnostic rule can be formalized as follows. Let l and u, with l ≤ u, subdivide
the population into three categories: those whose risk of treatment failure is high (S > u), low
(S ≤ l), or intermediate (S ∈ ℐ ≡ (l, u]). Let δℐ (S) denote the diagnostic decision based on S,
with δℐ (S) = 1 indicating a treatment failure diagnosis and δℐ (S) = 0 a non-failing
diagnosis. Then our tripartite rule is expressed as

(1)

This rule obtains the gold standard measurement for the intermediate risk subpopulation {S
∈ ℐ}, which carries the greatest uncertainty about true viral status. Note that when S ∈ ℐ, the

Liu et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2014 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diagnosis decision corresponds to the true viral failure status and therefore leads to a correct
diagnosis.

2.3 Loss and Risk Functions
Let L(d, z) denote the loss or cost incurred when the true viral failure status is Z = z and a
diagnostic decision d is taken. Two commonly used loss functions in studies of medical
diagnosis are L1(d, z) = 1(d ≠ z), which indicates whether a misdiagnosis occurs, and L2(d, z)
= {1(d = 0, z = 1), 1(d = 1, z = 0)}⊤, which indexes misdiagnoses separately for those with
viral failure (i.e., false negative, FN) and those without (i.e., false positive, FP). Loss
functions can be made more elaborate and extended to incorporate potential costs as well as
benefits of correct and incorrect diagnoses (e.g., expected mortality, cost of switching to
next-line therapies, and gain of life expectancy); see Parmigiani (2002) for further
discussions.

The development of our diagnostic rule also uses a weighted loss function

where λ ∈ [0, 1] is a user-specified weight that reflects relative loss for the two types of
misdiagnoses. At the extremes, setting λ = 1 places the highest priority on avoiding FN
(incorrectly diagnosing a patient as non-failing), while λ = 0 prioritizes avoidance of FP
(incorrectly diagnosing a patient as treatment failure). An appropriate and meaningful value
of λ should be contextually specific and take into account the available information about
patient’s health status and various costs associated with FP and FN.

The overall diagnostic accuracy of a diagnostic rule is summarized by a risk function
defined as R(ℐ) = E[L(δℐ (S), Z)], where the expectation is taken over the joint distribution
of (S, Z)⊤ (Berger 1985). For the loss function L1, R1(ℐ) = E[1{δℐ (S) ≠ Z}] is the total
misclassification rate (TMR). For L2, R2(ℐ) = {pFNR, (1 −p)FPR}⊤, where FNR and FPR
are the FN and FP rates, respectively. For L3, we have a weighted sum of FPR and FNR

(2)

where the weights depend on both λ and the prevalence of viral failure. Risk function R3(ℐ;
λ) is one form of ‘net benefit’ functions that have been used in decision curve analyses and
utility analyses (Vickers and Elkin 2006; Baker 2009). As a special case when λ = .5,
minimizing R3(ℐ; .5) is equivalent to minimizing R1(ℐ).

In the next section, we develop methods for obtaining optimal rules under the risk criteria
R1(ℐ) and R3(ℐ; λ). The optimal rules that minimize R1(ℐ) and R3(ℐ; λ) are called the min-
TMR rules and min-3 rules, respectively. In Section 4, the vector-valued risk function R2(ℐ)
is used to develop a ROC analysis procedure for a general assessment of tripartite diagnostic
rules.

3. OPTIMAL RULE SELECTION: CONSTRAINED OPTIMIZATION
3.1 Characterization of Constraints on Gold Standard Testing

Suppose that VL tests can be ordered for a fixed portion φ of patient visits, where 0 ≤ φ ≤ 1.
Then the proposed tripartite rules must satisfy the constraint
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(3)

In the extreme cases, φ = 0 means that no VL testing is available, while φ = 1 means that it
is available at all patient visits.

Tripartite diagnostic rules that satisfy (3) can be infinitely many, because if δℐ (s) satisfies
(3), so does δℐ′(s) for all ℐ′ ⊂ ℐ. We therefore restrict attention only to those rules that take
maximum advantage of the available VL tests. All such rules form our decision space.

Specifically, the decision space is defined as the set  with the

condition that for any , there does not exist another rule δℐ′(s) with ℐ′ ⊃ ℐ and
satisfying (3).

For a given risk function R(·) and a decision space , the optimal rule is defined as

(4)

where ℐ* indicates the optimal cut-offs on S for triaging the VL tests. We assume that the
optimal rule is unique.

