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Abstract
Intensive measurement burst designs permit analysis of behavioral and biological processes as
they unfold over short and long periods of time and providing the opportunity to identify change
from an individual’s normative level of functioning. The measurement burst design permits
statistical decomposition of short-term variation and learning effects that overlay normative aging
and provide stronger bases for detecting accelerated change due to pathological processes. We
provide an overview of design features and analysis of measurement burst data in Project MIND.
The objective of intensive measurement designs is to obtain greater resolution of processes of
interest that permit reliable and sensitive assessments of functioning and change in functioning
and of key determinants underlying short-term variation and long-term aging and health-related
change.
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Innovation in study design and within-person measurement is essential for progress in
detecting cognitive aging and identifying the determinants of such changes, such as stress
and lifestyle factors and health-related processes such as dementia and cardiovascular
disease. A variety of research designs have been used within the broad enterprise of lifespan
developmental and aging research, ranging from cross-sectional and longitudinal
quasiexperimental designs to randomized control trials. Observational (i.e.,
quasiexperimental) studies are the most typical ones because many questions and hypotheses
focus on constructs that cannot be manipulated, due to practical and ethical reasons.

However, several long-standing and major questions of interest to the gerontological
community have not been and cannot be answered with existing data based on cross-
sectional or widely spaced longitudinal study designs. For example, the question concerning
when aging-related cognitive decline begins has been addressed using both age-
heterogeneous cross-sectional and longitudinal designs, yielding different conclusions
depending on the type of data that were analyzed. That is, results obtained from cross-
sectional data have typically identified negative age-related differences in the mid-twenties
(e.g., Salthouse, 2009), while results from longitudinal data generally point to age-related
declines after the age of 55 (e.g., Schaie, 1996).
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Several features of these different study designs can explain the discrepancy in the findings.
Cross-sectional results, for example, are confounded by birth cohort effects (Rönnlund &
Nilsson, 2008; Schaie, 2008) and mortality selection (e.g., Kurland, Johnson, Egleston, &
Diehr, 2009), which greatly limit the opportunities to draw inferences about individual and
population change (Hofer, Flaherty, & Hoffman, 2006; Hofer & Sliwinski, 2001; Kraemer,
Yesavage, Taylor, & Kupfer, 2000; Molenaar, Huizenga, & Nesselroade, 2003; Wohlwill,
1973). A major example of this is the Flynn effect, a consistent finding of secular increases
in cognitive capabilities over the last 70 years in many different countries (Flynn, 1984,
1987; Rönnlund & Nilsson, 2008).

Given these limitations, it is now widely accepted that understanding aging requires
observing and evaluating longitudinal data that enables one to estimate changes within
individuals (see Bauer, 2011). However, longitudinal designs are susceptible to testing
effects due to the repeated presentation of stimuli and previous test exposure of the
participants, leading to downwardly biased estimates of change rates and later onset of
cognitive decline (Ferrer, Salthouse, Stewart, & Schwartz, 2004; Salthouse, 2011;
Thorvaldsson, Hofer, Berg, & Johansson, 2006).

Despite the potential for bias related to retest and reactivity, longitudinal designs remain the
most adequate way to capture and explain things relative within person changes and
development. In combination with modeling techniques such as multilevel modeling (Bryk
& Raudenbush, 1992), this type of design provides a number of insights into developmental
and aging-related processes which were not achievable with cross-sectional designs. For
example, we are able to address questions about differences in cognitive decline and about
predictors of these changes on an individual level. However, the typical design of
longitudinal studies is one based on widely spaced assessments that typically span several
years between the measurement occasions. Such studies lack temporal resolution on the
lower scale and are not sensitive to within-person dynamics, changes, or events that occur
between assessments. However, a number of longitudinal studies of aging have implemented
daily diary or other forms of intensive measurements to augment the widely spaced
assessments. These alternative longitudinal designs provide measurement occasions on
different temporal scales (e.g., across days and years) as well as a basis for disentangling
short-term repeated testing effects from long-term within-person change (Hofer, Rast, &
Piccinin, 2011; Hoffman, Hofer, & Sliwinski, 2011; Sliwinski, Hoffman, & Hofer, 2010).

