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Abstract
A Bayesian two-stage phase I-II design is proposed for optimizing administration schedule and
dose of an experimental agent based on the times to response and toxicity in the case where
schedules are non-nested and qualitatively different. Sequentially adaptive decisions are based on
the joint utility of the two event times. A utility function is constructed by partitioning the two-
dimensional positive real quadrant of possible event time pairs into rectangles, eliciting a
numerical utility for each rectangle, and fitting a smooth parametric function to the elicited values.
We assume that each event time follows a gamma distribution with shape and scale parameters
both modeled as functions of schedule and dose. A copula is assumed to obtain a bivariate
distribution. To ensure an ethical trial, adaptive safety and efficacy acceptability conditions are
imposed on the (schedule, dose) regimes. In stage 1 of the design, patients are randomized fairly
among schedules and, within each schedule, a dose is chosen using a hybrid algorithm that either
maximizes posterior mean utility or randomizes among acceptable doses. In stage 2, fair
randomization among schedules is replaced by the hybrid algorithm. A modified version of this
algorithm is used for nested schedules. Extensions of the model and utility function to
accommodate death discontinuation of follow up are described. The method is illustrated by an
autologous stem cell transplantation trial in multiple myeloma, including a simulation study.
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1 Introduction
In clinical trials involving cytotoxic or other potentially harmful agents, adverse events
(toxicities) generally occur at random times after the start of treatment. Most phase I clinical
trial designs determine an optimal dose, or a maximum tolerable dose (MTD), using a binary
indicator of toxicity occurring by a predetermined time from the start of therapy. These
designs include the continual reassessment method (CRM, O’Quigley, et al., 1990) and
many others. To use more available information, improve logistics, and protect patients from
late onset toxicities, phase I designs based on YT = time to toxicity have been proposed,
including the time-to-event (TiTE) CRM (Cheung and Chappell, 2000), and the designs of
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Braun (2006) and Bekele, et al. (2008). Many phase I/II designs based on binary or
categorical response and toxicity have been proposed (Thall and Russell, 1998; Braun, 2002;
Thall and Cook, 2004; Zhang, et al., 2006). Phase I/II designs also may be based on YT and
YR = time to response. Denoting  and

 for m = R, T, with Y = (YR, YT), , and δ = (δR, δT), dose-finding
may be based on (Y∘, δ) (cf. Yuan and Yin, 2009).

Most phase I and phase I/II designs focus on dose, but many agents have schedule-
dependent effects. An example in oncology is a nucleoside analog for which the MTD of a
30-minute infusion is (i) 2100 mg/m2 if given once, (ii) 1000 mg/m2 if given weekly for
three weeks with total dose 3000 mg/m2 over 21 days, and (iii) 300 mg/m2 if given twice in
each of weeks 1, 3, and 5 for total dose 1800 mg/m2 over 35 days. An example of an
unexpected increase in toxicity after changing the schedule of a preparative agent in stem
cell transplantation (SCT) from (d/2, d/2) on days (−8, −3) to (d/3, d/3, d/3) on days (−8, −6,
−3) is described by Thall (2010, Section 1.1). Braun, et al. (2005) proposed a Bayesian

design to optimize the schedule of administration times, s = (s1, …, sk), based on ( , δT),
with fixed per-administration dose (PAD), assuming nested schedules with each s
corresponding to a number of cycles of therapy. Braun, et al. (2007) extended this to allow
PAD to vary, and jointly optimized (s, PAD) by minimizing the absolute difference between
a fixed target probability and the posterior mean probability of toxicity by a specified time,

, similar to the TiTE CRM. Li, et al. (2008) proposed an approach to optimizing dose and
schedule for the case of two nested schedules and bivariate binary outcomes. However, no
designs currently exist that optimize either schedule or (schedule, dose) in the case of non-
nested, qualitatively different schedules, or where the outcomes are bivariate event times.