3.2 Optimal Rule Selection
In this section, we develop nonparametric and semiparametric approaches to determining the

optimal rule from . The nonparametric approach places no distributional assumption on
either G0 or G1 and can therefore be broadly applied. The semiparametric approach assumes
that G0 and G1 follow an exponential tilt model, whereby the densities g0(s) and g1(s) differ
only by a factor proportional to exp(β1s), where β1 is an unknown scalar parameter (called
the tilting parameter). In Section 5, we use simulations to show that when the exponential tilt
assumption holds, the semiparametric approach is generally more efficient in estimating the
optimal rule when sample size is large.

Nonparametric Approach—Suppose that we have a training data set of independent
pairs (S1, Z1), …, (Sn, Zn). We first estimate G1, G0, and G empirically via

with . To determine the optimal rule using (4), we then obtain the empirical

decision space  by the following steps:

1. Write L̃ = (l̃1, l̃2, …, l̃n)⊤ = (S(1), S(2), …, S(n))⊤, where l̃j = S(j) is the j-th order
statistic of S = (S1, …, Sn)⊤.

2. For each l̃j, calculate ũj = arg maxu∈S{Ĝ(u) − Ĝ(l̃j) ≤ φ}. Let Ũ = (ũ1, ũ2, …, ũn)⊤.

3. Fore ũj and ũj′ ∈ Ũ, j < j′, if ũj = ũj′, drop l ̃j′ from L̃ and uj′ from Ũ. Denote the
resulting vectors by L̂ = (l̂1, l̂2, …, l̂m)⊤ and Û = (û1, û2, …, ûm)⊤ with m ≤ n.
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4.
The empirical decision space is given by  with

.

With the empirical decision space , the optimal rule is then estimated via (4) with 

replaced by . This can be carried out using a grid search. For example, to estimate the

optimal rule that minimizes TMR, we calculate  and  for j =

1, …, m. Then, the optimal min-TMR rule is the rule in  that has a risk equal to

. Similarly, to identify the rule that minimizes R3(ℐ; λ) for a pre-

specified λ, we select the rule in  that has a risk of .

Semiparametric Approach—The exponential tilt model has been used to characterize
the relationship between components of a mixture distribution (Anderson 1972, 1979;
Prentice and Pyke 1979; Efron 1981; Qin 1999). The model places no parametric
assumptions on individual components of the mixture, except assuming that they differ only
by a factor of the form

(5)

where β1 is an unknown tilting parameter and  is a normalizing constant.
Although no constraints are placed on g0, many commonly-used parametric distribution
families can be represented in the form of (5), such as binomial, Poisson, normal with a
common variance, and gamma distributions with a common shape parameter. In our case,
the exponential tilt model is equivalent to the logistic model

(6)

with logit(y) = log{y/(1 − y)}and .

When the exponential tilt assumption holds, we can estimate G0 and G1 semiparametrically
using the results in Appendix A.1, and then estimate the optimal rule using a grid-search in a
similar way to what has been described in the last section.

If our goal is to identify a rule that minimizes TMR, it turns out that we can readily
determine this rule without calculating the semiparametric estimates of G0 and G1. To see
this, we write Γ(l, u, τ) = R1(ℐ) + τ(G(u) − G(l) − φ), and apply the Lagrange multiplier to
solve ∂Γ/∂(l, u, τ)⊤ = 0. It is straightforward to verify that the resulting rule must satisfy

That is, the optimal interval ℐ* for triaging the limited VL testing is centered at − β̂0/β̂1,
independent of the VL test availability φ. The optimal cut-off values therefore can be
estimated by l̂ = −β̂0/β̂1 − Δφ and û = −β̂0/β̂1 + Δφ, where β̂0 and β̂1 are parameter estimates
of the logistic model (6) and
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In the above equation, the empirical estimate Ĝ is used because the semiparametric estimate
of G under the exponential tilt model is the same as Ĝ.

Uniqueness of Estimated Optimal Rule—The estimated optimal rule based on a finite
data set may not be unique, even though the true optimal rule is unique. When there are
multiple rules that meet the optimality criterion, we propose to impose additional secondary
criteria so as to determine a single optimal rule. For example, to determine an optimal rule
from multiple rules that equally minimize R3(ℐ; λ), we may consider adding R1(ℐ) as a
secondary criterion and choosing one from these rules that has the lowest TMR. It is also
reasonable to randomly choose one for practical use if the estimated optimal rules differ
little.

