
Computationally Efficient Steady-State Solution of the Bloch
Equations for Rapid Sinusoidal Scans Based on Fourier
Expansion in Harmonics of the Scan Frequency

Mark Tseitlin, Gareth R. Eaton, and Sandra S. Eaton
Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208

Abstract
Rapid-scan EPR has been shown to improve the signal-to-noise ratio relative to conventional
continuous wave spectroscopy. Equations are derived for the steady-state solution to the Bloch
equations as a Fourier expansion in the harmonics of the scan frequency. This simulation method
is about two orders of magnitude faster than time-domain numerical integration.

1. Introduction
Rapid-scan EPR provides enhanced signal-to-noise relative to conventional continuous wave
(CW) for samples ranging from nitroxides [1] and spin-trapped radicals [2] in fluid solution
to paramagnetic centers in materials [3]. When the magnetic field is scanned through
resonance in a time that is short relative to relaxation times, passage effects may result in
oscillations on the trailing edge of the signal. Initially linear scans were employed because
of the availability of a deconvolution procedure [4] to recover the slow-scan absorption and
dispersion signals. Sinusoidal scans with resonated coils permit faster and wider scans
within the constraints of the power available from the coil driver [5]. Development of
sinusoidal deconvolution and background subtraction procedures made it practical to
employ rapid sinusoidal scans of the external magnetic field [6,7]. The rapid-scan signals
can be simulated using numerical integration of the Bloch equations [8]. However,
numerical integration is computationally intensive. For a spectrum with many hyperfine
lines, it may take from minutes to hours to compute the fitting function.

Robinson and co-workers described a method to simulate continuous wave (CW) EPR
spectra including the effects of power saturation, magnetic field modulation, and modulation
frequency [9]. Since the spin excitation is periodic, the steady-state signal can be expressed
as a Fourier expansion in the harmonics of the modulation frequency [9]. We now show that
an analogous approach starting from the Bloch equations can be used to efficiently compute
rapid-scan spectra. Since the method does not require the B1 excitation magnetic field to be
in the linear response regime, it can be used to simulate spectra at a range of microwave
powers, as in a power saturation curve. The Fourier expansion method reduces computation
time by two to three orders of magnitude relative to time-domain integration of the Bloch
equations. Explicit equations are provided that can be easily implemented in software.

2. Periodic solution of Bloch Equations
The Bloch equations for a sinusoidal magnetic field scan [8] are:
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(1)

(2)

where B is the offset in gauss of the center field from the resonance field for the spin packet,
Bpp is the scan width, B1 is the amplitude of the excitation field, and fs is the scan
frequency. The variables in Eq. (1) are expressed in angular frequency units.

T1 and T2 are the longitudinal and transverse relaxation times, mx, my and mz are the
projections of the magnetization vector on the Cartesian axes. The time evolution of the spin
system starts at time t = 0 with mx = my = 0 and mz = M0. In about 5T1 the spin system
comes to dynamic equilibrium, and the EPR signal becomes periodic with period P = 2 /s.
Since data acquisition normally starts more than 5T1 after the initialization of the field
scans, one can neglect the transition of the spin system to the steady state when simulating
experimental data. This allows us to seek periodic solutions of the Bloch equations in a
form:

(3)

where Xk, Yk, and Zk are the complex Fourier amplitudes for the kth harmonic of s, and j is
the imaginary unit. The number of included harmonics, N, should be large enough that XN,
YN, and ZN are negligibly small. The maximum frequency in the rapid-scan signal would
occur if the spins were excited at an extreme of the scan and T2 was long enough that the
rapid-scan oscillations continued until the other extreme of the scan. This frequency would
be about Bpp, so N could be as large as the closest integer above (Bpp)/ s.

Substitution of Eq.(3) into Eq.(1) and collection of the coefficients of ejkωst, produces a
system of algebraic equations:

(4.1)

(4.2)

(4.3)
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Since the solution is proportional to M0, M0 is set equal to 1 in Eq. (4.3). In the derivation of

Eq.(4), the term cos st was substituted by . 0k is the Kronecker delta function
that is equal to 1 if k=0 and equal to zero otherwise. By expressing Xk and Zk in Eqs. (4.1)
and (4.3) in terms of Yk, and substitution into Eq.(4.2) one can obtain an equation for the Yk
unknowns:

(5)

Here Ak, Bk, Ck, Dk, Fk and Gk are parameters that can be computed using the following
relations:

(6)

Eq.(6) represents a linear system of 2N +1 algebraic equations, that constitute a
pentadiagonal matrix Eq. (7).