We address the problem of sequential adaptive optimization of treatment regime τ = (s, d) in
a phase I/II clinical trial where schedules may differ qualitatively or quantitatively, and the
outcomes are possibly right-censored event times (Y∘, δ). The total dose is d, with fractions
given at the successive administration times. No solution to this design problem currently
exists. We propose an adaptive Bayesian method using a utility function, U(y), defined on
the positive real quadrant [0, ∞)2 of possible Y values. We construct U(y) by partitioning a
compact subset of [0, ∞)2 where Y pairs are likely to occur into rectangles, eliciting a
numerical utility on each rectangle from the physicians planning the trial, and fitting a
parametric function to the elicited values. For each Ym, m = R, T, we specify a gamma
marginal with shape and scale parameters each modeled as functions of (s, d), and use a
copula to obtain association.

The design has two stages, and only allows τ with both acceptable safety and efficacy to be
assigned. In stage 1, patients are randomized fairly among schedules in blocks. Within each
schedule, the acceptable dose with maximum posterior mean utility is chosen, unless the
current sample size for the optimal dose is larger than all current sample sizes for the other
doses. In that case, patients are randomized among the assigned schedule’s acceptable doses
with probabilities proportional to their posterior mean utilities. In stage 2, the block
randomization among schedules is unbalanced using similar criteria, with each schedule’s
assignment probability proportional to the posterior mean utility of its optimal dose. We
include randomization to reduce the chance of getting stuck at suboptimal τ, which may
occur with a “greedy” algorithm that only maximizes posterior mean utility.

Our design differs from those of Braun et al. (2007) and Li et al. (2008) in that we (1) use
both time-to-response and time-to-toxicity, (2) use utilities as decision criteria, (3) use
unbalanced randomization to choose regimes, (4) assume a bivariate gamma regression
model, and (5) allow non-nested schedules. We also consider the case where YR is evaluated
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at a sequence of times rather than continuously, hence is interval censored. We describe
extensions of the model and utility to accommodate death or discontinuation of follow up at
toxicity. Our methodology synthesizes the above and several other existing ideas, including
use of a copula to obtain association, randomizing to avoid getting stuck at a suboptimal
regime, and regression modeling of both first and second order parameters.

To provide a concrete frame of reference, we describe the illustrative SCT trial in Section 2.
Section 3 describes a method for constructing a utility function from elicited values. Gamma
regression models for [YR|s, d] and [YT|s, d], and likelihoods for both continuous and interval
censored YR are given in Section 4. The design is presented in Section 5. Section 6 illustrates
the method by application to the SCT trial, which has two schedules and three doses (six
regimes), including a simulation study with comparison to two alternative designs, and
evaluation of robustness and of sensitivity to the prior, cohort size, and sample size. We
close with a discussion in Section 7.

2 Motivating Application
Melphalan is an alkalating agent commonly used as part of the preparative regimen for
autologous SCT to treat multiple myeloma (MM), but there is no consensus for what
(schedule, dose) combination is best in older patients. To address this, we designed a phase
I/II trial to evaluate total doses d = 140, 180, or 200 mg/m2 of melphalan given either as a
single 30-minute bolus infused on day −2 before SCT, or with the dose split into two equal
boluses infused on days −3 and −2. Toxicity is defined as severe (grade 3 or 4)
gastrointestinal toxicity or diarrhea, graft failure, or regimen-related death. Response is
evaluated at 1, 3, 6, 9, and 12 months post transplant, so YR is interval censored while YT is
observed continuously, which is common in early phase oncology trials. Response has three
requirements, (i) normal bone marrow (< 5% myeloma cells), (ii) no new lytic lesions on
bone X-ray, and (iii) absence of β2 microglobulin, a monoclonal protein characterizing MM
in two consecutive tests.

Transforming pre-transplant administration days (−3, −2) to (0, 1), so transplant is on day 3
after the first administration, the six regimes in the MM trial are τ1 = {1, 140}, τ2 = {1,
180}, τ3 = {1, 200}, τ4 = {(0, 1), 140}, τ5 = {(0, 1), 180}, τ6 = {(0, 1), 200}. The subsets 
= {τ1, τ2, τ3} of one-day schedules and  = {τ4, τ5, τ6} of two-day schedules have natural
orderings, since the probabilities of toxicity and response each increase with d within each
schedule. In contrast, for either response or toxicity, there is no obvious ordering among all
six regimes in  =  ∪ . For example, although τ1 and τ4 deliver the same total dose, a 1-
day or 2-day schedule may either be more toxic or have higher response rate. The terms
“escalate” or “de-escalate” thus are meaningful when assigning doses within  or . but not
for assigning regimes within . The additive hazard model of Braun et al. (2007) does not
accommodate qualitatively different schedules with all administrations given early, or
bivariate event time outcomes. We address this by treating schedule as qualitative and dose
as quantitative, and defining a joint utility function for the two event times.