4. ROC ANALYSIS
ROC analyses have been widely used to assess the overall diagnostic accuracy of bipartite
classification rules. An ROC curve is a graphical presentation of the risk function R2(·)
associated with all candidate rules in a decision space. Comprehensive reviews of ROC
analyses in biomedical research can be found in Pepe (2000), Zhou et al. (2002, Ch 2), Pepe
(2003, Chs 4-5), and Gatsonis (2009). Recent applications of ROC analyses in studies of
HIV-infected populations include Pahwa et al. (2008), Joska et al. (2011), and Mabeya et al.
(2012), among many others.

4.1 ROC Curve for Tripartite Rules and AUC
ROC analyses for tripartite rules can be carried out in a fashion similar to conventional ROC

analyses. With each rule in  represented by a point in a 2-dimensional space with its
(FPR, 1−FNR) as the coordinates, an ROC curve for tripartite rules can be generated by
connecting these points using a non-decreasing curve. Mathematically, we can express the
ROC curve for tripartite rules as

(7)

where  is the generalized inverse of a cadlag function, Hφ(u) = arg
infw{G(u) − G(w) ≤ φ}, and ‘∘’ denotes the function composition operator. Note that the
difference between (7) and a conventional ROC curve is the operation induced by Hφ, which
dictates that for each u and resulting FPR, the corresponding FNR is calculated based on a
lower cut-off l = Hφ(u) ≤ u.

The area under the ROC curve (AUC) for tripartite rules is defined as,

(8)

Like AUC for bipartite classification rules, AUCφ provides an omnibus measure of

diagnostic capability of all candidate rules in . It can be interpreted as the true positive
rate averaged across all FNRs. In Appendix A.2, we present several properties of AUCφ,
which turn out to be very similar to the AUC from a conventional ROC analysis.
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As a special case when φ = 0, Cφ(t) and AUCφ reduce to conventional ROC curve and AUC
for bipartite rules.

4.2 Estimation
With a training data set of independent (S1, Z1), …, (Sn, Zn) and a given φ, we can estimate
the ROC curve for tripartite rules nonparametrically by

(9)

where Ĝ0 and Ĝ1 are empirical estimates, and Ĥφ(u) = arg minw{Ĝ(u) − Ĝ(w) ≤ φ}. The
estimated ROC curve is a step function with jumps only at points representing the rules in

. When the exponential tilt assumption holds, the ROC curve also can be estimated
semiparametrically by replacing Ĝ0 and Ĝ1 in (9) by their corresponding semiparametric
estimates given in Appendix A.1.

Using the results in the Appendix A.2 (See Eq.(A.1)), we can estimate AUCφ
nonparametrically by

(10)

In Appendix A.3, we present several large-sample properties of the nonparametric estimates

Ĉφ(t) and .

4.3 Using ROC curve for Rule Selection
An ROC curve for tripartite rules also can be used for optimal rule selection, recognizing

that the diagnostic properties of each rule in  are characterized by a point on the curve.
For example, if the ROC curve is smooth and concave, it can be verified that the min-λ rule
corresponds to the point on the ROC curve where the tangent is equal to (1−λ)(1−p)/(λp)
(Metz 1978). Broader discussions on using ROC curves for optimal rule selection can be
found in Zhou et al. (2002) and Pepe (2003).

5. SIMULATION STUDIES
In this section, we conduct simulation studies to examine 1) the diagnostic accuracy of the
optimal rules estimated by the nonparametric and semiparametric approaches, and 2) the
large-sample properties of the estimated optimal rules. For the first aim, we consider two
scenarios when the exponential tilt assumption is and is not satisfied. For the second aim, we
focus on the setting where the exponential tilt assumption holds. For simplicity, we consider
estimating the optimal rules that minimize TMR.

We use the negative value of CD4 count as a risk score. We first simulate viral status Z
assuming that Z ~ Bernoulli(p), and then conditional on Z, simulate (CD4 | Z = z) = ⌈W⌉
with W ~ Gamma(ηz, κz), where ⌈·⌉ denotes the ceiling operation, and ηz and κz are the
shape and scale parameters of the gamma distribution.