A number of questions cannot be definitively answered with typical widely spaced
longitudinal studies. For example, a question of importance might be whether changes in
cognition occur at the same time or consecutively and if there are distinct patterns of
cognitive change and variation which indicate different causal processes? Does it all go
together when it goes (Rabbitt, 1993) or is cognitive decline a diversified and highly
individual process different for every cognitive domain and every individual? This also
means that change over time should not only be observed in the average performance but
also in the covariances and variances among a set of variables (e.g., Zimprich & Rast, 2009).
Further, one might be interested in whether psychological phenomena, which are observed
on one timescale, can inform us about phenomena on a different timescale. For example, one
question might be whether variability in a reaction time task predicts long-term changes in
cognition (see MacDonald, Hultsch, & Dixon, 2003).

More generally, the question might be whether there are processes that can be observed at a
short timescale which reproduce on a longer timescale and can therefore serve as an early
prediction of later changes? Specifically, adaptation over a short timeframe such as learning
might share components with adaptation over a longer timeframe such as development. One
might hypothesize that individual differences in the ability to learn might also account for
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individual differences in cognitive aging, although less in an explanatory sense, but rather as
a parallelism of development taking place in a different timeframe. Several researchers have
speculated that learning might represent “microdevelopment,” that is, development within a
short timeframe, as opposed to “macrodevelopment,” which typically covers development
over longer timespans (Hultsch, 1974; Yan & Fischer, 2002). Similarly, Lindenberger and
Baltes (1995) speculated that the mechanisms underlying learning might be similar to those
underlying cognitive development, thus turning the study of learning into a showcase
examining cognitive development (cf., Fischer, 1980; Hultsch, 1974). Although
development and learning are often treated as a dichotomy, both are characterized by a
persistent change of behavior over time, albeit across different timescales (Newell, Liu, &
Mayer-Kress, 2001). Moreover, one might argue that both share important principles,
because variability, selection, and adaptation are central to change within individuals. In
addition, questions regarding within-person variability cannot typically be addressed in a
multiwave longitudinal setting (Ram & Gerstorf, 2009), and call for special designs such as
the intensive measurement design which is the focus of the present work.

Intensive Measurement Designs
A relatively recent and underused approach that might prove to be fruitful for answering or
approaching some of these questions is the measurement burst design (Nesselroade, 1991b;
Nesselroade & McCollam, 2000; Sliwinski, 2008; Walls, Barta, Stawski, Collyer, & Hofer,
2011), which features sets of measurements comprised of a number of closely spaced
assessments. That is, one burst might consist of multiple assessments that take place on a
daily or weekly basis. The bursts themselves are spaced over longer intervals such as, for
example, months or weeks. This design allows one to effectively separate short-term (e.g.,
day-to-day) within-person variability from long-term (year-to-year) within-person level,
change, and variation. This type of design can be seen as a special case of the interrupted
time-series design (see Walls et al., 2011), with the distinction that the interruptions are
planned and based on theoretical and empirical decisions regarding the within-person
variation and change in the outcomes of interest. The strength of the burst design is the
ability to improve the precision of the estimate by measuring a variable repeatedly over a
short period of time. By doing so, the power for the detection of long-term change in burst
studies can be increased, and they can be designed with shorter intervals and fewer subjects
compared to multiwave designs.

Long-term widely spaced longitudinal designs confound retest effects and long-term change.
Measurement burst designs, in turn, provide a more complete separation of different
temporal processes and have been used to separate short-term retest effects from long-term
age-related cognitive change (e.g., Sliwinski et al., 2010). They have also been used to
evaluate how within-person emotional reactivity to stress (across a week of repeated
measures) is related to decreases in cognitive performance (e.g., Sliwinski, Smyth, Hofer, &
Stawski, 2006). Hofer, Rast, and Piccinin (2012), for example, show how a repeated series
of measurements can be decomposed into a population average trend, individual deviation
from the trend, and time-specific variation about the individual-level slope as distinct from
error. Note that in most designs the error is indistinguishable from reliable time-specific
variation (but see Rast, Hofer, Sparks, 2012).