3 Utility Functions
We obtain a utility function, U(y), that represents the clinical desirability of each possible
outcome pair. This utility may be used for decision-making with any sort of regime, and is
not limited to dose-schedule optimization. Given follow up time Tmax, the physician is asked
to partition the domains of YR and YT into subintervals that determine a grid of rectangular
subsets partitioning [0, Tmax]2. A numerical utility is elicited for each rectangular subset, and
nonlinear regression is used to fit a smooth surface by treating the midpoints of the
rectangles in the Y domain as predictors and the corresponding elicited utilities as outcomes.

Thall et al. Page 3

Biometrics. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The partition should be sufficiently refined to provide a discretization of Y in terms of the
anticipated joint probability distribution that is realistic based on clinical experience, but
sufficiently coarse that the elicitation is feasible. To facilitate refinement of the elicited
numerical utilities or the grid, it is useful to show the physician a plot of the fitted surface,
and iterate this process until an acceptable utility surface is obtained.

Since smaller yR and larger yT are more desirable, U(y) must decrease in yR and increase in
yT, formally, ∂U(yR, yT)/∂yR < 0 < ∂U(yR, yT)/∂yT. We used the parametric function

(1)

To obtain 0 ≤ U(yR, yT) ≤ 100 with 0 corresponding to the worst and 100 to the best possible
outcomes, we used the norming constants Umax = U∘(yR,min, yT,max) and Umin = U∘(yR,max,
yT,min), denoting U∘(yR, yT) = b1 e−c1yR+ b2 e−c2yT+ b3 e−c1yR−c2yT. Any compact domain for
U may be used, however. The inequalities c1, c2 > 0, b2 < 0 < b1, and b2 < −b3 < b1 are
sufficient to ensure monotonicity of U(yR, yT) in each argument. Subject to these constraints,
we solved for (c1, c2, b1, b2, b3) using nonlinear least squares with the midpoint of each
rectangle as the X-variable and the elicited utilities U(e) on the rectangle as the Y-variable.
For the autologous SCT trial design (Table 1) this gave estimates (ĉ1, ĉ2, b̂1, b̂2, b̂3) =
(0.0631, 0.1088, 9.3557, −7.8677, 0.5301). Table 1 also gives the fitted utilities Û(y), and
the surface obtained by plotting Û(y) on y is illustrated by Figure 1, where Tmax = 12 months
for the SCT trial. For example, the rectangle defined by 1 < yR < 3 and 3 < yT < 6 has
midpoint ymid = (2, 4.5) and elicited utility U(e) = 64.

Our criterion for choosing each cohort’s treatment regime is the posterior mean utility,

(2)

where we denote Ū(τ, θ) = EY|θ{U(Y) | τ, θ}, the mean over Y of the utility U(Y) of using
regime τ for given θ. Another way to view u(τ, data) is obtained by applying the Fubini-
Tonelli Theorem to switch the order of expectations in (2). Denoting the joint pdf of [Y | τ]
by fR,T(y | τ, θ), this gives

The posterior expectation fR,T(y | τ, data) is the predictive distribution of Y, given the current
data, for a patient treated with regime τ. Thus, u(τ, data) is the expected utility of τ for a
newly enrolled patient. The design makes adaptive decisions based on the values of {u(τ,
data), τ ∈ }, subject to safety and efficacy acceptability requirements.