Scenario (A) considers the case when the exponential tilt assumption does not hold. We
conduct two simulations by simulating CD4 count data from gamma distributions with
parameters,
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(A-1)

(A-2)

The parameter values of (A-1) are chosen as the maximum likelihood estimates (MLEs)
obtained by fitting gamma distributions to the Miriam Immunology Clinic data (which will
be analyzed in Section 6). For (A-2), we choose the same values of (η1, κ1) as in (A-1), but
set (η0, κ0) such that the exponential tilt assumption is further violated while keeping η0κ0
unchanged, i.e. the average CD4 count for patients without treatment failure stays the same
as (A-1). (Recall that the mean of gamma distribution is ηκ.)

Scenario (B) considers the case when the exponential tilt assumption holds. We choose a
common shape parameter η0 = η1 = 2.8, the mid-point of η0 and η1 in (A-1), and conduct
two simulations with parameters

(B-1)

(B-2)

The values of κ0 and κ1 in (B-1) are the MLEs obtained by fitting gamma distributions to
the Miriam Immunology Clinic data while fixing their shape parameters at 2.8. For (B-2),
we choose a large value of κ0 = 350 to simulate a case when two gamma distributions are
further separated. The gamma densities of the four simulations are shown in Figure 2.

5.1 Diagnostic Accuracy
For the first aim, we consider three prevalences of treatment failure, p = (.15, .25, .40), and
assume that VL testing is available at proportions φ = (0, 20, 40)% of patient visits. For each
parameter combination, we simulate 1000 datasets each having 5000 observations. The first
2500 observations of each dataset are used as the training data to develop an optimal rule,
and the remaining 2500 observations as the testing data to calculate its associated
misclassification rate. Results are shown in Table 1.

When the prevalence of treatment failure is low (e.g., p ≤ .25) and VL test availability φ is
high, the semiparametric approach may yield a negative estimate of the lower cut-off value
on CD4 count, particularly when the center of the optimal cut-off interval is close to zero.
When this occurs, we replace the negative cut-off values by zero. This adjustment does not
imply that the algorithm fails. It can be verified that the upper cut-off estimate is still
correct, and the optimal rule in this case is to assign VL test to those high-risk patients with
CD4 count less than the upper cut-off value.

Table 1 shows that the nonparametric approach yields the correct estimates of the optimal
cut-off values for both Scenarios (A) and (B), and the resulting TMRs are close to the
underlying truth. When the exponential tilt assumption does not hold as in Scenario (A), the
optimal rules estimated by the semiparametric approach are slightly biased (contrasted with
Scenario (B)). However when the exponential tilt assumption holds as in Scenario (B), the
semiparametric approach yields the correct estimates of the optimal cut-off values, and the
estimated cut-off values have much smaller standard errors compared with their
corresponding nonparametric estimates.
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5.2 Convergence Rate and Efficiency
The second aim of our simulation studies is to examine the relative efficiency of the
nonparametric and semiparametric approaches. For this aim, we consider only the parameter
setup of (B-2) with p = .25 and φ = .20, but simulate the training data with increasing sample
sizes of n = (250, 500, 1000250, 500, 2000, 5000, 10000). For each sample size, we simulate
1000 training datasets, and for each data set, we estimate the optimal rules both
nonparametrically and semiparametrically.

With a slight abuse of notation, we use  to denote the variances of both estimated upper
and lower cut-off values. Then assuming that σn ∝ n−w (a sufficient condition for σn =
O(n−w) as n → ∞), we use simulations to approximate w for the two estimation approaches.
Specifically, we compute σn based on the 1000 estimated optimal cut-off values for each
sample size n. We then regress log(σn) on (−log n) using a simple linear model with a slope
w. By least-squares estimation, we find that w ≈ 0.33 when the optimal cut-off values are
estimated nonparametrically, and ≈ 0.50 when they are estimated semiparametrically. The
results are shown in Figure 3.

The simulations suggest that in this speci_c case, the nonparametric estimates of the optimal
cut-off values converge approximately at a rate of O(n−1/3), and the semiparametric
estimates converge at a faster rate of about O(n−1/2). The relative efficiency between the two
estimation approaches is approximately O(n1/6) when n is large.

5.3 Simulation-Based Study Design
The results above also suggest that a study for tripartite rule development can be designed
based on simulations. For example, suppose that the same assumptions as in Section 5.2 are
made, and we would like to design a study to determine an optimal tripartite rule such that
the 95% confidence intervals of both upper and lower cut-offs have widths of no more than
100 CD4 (i.e., σn ≤ 25). Then referring to the gray horizontal lines in Figure 3, a study with
a sample size of about 3000 subjects is needed if the nonparametric approach is used to
estimate the optimal rule, or a sample size of about 500 if the exponential tilt assumption
holds and the semiparametric approach is used.