This is also a specific problem of multiwave studies that fail to take into account inherent
intraindividual variability (Nesselroade, 1991a), in the sense that the measurements within
the waves are assumed to adequately capture the location of the individual. If this is not the
case, inference from longitudinal designs may be seriously biased. As Sliwinski (2008)
showed, this problem is related to the reliability of the outcome variables. Personality states,
for example, might be reliably measured but exhibit high systematic within-person variation
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and therefore show low retest reliability. Low reliability and high within-person variation
can lead to biased estimates of long-term change when the number of occasions is relatively
few (e.g., three occasions). The strength of the burst design is the ability to improve the
precision of the occasion-specific score by aggregating the within-person distribution of
scores across a short period of time. By doing so, the power for the detection of long-term
change in burst studies can be increased, and they can be designed with shorter intervals and
fewer subjects compared to multiwave designs.

Choice of Temporal Sampling
A critical point in burst designs is the choice of temporal sampling, both within and across
bursts. Different time sampling schedules will yield patterns of variability resulting from
different influences on the individual (e.g., Martin & Hofer, 2004): sampling over seconds
or minutes (e.g., attentional lapses); within test (e.g., practice gains); within session (e.g.,
fatigue, order effects, motivation); within day (e.g., diurnal effects); across days or weeks
(e.g., stress, context, daily variation in health, practice); or across months or years (e.g,
development, aging, chronic health conditions).

Sensitive Detection of Within-Person Change and Adaptive Longitudinal Designs
The sampling interval should be chosen according to the research question with more
frequent measurements when change is expected to occur and less frequent measurement
when stability is expected. This approach might work as long as we are, for example,
observing normal cognitive change where we expect accelerated decline between the ages of
60 and 80 years. However, change is a within-person process that occurs at different rates
and at different points in time for different people. As such, within-person change may not
be well captured by static, widely spaced multiwave designs - even more so for
nonnormative change, such as disease-related cognitive decline, where it is hardly possible
to define a priori the most adequate sampling interval for each individual.

Consider, for example, the estimation of change points in cognitive performance, an
outcome of particular interest for research on dementia (e.g., Hall, Lipton, Sliwinski, &
Stewart, 2000; Hall et al., 2007; Jacqmin-Gadda, Commenges, & Dartigues, 2006): The idea
is that the identification of within-person change-points (i.e., deviation from an established
within-person normative trajectory), in the context of an individual’s characteristic level and
magnitude of short-term variation, might function as an early marker of disease-related
processes. The main challenge in these studies involves the precise estimation of the change
point that might happen to be within two widely spaced measurement occasions. The quality
of the estimation of the change point is linked to the amount of data that was available
around that given point in time and to the variability of the data points, higher variability
being related to less precise change point estimates. In an optimal design, one would sample
more frequently around the change point in order to enhance the precision of that estimate.
Given that the change point itself is unknown, this possibility remains hypothetical and can
only be examined with sufficient follow-up before and after the change-point, indicating
acceleration in change.

Extant evidence suggests that reaction time variability is related (Hultsch, MacDonald, &
Dixon, 2002; MacDonald et al., 2003) or even precedes (Lövdén, Li, Shing, &
Lindenberger, 2007) cognitive decline in older adults. This information might be well
extracted from bursts and used to define the frequency of prospective, additional
measurements taken in between the fixed measurement bursts in an individually centered
design. That is, the burst design might be expanded to an adaptive longitudinal burst design
where participants are tested on an “as-needed” basis. If the aim is to observe changes as
they occur, we need to be able to add additional observations to enhance the precision of the

Rast et al. Page 4

GeroPsych (Bern). Author manuscript; available in PMC 2014 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameter estimates. This also means that a shift to more adaptive testing procedures is
necessary. For example, a burst design might be used to establish a baseline for each
participant: Less consistent (i.e., more variable) participants need to be sampled more often
than participants with very consistent responses on a given variable. Once a baseline is set,
consecutive measures follow in order to monitor changes in the consistency of the responses
given by each individual. Considering the findings that variability in reaction times indicates
changes in cognition, the sampling interval could be reduced if the variability increases as it
may indicate nonnormative changes in cognition.