(7)

The system can be solved for vector Y by inversion of the matrix. Since the matrix is
pentadiagonal, a computationally-efficient method is available to find Y [10]. This approach
is very efficient in term of both computational time and memory allocation. After array Y is
obtained, X and Z can be found using Eqs.(4.1) and (4.3). Time-domain solutions mx, my,
and mz can be computed by Fourier transformation of X, Y and Z.

To verify performance of the Fourier expansion approach to solution of the Bloch equations,
a Matlab program was written that uses the pentsolve routine downloaded from the Matlab
Central File Exchange to solve Eq.(7). The program performs computations two to three
orders of magnitude faster than an analogous program that used the ode45 Matlab routine to
numerically integrate the Bloch equations. For both methods the spectra were constructed by
summing contributions from multiple spin packets with different field offsets. Three
comparisons are shown.

3. Examples
The time-domain (numerical integration) and frequency-domain (solution of Eq. (7))
methods produce identical results. The latter method is substantially faster for two major
reasons. The first reason is that it seeks the periodic solution, while the time-domain method
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requires integration of a number of scan cycles for the spin system to come to a dynamic
equilibrium. Secondly, a system of three differential equations is transformed to a matrix-
vector form Eq. (7), which can be solved using an efficient algorithm.

In Figure 1 four cycles of a calculated rapid-scan signal obtained by the two methods for a
single spin packet are compared. The scan frequency was selected to be 50 kHz. This
corresponds to a time per cycle of 10 s, which is short relative to the T1 of 50 s. In the time-
domain integration method the signal must be calculated for multiple cycles before the
steady-state signal amplitude is obtained. By contrast, the Fourier expansion method gives
the steady-state solution in the first cycle (dashed green). For comparison three additional
cycles are shown for the steady-state solution (Fig.1), which shows that the time-domain
solution (blue) converges into the steady-state solution. Transient oscillations at the
beginning of the time-domain integration are the result of the sudden jump of excitation
from zero to 1, which produces broad band excitation. The decrease of the signal amplitude
calculated by time-domain integration over the first three cycles is due to saturation of the
spin system. The steady-state lineshapes and oscillations calculated by the two methods are
indistinguishable.

When contributions from multiple spin packets need to be summed in a simulation to
account for unresolved hyperfine structure, time-domain integration becomes extremely
time consuming. If in addition, the computations have to be repeated for a series of B1
values to simulate a power saturation curve, the task may take days to accomplish. For
example, X-band rapid-scan experimental data for the nitroxide 15N-mHCTPO (4-protio-3-
carbamoyl-2,2,5,5-tetraperdeuteromethyl-3-pyrrolin-1-yloxy) in aqueous solution were
reported previously [1]. Figure 2 shows the rapid-scan signal of the nitroxide and its
simulation using the Fourier expansion method, which is in excellent agreement with both
the absorption and dispersion components of the experimental spectrum. The EPR signals
for 38 spin packets were calculated and summed with corresponding weighting factors to
account for the resolved and unresolved hyperfine structure [1]. The simulation required
only a fraction of a second, so that it was done in essentially real time. A similar calculation
using time-domain integration took a few minutes.

The power saturation curves for rapid scans of 15N-mHCTPO were reported previously in
Fig. 3 of Ref. [1]. Simulations of the power saturation curve in the published paper were
obtained by time-domain numerical integration, which required about 4.2 hr. The
simulations of the same data with the Fourier expansion method were indistinguishable from
the published simulations, but required only about 29 s, which is an approximately factor of
500 decrease in calculation time.
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Fig. 1.
Comparison of four cycles of the absorption (a) and dispersion (b) rapid-scan signals
calculated by the Fourier expansion  and time-domain numerical integration 
methods for Bpp = 4.0 G, B = 0.0 G, T1 = 50 s, T2 = 1 s, fm = 50 kHz, B1 = 0.03 G.
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Fig. 2.
Simulation  of experimental X-band rapid-scan spectrum  of the low-field nitrogen
hyperfine line for the nitroxide 15N-mHCTPO in water obtained with Bpp = 10.43 G, fm =
57.454 kHz, and incident power = 21 mW (B1 = 0.06 G) (a) absorption and (b) dispersion.
The scan rate in the center of the sinusoidal scan is 1.9 MG/s.
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