6. APPLICATION
6.1 Data from the Miriam Hospital Immunology Clinic

For illustration, we analyze data from the Miriam Immunology Clinic in Providence, RI,
USA, the largest HIV clinic in the state (Gillani 2009). We recognize the essential difference
between HIV-infected patients in the US and RLS. The main reason we use a US dataset to
demonstrate the development of clinical rules is because this database contains high quality
CD4 and VL data that were routinely and frequently collected.

We use data from the most recent clinic visits of 597 patients who meet the following
criteria: have taken ART for at least 6 months; have CD4 count, CD4% and VL measure
available at the most recent clinic visit; and have CD4 count and CD4% available 6 months
(with a window of 6 ± 1 mo) prior to that visit. We calculate the 6-month changes in CD4
count and in CD4%, where [6-month change] is defined as ([current] − [6-mo ago])/[6-mo
ago]. Total time on ART, while a potentially important predictor (Kantor et al. 2009), is not
available for all patients and therefore not used in formulating risk scores.

Table 2 provides summary statistics for key clinical and immunological markers in the data.
For uniformity, viral failure is defined as having VL above 400 copies/mL (some of the VL
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test assays used have lower detection limits of < 400 copies/mL). Among the 597 patients,
146 have viral failure; so the estimated prevalence of viral failure is p̂ = 146/597 = .25.

6.2 Risk Scores
Two risk scores are considered for developing diagnostic rules. The first risk score is S1 =
−CD4, or negative value of the most recent CD4 count (to be consistent with the notion that
greater values of S correlate with increased risk of viral failure). The second risk score is a
prediction-based composite score derived from a logistic regression of treatment failure on
four immunological markers as follows,

where CD4 and CD4% refer to their measures at current visit. The MLEs (SEs) of the
coefficients are β̂0 = .89 (.27), β̂1 = −.0021 (.00074), β̂2 = −.049 (.017), β̂3 = −.055 (.21), and
β̂4 = −1.40 (.46). A Hosmer-Lemeshow test gives a p-value of .28, indicating no evidence of
lack of fit. The distribution of S2 has a median .21, ranges from .01 to .87, and can be
interpreted as the predicted probability of treatment failure.

The risk score S1 is easier to implement in clinical practice but known to have a high error
rate for diagnosing viral failure. By incorporating more clinical information, S2 is potentially
more accurate, but its use in clinical settings is not as straightforward as S1.

6.3 Two Simple Rules
Before calculating tripartite rules based on criteria laid out in Section 3, we summarize
operating characteristics of two simple diagnostic rules that are similar in spirit to those
commonly used in RLS when VL test has limited or no availability.

The first rule assumes that no VL testing is available (i.e., φ = 0) and uses CD4 < 200 as the
hard cut-off for diagnosing treatment failure and CD4 ≥ 200 as non-failing, a criterion
recommended by the WHO for the RLS (WHO 2010b). (Another criterion recommended by
the WHO for the RLS is using CD4 = 350 as the cut-off threshold.)

The second rule assumes that the limited VL testing will be used only as a confirmative test
for patients with CD4 < 200. This rule classifies those with CD4 count ≥ 200 as non-failure,
and makes correct diagnoses for patients with CD4 count < 200. In the Miriam Immunology
Clinic data, about 15% of patients have current CD4 count less than 200, so we consider the
case that VL testing is available at 15% of patient visits, i.e., φ = .15.

The diagnostic accuracies of these two rules are summarized in Table 3. Both rules have
FNR around 0.70. The second rule, by having 15% of patients tested for VL, reduces the
FPR to 0 and TMR from .26 to .18. The improvement realized by having VL testing
available to a small fraction of patients is evident; however, whether the second rule is
optimal needs further investigations.

6.4 Analysis I: CD4-Based Min-λ Rules
In this section, we evaluate the diagnostic performance of optimal tripartite rules based on
S1, using R3(·) as the risk criterion. To make a direct comparison to the simple rules in the
last section, we assume that VL testing is available at 15% of patient visits. The optimal
tripartite rules are developed using the nonparametric approach as described in Section 3.
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Figure 4 shows the estimated optimal rules and associated FNR and FPR, for λ varying from
0 to 1. The FNR and FPR are computed using 10-fold cross validations, carried out as
follows. We randomly subdivide the data into 10 subsets of about equal size; determine the
FPR and FNR for each subset using the optimal rule developed using the remaining 9
subsets; and then calculate the FPR and FNR as the averages over the 10 pieces (cf. Hastie
et al. 2001).