4 Probability Model
4.1 Marginal Model

Our modeling strategy is to construct marginals for YR and YT that are functions of s and d,
and use a bivariate copula (Nelsen, 1999) to obtain a joint distribution. For each outcome m
= R, T and regime τ = (s, d), denote the pdf, cdf, and survivor function of Ym at time y > 0 by
fm(y | τ, θm), Fm(y | τ, θm) = Pr(Ym ≤ y | τ, θm) and F̄m(y | τ, θm) = 1 − Fm(y | τ, θm), where θm
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is the marginal model parameter vector. The joint model parameter vector is θ = (θR, θT, ζ),
where ζ is the copula’s association parameter.

We assume that, given s, larger d is associated with stochastically smaller YR and smaller YT.
This says that, at any follow up time y, the probability of response, FR(y | (s, d), θR), and the
probability of toxicity, FT (y | (s, d), θT), both increase in d for any s. The marginals are
formulated so that these probabilities may either vary qualitatively with schedule or have
monotone schedule effects. The utility function addresses the conflict between the goals to
choose τ to make FR(yR|τ, θR) large while not allowing FT (yT |τ, θT) to become
unacceptably large by quantifying the desirability of each possible (yR, yT) pair.

Let d1 < d2 < ··· < dJ denote the doses being considered. A practical difficulty when using
u{(s, d), data} for decision making based on bivariate outcomes is that simply assuming
FR(t | (s, d), θR) and FT (t | (s, d), θT) both are monotone in d may not distinguish adequately
between different values of u{(s, dj), data} for doses dj near the optimum, in the case d1 < dj
< dJ. A given change in an intermediate dj may produce changes of very different
magnitudes in FR(t | (s, dj), θR) and FT (t | (s, dj), θT), which in turn may make it difficult to
identify a middle dose for which (s, dj) has true maximum utility. To address this problem,
for each outcome we define outcome-specific standardized doses,

denoting d̄ = (d1 + ··· + dJ)/J. The parameter λm controls the relative effects of doses that are
not close to either d1 or dJ. Note that xR,1 = xT,1 = d1/d̄ and xR,J = xT,J = dJ /d̄, while all
intermediate standardized doses for fm are parameterized by λm.

For brevity, hereafter we will index schedules by k = 1, ···, K and denote τ = (k, j) for the kth

schedule and dose dj. To formulate flexible but reasonably parsimonious marginals for [Ym |
τ], m = R, T, in preliminary simulations we explored the lognormal, Weibull, and gamma
distributions across a diverse set of regime-outcome scenarios and true event time
distributions. We chose the gamma, since it had the best overall performance and robustness
of the three distributions. We used gamma marginals having the parametric form

where Γ(·) denotes the gamma function. The shape parameter ϕm,1 and scale parameter ϕm,2
both depend on dose and schedule as follows:

(3)

and

(4)

We require αm,1, αm,2, βm,1, βm,2 > 0, and assume the schedule effects, γm,1, ···, γm,K, have
support [0, 2]. Different transformations are used for ϕm,1(k, j) and ϕm,2(k, j) because the
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shape and scale parameters play very different roles in determining the form of the gamma
distribution, and we found that using a log transformation for ϕm,2{(k, j), θm} provided a
well behaved dose-outcome model. For each outcome m = R, T and gamma shape (r = 1) or
scale (r = 2) parameter, if dose is fixed and only schedule is varied, the right-hand sides of
(3) and (4) reduce to βm,rγm,k, so there are K + 1 parameters for K effects. We thus define

.

The utility U(Y) reduces the two-dimensional outcome Y to a one-dimensional value, which
in turn yields the posterior mean utility, u{(k, j), data}, that is used for decision making. In
the models (3) for shape and (4) for scale, the relative magnitudes of the parametric
contributions of k and xm,j must reflect their actual effects on u{(k, j), data}. In these
models, βm,r may be thought of as the gamma’s usual shape (r = 1) or scale (r = 2)
parameter, modified by the effects of dose and schedule. For each m = R, T, the same λm is
used to define each standardized dose xm,j and, for each schedule k, the same parameter γm,k
is used as a multiplicative effect on xm,j, for both ϕm,1 and ϕm,2.

