Skip to main content
. 2014 Mar 6;2014:240403. doi: 10.1155/2014/240403

Table 5.

Performance of CRF-based BNER systems when different types of WR features were used.

System BioCreAtIvE II GM (%) JNLPBA (%)
Precision Recall F-measure Precision Recall F-measure
Baseline 87.31 69.20 77.21 71.37 68.68 70.00
Baseline + WR1 86.55 73.18 79.31 70.96 71.44 71.20
Baseline + WR2 87.34 73.91 80.07 71.59 69.55 70.55
Baseline + WR3 86.56 72.22 78.74 71.11 69.88 70.49
Baseline + WR1 + WR2 86.56 75.39 80.59 70.99 71.77 71.38
Baseline + WR1 + WR3 85.77 74.65 79.82 70.77 71.87 71.31
Baseline + WR2 + WR3 87.03 74.90 80.51 71.19 70.41 70.80
Baseline + WR1 + WR2 + WR3 86.54 76.05 80.96 70.78 72.00 71.39

*WR1, WR2, and WR3 denote three different types of word representation features: clustering-based, distributional, and word embeddings features, respectively.