This speculative example illustrates how empirically derived markers of change may be
used to define adaptively the optimal design to capture accelerations or decelerations in
cognitive change within individuals. Certainly, issues of repeated testing and practice effects
need to be considered in this regard, although such factors may be mitigated in an intensive
measurement design where change in maximal performance is the outcome of interest.

Change in Asymptote and Structure of Learning Effects
A major outcome of intensive measurement, particularly measurement burst designs, is the
opportunity to model long-term change and change points based on an “asymptotic”
estimate of an individual’s functioning (e.g., Hoffman et al., 2011; Sliwinski et al., 2010)
that is distinguished from short-term gains (i.e., learning, retest effects) and variation. These
types of analyses are limited to data that are collected in measurement burst designs. In the
following section, we provide an empirical example of this analysis and the utility of
information gained from longitudinal designs sampling from different temporal intervals.

Example Using Data from Project MIND
Sample Description and Procedure

One of the greatest challenges in intensive measurement designs concerns how such data are
analyzed. Obviously, different questions require different analysis methods; here, we present
one possibility for the examination of data from a burst design. Specifically, measurement
sessions within each burst are nested, so that the data points are not independent and require
special statistical analyses. Multilevel models are frequently employed in order to take data
dependency into account (e.g., Bryk & Raudenbush, 1992; Raudenbush & Bryk, 2002).
Given that intensive measurement design data are collected repeatedly, we typically have
three or more levels of analysis: Several sessions (Level 1) that are nested in consecutive
bursts (Level 2), which are again nested within persons (Level 3).

To illustrate how data from an intensive measurement burst design can be evaluated, we use
data from the Project MIND (e.g., Hultsch, Strauss, Hunter, & MacDonald, 2008), a study
based on 304 community-dwelling adults (208 women and 96 men) ranging in age from 64
to 92 years (M = 74.02, SD = 5.95). They were recruited through advertisements in the local
media (newspaper and radio) requesting healthy community-dwelling volunteers who were
concerned about their cognitive functioning. All participants were Caucasian. Exclusionary
criteria included a diagnosis of dementia by a physician or a Mini Mental Status
Examination (MMSE; Folstein, Folstein, & McHugh, 1975) less than 24, a history of
significant head injury (defined as loss of consciousness for more than 5 minutes), other
neurological or major medical illnesses (e.g., Parkinson’s disease, heart disease, cancer),
severe sensory impairment (e.g., difficulty reading newspaper-size print, difficulty hearing a
normal conversation), drug or alcohol abuse, a current psychiatric diagnoses, psychotropic
drug use, and lack of fluency in English.
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For the present work, we selected the first four bursts, each 1 year apart. In the first year, the
burst contained five sessions, and in the following 3 years the bursts contained four sessions.
In each burst, the sessions within the bursts are scaled in terms of weeks, with the bursts
scaled in years.

Materials
Digit Symbol

Processing speed was assessed using the WAIS-R Digit Symbol Substitution task
(Wechsler, 1981). Participants were presented with a coding key pairing nine numbers (1
through 9) with nine different symbols. Printed under the coding key were rows of randomly
ordered numbers with empty boxes below. Participants were given 90 s to transcribe as
many symbols as possible into the empty boxes based on the digit-symbol associations
specified in the coding key. The number of correctly completed items represented the
outcome measure.