4.2 Likelihood for Continuously Observed Response Times
Let t* denote study time, defined as the time from the start of the trial to the current time
when a new patient is enrolled and an interim decision must be made. Let n* denote the
number of patients accrued by t*. For the ith patient, i = 1, ···, n*, denote the treatment

regime by τi and the outcome vectors evaluated at t* by  and δi,t* =
(δi,R,t*, δi,T,t*). For a patient with entry time ei < t*, the patient time at trial time t* is ti = t* −

ei. Each patient’s outcome data change over time, starting at  and δi,t* =

(0,0) at accrual when ti = 0. Thereafter, each  as long as δi,m,t* = 0, and 
achieves the final value Yi,m if and when the patient experiences event m, when δi,m,t* jumps

from 0 to 1. That is, each ( , δi,t*) is a bivariate sample path of two step functions,
jumping from 0 to 1 at their respective event times, with administrative right-censoring,
from the time from that patient’s accrual to the most recent follow up time. Consequently,
before computing posterior quantities used for making outcome-adaptive interim decisions
at any study time t*, it is essential to update the trial data. We denote the interim data at trial

time t* by .

Denote the joint cdf and survivor function of [Y | τ] by FR,T (y | τ, θ) and F̄R,T (y | τi, θ) =
Pr(YR > yR, YT > yT | τi, θ). When both YR and YT are observed continuously, the likelihood
for patient i at study time t* is

(5)

Once the marginals have been specified, a joint distribution of YR and YT may be defined in
numerous ways. To obtain a parsimonious and tractable model, we use the bivariate Farlie-
Gumbel-Morgenstern (FGM) copula (Nelsen, 1999). Hereafter, we will suppress t*, i, τi, and
θ for brevity when no meaning is lost. The FGM copula is given in terms of the marginals
and one association parameter ζ ∈ [−1, 1] by
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(6)

To obtain the terms in (5) under the FGM copula, for (δR, δT) = (1,1) the joint pdf is

and F̄R,T (yR, yT) = FR,T (yR, yT) + F̄R(yR) + F ̄T (yT) − 1. For (δR, δT) = (0,1) and a > 0,

and the term for (δR, δT) = (1,0) is obtained by symmetry. All likelihood contributions thus
are determined by ζ and the marginal pdfs, with FR and FT and terms corresponding to
administratively censored event times computed by numerical integration.

4.3 Likelihood for Interval Censored Response Times
To account for interval censoring when response is evaluated at successive times 0 = a0 < a1
< ··· < aL−1 < aL = ∞, rather than continuously, let Al = (al−1, al] denote the lth subinterval.
If a response did not occur by al−1 but did occur by al, then YR ∈ Al. Let δ1,l denote this

event. Given the partition {A1, ···, AL} of [0, ∞), the pair ( , δi,R) for continuously
observed Yi,R are replaced by the vector of indicators δi,R = (δi,R,1, ···, δi,R,L), having one
entry 1 and all other entries 0. At study time t*, the observed data of the ith patient are

{δi,R(t*), , δi,T,t*}. When  has been observed by study time t*, so that δi,T,t* =
1, the ith patient’s likelihood contribution is

(7)

denoting . Under the copula (6), this takes the form

.
Similarly, when patient i has not yet experienced toxicity, so δi,T,t* = 0 and Yi,T is censored
at study time t*, the likelihood contribution is

(8)

denoting . Under the copula (6), this takes the form

.
Combining terms (7) and (8), if YR is interval censored the likelihood at trial time t* is
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5 Trial Design
5.1 Treatment Regime Acceptability

While using utilities is a sensible way to combine efficacy and toxicity for optimizing
treatment regimes, in practice some regimes may be excessively toxic or inefficacious. Such
regimes should not be used to treat patients, and in the extreme case where all regimes are
found to be either too toxic or inefficacious the trial should be terminated. We thus employ
the following acceptability criteria, similar to those used by Thall and Cook (2004) and

others for phase I/II trials. For m = R, T, let  be a reference time from the start of therapy

used to specify a limit on . Let π̄T be a fixed upper limit on  and πR

be a fixed lower limit on , both specified by the physician. Given upper
probability cut-offs pT and pR, a regime τ is unacceptable if

(9)

and we denote the set of acceptable strategies by .