As shown in Figure 4, when λ increases (i.e., placing higher priority on avoiding false
negative diagnoses), the estimated optimal rule shifts gradually toward triaging the VL tests
to those with CD4 count in the middle and high range. At λ = .8, the estimated optimal rule
calls for testing patients having CD4 count between 300 and 450; in this case, both FNR and
FPR are around .30. At the extreme when λ = 1, the estimated optimal rule calls for VL tests
on those with CD4 > 650, which reduces the FNR to ≈ 0 but increases FPR to ≈ .80.

The left panel of Figure 4 shows that when λ < .4, the estimated optimal rule is to obtain VL
when 17 < CD4 < 201. That is, when avoidance of false positive diagnosis is prioritized, the
simple rule using VL testing as a confirmative test is optimal and a reasonable choice.

6.5 Analysis II: Comparing S1- and S2-Based Rules that Minimize the Weighted Risk R3

Next, we compare the diagnostic accuracy of single-maker tripartite rules based on S1 to
multiple-marker rules based on S2 using R3(·) as the risk criterion. We consider three values
of λ = (.25, .50, .75) and three constraints on VL test availability φ = (0, .15, .30).
Nonparametric estimates of the optimal rules, along with FPR, FNR and TMR obtained
from cross-validations, are given in Table 4. Standard errors for all table entries are
computed using the bootstrap method with 500 re-samples.

In summary, the optimal rules based on S2 have a slightly better diagnostic performance than
the optimal rules on S1. However, the magnitude of improvement by incorporating more
non-VL markers is small, relative to the improvement that can be achieved by the selective
use of VL testing on more patients. In Section 6.7, the diagnostic accuracies of the rules
based on the two risk scores will be further compared using AUCs.

6.6 Analysis III: Optimal Rules under Exponential Tilt Assumption
In this section, we develop the optimal tripartite rules under the exponential tilt assumption.
We consider the following two risk scores, S1 and , for rule development.
The reason for using  is that it avoids the issue of having the empirical adjustment when
one cut-off value is beyond the support of the risk score (as we encountered in our
simulation studies). The risk score  may also be more suitable for the exponential tilt
model.

We first examine the suitability of the exponential tilt model for S1 and  by plotting the
semiparametric estimates of G0 and G1 against their empirical estimates. The results are
shown in Figure 5, where the semiparametric estimates of G0 and G1 are obtained using the
results in Appendix A.1. Figure 5 suggests that the exponential tilt assumption is reasonable
for both S1 and  although the goodness of fit for S1 is slightly better. (One also can use Q-
Q plots, not shown, to examine the model goodness of fit.)

The estimated optimal rules using TMR as the risk criterion are given in Table 5. The
intervals for triaging VL assays are centered at CD4 = 77 and 109 for the optimal rules
based on S1 and , respectively. Overall, the diagnostic accuracies of the two sets of
estimated optimal rules are comparable, and their estimated cut-off values differ only
slightly relative to their standard errors. The optimal rules in Table 5 also are comparable to
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the optimal rules that are developed nonparametrically (see Table 4 with λ = .50), but in
general have much smaller standard errors.

6.7 Analysis IV: ROC Analyses for Tripartite Rules
Figure 6 shows nonparametric estimates of ROC curves for tripartite rules based on S1 and
S2, when the VL tests are available at φ = 0, 15, 30, 45, and 60% of patient visits. The ROC
curves in the subplot (b) are slightly better than those in the subplot (a), which suggests that
improvement in diagnostic capacity can be achieved using the composite score S2. See also
the AUC curves and their difference in the subplots (c) and (d). Consistent with our findings
in Analysis II (Section 6.5), the difference between the two AUC curves, although
statistically significant for φ < .6, is marginal.

Relative to not having VL tests available, the AUCs for tripartite rules based on both risk
scores are substantially improved as VL testing is made available for some of clinical visits.
For example, as shown in the subplot (c), when we increase the VL test availability from 0
to 20%, the absolute improvement in AUC is about 15%; and increasing availability to 40%
improves AUC by more than 20%. In particular, the relative improvement by making VL
testing accessible to some HIV patients is more pronounced when the VL testing availability
is low.