Choice Reaction Time 1-Back (CRT)
This RT task served as the dependent variable in our analyses. Participants received a
warning stimulus consisting of a horizontal row of four plus signs on the screen. The
response keyboard had four keys in a horizontal array corresponding to the display on the
screen. After a delay of 1 s, one of the plus signs changed into a box. The location of the box
was randomly equalized across trials. Participants were instructed to press the key
corresponding to the location of the box on the previous trial as quickly as possible.
Although the instructions emphasized speed, participants were also instructed to minimize
errors. A total of 10 practice trials and 61 test trials were administered. Because participants
made no response on Trial 1, the latencies and percent correct of the remaining 60 test trials
were actually used for analysis.

Statistical Analyses
In order to make use of the measurement burst design, which expands over a longer time-
frame, we used a multilevel approach where the different timescales are incorporated
simultaneously. That is, in the Project MIND data we have up to four levels where the first-
level addresses repeated measurement (trials) in each CRT on a scale of seconds. Given that
we are more interested in larger scales such as weeks and years, we will not specifically
address the serial position of the 60 reaction time trials within a task. Hence, in this case
level 1 captures the outcome across each session within a burst, level 2 captures crossburst
burst variation, and level 3 describes the individual as the hierarchically highest level. Given
that level 3 captures the individual, it describes the between-person (BP) variability across
all levels. The variability in levels 1 and 2 describe the within-person (WP) variability across
weeks and years, respectively. Formally, following the notation introduced by Raudenbush
and Bryk (2002), the three levels may be defined as

(1)

where Yijk is the observed value for person k, in burst j, and session i. At Level 1 the slope
π1jk is defined by the session scaled in weeks. Further, we need to add a crosslevel
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interaction term π2jk to account for the possibility that changes (slope) in RT’s across the
sessions change on average for each burst. That is, the gain in RT due to weekly exposure to
the test might be strongest in the first burst and smallest in the last burst. Hence, it makes a
difference whether we are looking at the slope in the first burst compared to, for example,
the slope in the fourth burst. The residuals are captured in the error term εijk with

(2)

At level 2, the slope β01k is defined by the burst and its time metric is years. Here, we define
the first set of random effects r which operate at the within-burst level. That is, r0jk, for
example, defines the departures in each burst from the average RT. The residual terms are
from a multivariate normal distribution with mean zero and two variance and one covariance
term which represent the variance around the intercept (τπ00) and around the slope (τπ11)
and the covariance between these two parameters (τπ00).

At level 3, the grand mean of the intercept and slopes are defined by the γ parameters: γ000,
for example, defines the grand mean RT at the first session in the first burst. The individual
departures from the grand mean are captured in the random effects u. Just as the random
effects on level 2, the random effects at level 3 are from a multivariate normal distribution
with mean zero and a variance-covariance matrix

(3)

Individual differences are captured in the variance estimates. The model defined in Equation
(1) can be expanded by incorporating additional predictors, interaction terms, and, for
example, quadratic slope terms.

As mentioned above, in the 3-level model defined in Equation (1) we separate WP and BP
variance and locate its source on different levels with different timescales. In repeated

measures designs the WP variability , defined in Equation (2), is a source of variance
typically treated as nuisance. However, one might be interested in changes of variability
within persons. To illustrate the usefulness of such an approach, we will add predictors of
WP variability (see Hedeker & Mermelstein, 2007) to examine changes in CRT variability
from burst to burst and add a covariate to compare the variability in CRT of two subgroups
based on a median split of the performance in the digit symbol test. That is, we introduce
dummy-coded variables to identify participants who performed below the median (DSgroup
= 0) and participants who performed above the median (DSgroup = 1) in the digit symbol
test. Similarly, the four burst are coded from 0 to 3. By doing so, we specify that the error
variance depends both on DS group membership and on the burst. Formally, the error
variance is now weighted according to

(4)

where ξ is the variance function coefficient and  defines the error variance for group g =
0,1 and burst j = 0,1,2,3. In the first burst and for the DS group with the lower performance

(DSgroup = 0), the terms in the exponent are zero, which leaves exp(0) = 1 and . In
the group that performed better in the DS task, the residual variance in the first burst is
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. The same logic applies to the burst and the interaction between the group

membership and the burst. That is, depending on the value of ξ the residual variance 
reduces, if ξ < 0 or increases if ξ > 0.

All models are estimated using R with the lme command from the nlme library (Pinheiro,
Bates, DebRoy, Sarkar, & the R Development Core Team, 2011). The code for Model 3 is
available in the Appendix. The significance of random effects are estimated using
comparison of nested models with increasing numbers of random effects via the difference
in −2*log-likelihoods associated to the restricted maximum likelihood (REML) estimate.
The difference in a model where, for example, a random slope is estimated to a model
without random slopes is in the variance of the slope and the covariance of the slope with
the intercept. The latter model has two parameters less and, hence, both models can be
compared via the likelihood ratio (LR) χ2-test with 2 df.

Results from Project MIND
First we fit an unconditional model to obtain variance components at each of the three
levels. These components can be related to the total variance using the intraclass correlation
coefficient (ICC), which is a measure of variability between persons at Level 3 and between
bursts and sessions at levels 2 and 1. The ICC for Level 3 was 0.45 (251484/(251484 +
27802 + 276457), at Level 2 it was ICC = 0.05, and at Level 1 it was ICC = 0.5. Apparently,
most of the variance is at Level 1 and Level 3, indicating that the proportion of variance
between persons is about 45% of the variance in the BRT. In turn, almost 50% of the
variance is due to fluctuations within each person across sessions, and only 5% are attributed
to variability within persons across bursts. This indicates that the performance in the CRT
within the participants was relatively constant across bursts and the interest in explaining
this little portion of the variance is usually not the primary concern. For purposes of this
example, we still introduce variables at the burst level to explain that portion of the variance.

As can be seen in Table 1, the fixed effect γ000 indicated that, on average and across all
participants, all bursts, and all sessions, the CRT was 1076 ms. The associated random
effects indicated significant differences between persons, within bursts, and within sessions.

Next, in Model 2, we added slope terms defined by session and burst plus the quadratic
terms of the slope variables in order to capture accelerations or decelerations in change over
sessions and bursts. Given that these variables operate at different levels, they both have a
different metric: Session is scaled in weeks while bursts are scaled in years. Further, we also
included the crosslevel interaction between session and burst in order to account for changes
in the session slopes over the years (i.e., bursts). As can be seen from Table 1, all fixed
effects were statistically significant at the p < .01 level. The session slope indicated that
every additional session decreased the CRT of the participants by, on average, 108 ms. At
the same time, the quadratic slope term Session2 indicated that across the sessions the gain
in RT decelerated, and one can expect a benefit of about (3* − 108.3 + 9*17.6 = −166.5) 167
ms at the end of the four sessions in the first burst. Similarly, each burst lead to a reduction
of approximately 147 ms – though again this reduction was nonlinear and was strongest
from the first to the second burst and smallest for the burst in the fourth year. Further, the
positive and significant ordinal interaction term indicated that the session slope becomes less
steep as the years go by. This can be seen from Figure 1, which shows the average change
(thick black line) across bursts surrounded by thin, gray lines, which represent individual
predictions for the first 50 people of the sample.

The figure also underlines the large amount of individual differences in the CRT captured by
the Level-3 random effects – denoted Person Level in Table 1. The random effects were
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significant for both main effects but not for the crosslevel interaction term. That is,
participants showed individual differences in the intercepts at the levels of the burst and the
sessions. Further, the rate at which their reaction times decreased (for a few participants the
RT increased) within and across bursts varied considerably from person to person. The
correlations between the Level-3 random effects indicate that those who deviate positively
from the average CRT intercept have steeper slopes both across sessions and across bursts.
That is, larger initial RTs are associated with more change toward faster RTs. At the same
time, the positive correlation between the session and burst slopes indicates that the rank
order of change in the session slopes is largely maintained across bursts. In other words,
participants with slow RTs benefited more from repeated practice both at the level of bursts
and sessions. Moreover, both slopes were highly correlated, indicating that those who
benefited most from repeated practice from session to session were almost the same as those
who benefited from repeated practice from burst to burst.