7. DISCUSSION
This paper is motivated by recent evidence that the CD4-based WHO guidelines for
monitoring HIV treatment in RLS can lead to high treatment failure misclassification rates,
and by the fact that VL tests are becoming available to programs and patients in RLS,
typically on a limited basis. To make optimal use of VL tests, we propose a tripartite
diagnostic rule based on a risk score that subdivides patients into a high-risk group
(classified as treatment failure), a low-risk group (as viral suppressed), and an intermediate-
risk group to whom the limited VL tests are assigned, where the size of the third group is
constrained by the availability of VL tests. Nonparametric and semiparametric methods are
proposed for determining an optimal rule to minimize a given risk criterion. ROC analysis
procedure for characterizing the diagnostic performance of tripartite rules and its associated
asymptotic properties are developed.

Our proposed method is demonstrated by analyzing data from the Miriam Hospital
Immunology Clinic in Providence, RI. We show that with selective and targeted use of VL
tests, the rate of misdiagnosis can be substantially reduced even when VL testing is available
at a small portion of patient visits (e.g., φ = 15%). Our analysis also suggests that when
avoidance of false positive diagnoses is prioritized, using VL testing strictly to confirm viral
failure for those deemed to be at high risk is a reasonable choice. This finding applies only
to patients at the Miriam Hospital Immunology Clinic; its external validity remains to be
tested.

Our methods assume that the functional form of risk score S(X) is known, but may be
relaxed by unknown parameters. When the function form of S(X) is unknown, methods of
machine/statistical learning, such as boosting (Freund et al. 1999), targeted/super learner
(Sinisi et al. 2007; van der Laan 2011), classification tree learning (Breiman et al. 1984),
neural networks (Hagan et al. 1996; Sarle 1994), and prediction-based classification
methods (Foulkes and De Gruttola 2002), can be implemented. We refer the readers to
Hastie et al. (2001) and Kotsiantis (2007) for a more comprehensive treatment on the topic.

We assume that there is no measurement error in VL, i.e. that VL test is the gold standard
for determining the amount of circulating virus. In developed countries, repeated VL tests
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and HIV genotyping are usually required to confirm treatment failure and existence of drug
resistance once the VL becomes detectable. HIV-infected patients in RLS however do not
have such luxury, and a single VL test result (if done) is probably the most direct measure of
viral failure, and is used for clinical decision making. So although the assumption is not
ideal, it is reasonable in this context because the measured VL is the best available basis for
decision making in RLS. Future work will address the issue of measurement error in VL and
its effect on misclassification rates.

CD4 counts are known to be highly variable due to measurement error, diurnal variations,
and other factors. The measurement error of CD4 count may be part of the reason for high
misclassification rates of the WHO guidelines. The impact of measurement error in
biomarkers on predicting binary outcomes has been studied by Carroll et al. (1984, 2006),
Buzas et al. (2003), and Fuller (2009) among others. Generally speaking, large measurement
errors of a biomarker are associated with a greater attenuation of its capability of predicting
outcomes. One way to reduce the impact of measurement errors is through repeated
measurements. Given the fact that point-of-care CD4 technologies are being developed, it
may be possible in practice in the future to quantify and reduce the impact of CD4
measurement error by multiple testing at a single visit. On the other hand, with additional
information such as prior history of CD counts, it may also be possible to evaluate the
magnitude of measurement error by constructing appropriate measurement error models
(which typically rely on certain subjective assumptions) and applying methods such as
regression calibration (Carroll and Stefanski 1990; Rosner et al. 1990) and simulation-
extrapolation (Stefanski and Cook 1995). Improving diagnostic accuracy by reducing the
impact of CD4 measurement error is an area worthwhile further investigation.

A final limitation of this paper, as it applies to developing rules for RLS, is that a US data
set is used to demonstrate our proposed methods. Our ongoing work is focused on
developing and calibrating rules based on data from sub-Saharan Africa and other RLS.
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APPENDIX A

A.1 Semiparametric estimates of G0, G1, and G under the exponential tilt
assumption

Suppose that we want to estimate the mixture distribution G using an i.i.d sample of {(Si,
Zi) : i = 1, …, n}. In the spirit of nonparametric likelihood estimation, we consider only the
distributions with jumps at {Si}. Thus the (pro3le) likelihood for G0 can be written as (see
Qin 1999)

where , β̂0 and β̂1 are the MLEs fromP the logistic regression (6), and θi =
g0(Si) denotes the mass at the observed Si with Σi θi = 1. Here we proceed as if we have n
distinct values in {Si}, which does not affect the following results. Applying the Lagrange
multiplier, one can show that the likelihood is maximized at

where ν is the Lagrange multiplier solving

We then estimate G0, G1, and G semiparametrically by
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Because the exponential tilt assumption places no constraint on the marginal distribution G,
it can be verified that the semiparametric estimate G ̃(s) is equal to the empirical estimate
Ĝ(s).