At Level 2, across bursts, the random effects indicated intraindividual differences in the
initial performance of bursts and change within burst across sessions. Both random effects
indicated that participants deviated significantly from their average initial performance and
their rate of change across sessions also varied considerably. Again, the negative correlation
between the intercept and slope parameter indicated that slower RTs at the beginning of a
burst are associated with a steeper slope, that is, more change across the sessions – and
within the bursts.

In Model 3, we added four predictor variables which operate at different levels: Age, and
DSaverage are both Level-3 between-person variables, whereas DS is a time-varying, within-
person variable that operates at Level 2. DS scores may be different at each burst. Hence,
these variables explain variance at different levels – at the between and within-person level.
Given that a large portion of the total variance is located at the lowest level, Level-1, we also
include variables that define the magnitude of the residual variance as described in Equation
(4). That is, in order to capture changes in residual variability, we included burst and the
dummy-coded DSgroup as well as their interaction in the variance function. Note that these
variables served as predictors for the variance function and captured changes in the residual
variability across bursts and between two groups.

The parameter estimates from Model 3 are reported in Table 1. Note that the slope and
squared slope coefficients are virtually unaltered compared to Model 2. In turn, the inclusion
of the additional explanatory variables increased the intercept considerably to 2.3 s. The
reason for this is DSaverage, which enters the model as an individually mean centered
variable with an average of 42.6.

The effects on the RT of age at the first burst and DSaverage were both statistically
significant. Note that these two variables are Level-3 variables, that is, they explain
variability at the person level: Older adults were on average slower, with each year of
additional age being associated with an increase of 17 ms in RT. In turn, the average
performance in DS indicated that for each additional item that was correctly solved, the RT
decreased by 18.9 ms. These two variables explained about 41% (ratio of Model 2 to Model
3 intercept variances: (γβ00M2 − γβ00M3/γβ00M2) of the variance at the between-person level.
At the burst level we introduced the grand mean centered variable DS which was assessed
once per burst. The effect on the RT was statistically significant and indicated that every
additionally remembered item decreases the RT by approximately 2 ms at each burst. Hence,
the performance in DS accounted for differences in the RT intercept at each burst; in terms
of explained variance, DS accounted for approximately 23% of the within-person variance at
the burst level.
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In order to model the residual variance, we introduced the burst and the DSgroup variable.
These parameters are defined by the ξ coefficients and are listed in the fixed effects part of
Table 1. All three parameters, both main effects and the interaction term, were statistically
significant. The residual variance changed according to the group and burst, the largest
variance being at the first burst and for the dummy coded reference group DSgroup = 0. That

is, the estimate for the first burst and DSgroup = 0 was , whereas the
residual variance estimate for the group with better performance in DS was almost half as

large, with . Every additional burst decreased the variance
for both groups by exp(−0.062*Burst). Further, the significant interaction term between
group and burst indicated that for the group with the weaker performance in the DS task the
decrease in the residual variability was somewhat larger. This relationship between group
membership, burst, and residual variability is shown in Figure 2, where the upper line
captures the predicted residual variability estimate for DSgroup = 0 and the lower line shows
the estimated variability for the participants who performed better in the DS task (DSgroup =
1).

Discussion
The study of cognitive aging has long focused on several related questions that were
addressed by a variety of longitudinal and cross-sectional designs. When does aging-related
change in cognitive functioning begin? What is the impact of early life characteristics (e.g.,
childhood cognition) and contexts (e.g., parental SES, educational attainment) on later life
cognition and change in cognition? What causes aging-related changes in cognition (i.e., due
to underlying pathology /disease condition; inactivity) and what should be considered
“normative”? Can these changes be prevented, delayed, or treated? It is increasingly being
understood that the answers to these questions require a variety of longitudinal designs to
capture the influences of early life on later life changes, key events, and lifestyle choices
throughout the lifespan, and the identification of change-points that indicate an accelerated
change relative to an individual’s characteristic level of performance. Attempts to answer
these questions regarding the development and aging of cognitive functions across the
lifespan has contributed to a rich array of substantive and methodological debates and
advances.

These recent advances include application of innovative developmental designs,
improvements in measurement for detecting within-person change, statistical advances in
dynamic modeling and population inference conditional on mortality, and comparisons
across birth cohorts and cultures. While we may not yet have definitive answers to many of
these fundamental questions, the field of research on aging-related phenomena increasingly
emphasizes the need for innovative longitudinal studies with recognition of the necessity of
focusing on different temporal sampling of within-person change and variation. An
increasing number of “measurement burst,” “daily diary,” and event-linked design studies
(e.g., Moskowitz, Russell, Sadikaj, & Sutton, 2009) have recently been initiated. Such
studies have the potential to improve the reliability of measurement and permit a better
understanding of within-person dynamics.

Intensive Measurement Designs as Solutions for Questions of Gerontological Importance
Future research will be advanced by the use of intensive, but minimally obtrusive,
measurement designs. Such designs permit the analysis of behavioral and biological
processes as they unfold in both the short and long term and permit the opportunity to
identify change from an individual’s normative performance (level and variation about
characteristic level). One approach, described above, is the measurement burst design, which
permits statistical decomposition of short-term variation and learning effects that overlay

Rast et al. Page 10

GeroPsych (Bern). Author manuscript; available in PMC 2014 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



normative aging and that provide a stronger basis for detecting accelerated change due to
pathological processes. While the demands of such a design are generally much higher than
typical longitudinal studies, such studies can be made more efficient by self-administered
assessments performed in the participant’s home, permitting intensive longitudinal data
collection in large probability samples that are not constrained by geographical proximity to
clinics and labs (e.g., Gallacher & Hofer, 2011). Internet-based surveys and testing may also
serve to minimize problems associated with loss to follow-up and relocation and circumvent
the problem of interval censoring that is an issue in widely spaced longitudinal designs. A
central objective is to optimize the design and analysis features for particular research
questions that require greater resolution of the processes of interest, and that permit reliable
and sensitive assessment of functioning and change in functioning and of key determinants
underlying short-term variation and long-term aging and health-related change.
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Appendix

R Code for Model 3
library(nlme)

# load nlme library

## Session2 = Session*Session

## Burst2 = Burst*Burst

## DS.c = Digit Symbol grand-mean centered

## Age.c = Age of respondents grand-mean centered
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## DS.pc = Digit Symbol person-mean centered

## DS.grp = Dummy coded DS variable via median split

## Subject = Subject identifier

model3 ##← lme(CRT ~ 1 + Session*Burst + Session2 + Burst2 + DS.c + Age.c + DS.pc,

# fixed effects are defined

random = list(Subject = ~ 1 + Burst + Session, Burst = ~1 + Session),

# random effects are defined. Note the hierarchy

# where Burst is nested in Subject using list()

weights = varComb(varExp(form = ~DS.grp), varExp(form = ~Burst), varExp(form =
~I(DS.grp*Burst))),

# Variance function is given here (see Equation 4):

# each effect plus the interaction term in I() need

# to be defined using varComb()

control = lmeControl(msVerbose = T, maxIter = 150, msMaxIter = 80),

# some control arguments are passed along – they are not

# necessary and may be omitted.

data = crt.MIND)

# data statement: Data needs to be in long format.

# Consider eg. make.univ() from library(Multilevel)

summary(model3)
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Figure 1.
Fitted trajectories from Model 2. The thick black lines are average effects, and the thin gray
lines represent individual trajectories. Depicted are the first 50 participants. Note that the
first burst consisted of five sessions and the consecutive bursts consisted of four sessions.
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Figure 2.
Predicted residual variability for two groups defined by a median split of DS. DSgroup = 0
are participants who performed lower than the median of 43 and DSgroup = 1 are
participants who scored 43 or more points in the DS task.
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