A.2 Properties of AUCφ for tripartite rules

Property A.2.1
Let S ∼ G1, S′ ∼ G0, and S and S′ be independent. Then,

(A.1)

and

(A.2)

Proof
We have

where  is added for ties and the term vanishes for continuous S. Further,

Property A.2.2
If S is stochastically greater than S′, then AUCφ is bounded by
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The lower bound is achieved when G1 = G0, and the upper bound when φ = 1.

Proof
We prove the results for the case when S is continuous such that there exist l and u with G(u)
− G(l) = φ. Manipulating this constraint slightly, we have 1 − G(l) = 1 − G(u)+ φ ⇒ 1 −
{pG1(Hφ (u)) + (1 − p)G0(Hφ (u))} = 1 − {pG1(u) + (1 − p)G0(u)} + φ. The condition that S
is stochastically greater than S′ implies that

Therefore,

All equalities hold when G0 = G1.

A.3 Asymptotic properties of estimated ROC curve and AUC
The nonparametric estimate Ĉφ given by (9) has the following properties:

Property A.3.1
The nonparametric estimate Ĉφ is uniformly consistent.

Proof
Let us write

Then, it can be shown that the first term converges to zero almost surely by the Glivenko-
Cantelli Theorem, and the second and third terms converge to zero almost surely by the Law
of Large Numbers. See Hsieh and Turnbull (1996).

Property A.3.2
Suppose that the densities g0, g1 and g are continuous and bounded, and ΣZi/n → p as n →
∞. Then, the following approximation holds asymptotically as n → ∞,
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where B1(v) and B2(v) are independent Brownian bridges,

, and

.

The strategy for proving A.3.2 is similar to Hsieh and Turnbull (1996).

Property A.3.3

The nonparametric estimate  given by (10) has the property that, as n → ∞,

(A.3)

where σ2 = VarG1 {G0 ∘ Hφ (S)}p−1 + VarG0 {G1 ∘ Hφ (S)}(1 − p)−1

Proof
We prove (A.3) using the properties of U-statistics (Lee 1990). Applying the Hájek

projection principle on (10) (van der Vaart 1998), we express  as

where

is a U-statistic. Then conditional on Σi Zi, an ancillary statistic for the AUC, (A.3) is an
immediate result of applying Slutsky’s lemma and the Central Limit theorem.
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Figure 1.
Risk score distributions and diagnosis actions.
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Figure 2.
Gamma distributions used for simulating CD4 count data. The gray step lines in the top-left
subplot are histograms of the CD4 data from the Miriam Hospital Immunology Clinic. The
smooth dashed (solid) lines are gamma densities for those with (without) treatment failure.
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Figure 3.
Large-sample convergence properties of estimated optimal cut-off boundaries. Horizontal
lines are added to indicate the sample sizes needed to achieve σn = 25.
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Figure 4.
The optimal min-λ rules based on S1 and associated FPR and FNR.
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Figure 5.
Empirical and semiparametric estimates of the cumulative densities of CD4 counts and
log10(CD4).
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Figure 6.
ROC curves for diagnostic rules using S1 and S2 (subplots (a) and (b)); the resulting AUC
curves as functions of φ (subplot (c)); and the difference of the two AUC curves (S2 “minus”
S1, subplot (d)). The point-wise 95% CI of the difference in AUC is calculated using the
bootstrap method with 500 re-samples.
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Table 2

Summary statistics for key variables (n = 597)

Marker mean median IQR range

Virological marker

 VL at most recent visit (copies/mL) 11.8K 75 (75, 400) (12, > 500K)

Immunological markers

 CD4 count at most recent visit (cells/uL) 442 407 (254, 576) (8, 1412)

 6-month CD4 count change (%) 7.3 18 (−13, 33) (−80, 736)

 CD4 % at most recent visit 24 23 (17, 30) (.90, 59)

 6-month CD4% change (%) 9.5 4.7 (−6.1, 16) (−74, 209)

K: thousand; IQR: Interquartile range.
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