5.2 A Design for Non-Nested Schedules
The problem that a “greedy” sequential search algorithm, that always chooses the optimal
action, may get stuck as a suboptimal action is well-known in optimization, but only
recently has been addressed in dose-finding trials (Azriel, Mandel and Rinott, 2011; Thall
and Nguyen, 2012). Our proposed design is a hybrid of a greedy design that always chooses
τ = (k, j) to maximize posterior mean utility, and a nonadaptive, hence unethical design that
simply randomizes patients fairly among regimes. The idea is avoid getting stuck at a
suboptimal regime, but still conduct the trial ethically by using adaptive rules.

For each successive cohort of c patients, τ is chosen adaptively, as follows. Denote the
regime maximizing u(τ, data*) among all τ ∈  by τopt. Denote the index of the optimal
dose among acceptable regimes having schedule k by

Because the posterior mean utility u(τ, data*) is highly variable throughout much of the trial,
randomizing among regimes with u{(k, j), data*} close to τopt is ethical, and reduces the risk
of getting stuck at a suboptimal regime. The proposed hybrid design, Design 1, has two
stages. Let n*(k, j) denote the number of patients up to trial time t* treated with τ = (k, j).
Since only τ ∈  may be chosen, if  is empty then the trial is stopped and no τ is selected.
If  is not empty, then for qualitatively different, non-nested schedules Design 1 proceeds as
follows. Let N be the maximum overall sample size, and N1 the maximum stage 1 sample
size, with N1 chosen to be a multiple of Kc reasonably close to N/2.

Stage 1—Randomize K cohorts of size c fairly among the schedules, restricted so that each
schedule is assigned to exactly c patients. Repeat this until N1 patients have been treated.
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Within schedule k, starting at the lowest dose and not skipping an untried dose when
escalating, treat the next patient at dose jopt(k), unless

(10)

where Δ1 is a small positive integer. If the inequality (10) holds, then within schedule k
choose an acceptable dose randomly with probability proportional to u{(k, j), data*}.

Stage 2—For patients i = N1 + 1, ···, N, choose the schedule kopt with largest u{k, jopt(k)},
unless

(11)

where Δ2 is a small positive integer. If (11) holds, choose a schedule with probability
proportional to u{(k, jopt(k)), data*}. Choose doses within schedules as in Stage 1.

The inequality (10) in Stage 1 says that the current sample size at the best acceptable dose
within schedule k is at least Δ1 c larger than the current sample size at any other acceptable
dose with that schedule. One may use Δ1 = Δ2 = 1, or slightly larger values, depending on c
and possibly N, to control the amount of sample size imbalance between regimes. The
randomization probabilities among doses within schedule k in Stage 1 at t* are

Similarly, the inequality (11) says that the current sample size at the best acceptable regime
is at least Δ2 c larger than the current sample size at any other acceptable regime. The
randomization probabilities among schedules in Stage 2 at t* are

Design 2, the “greedy” design, is a much simpler version Design 1 that chooses τ ∈  by
simply maximizing u{(k, j), data*}, subject to the constraint that an untried dose may not be
skipped when escalating within any schedule. With Design 2, schedules are chosen by fair
randomization without replacement, as in the hybrid Design 1, but this is done throughout
the trial, and within schedule k the current dose jopt(k) is chosen.

If schedules are nested, then γm,1 < γm,2 < ··· < γm,K for m = R, T, and consequently YR and
YT are stochastically increasing in k as well as j, so the regime-finding algorithm must reflect
this. Since in this case the word “escalate” pertains to both schedule and dose, i.e. to both k
and j, the trial could be conducted by choosing (k, j) to maximize u{(k, j), data*} subject to a
two-dimensional “do-not-skip” rule similar to that used by Braun et al. (2007), with
escalation from (k, j) to optimize u{τ, data*} restricted to the three adjacent untried
combinations (k +1, j), (k, j + 1), or (k + 1, j + 1). This could be elaborated, as in Design 1,
to include randomization among regimes based on u{(k, j), data*}.
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5.3 Accommodating Death During Follow Up
The model and utility may be modified to account for death during follow up, or
discontinuation of follow up due to toxicity, possibly because the regime was changed at YT.
This may be done parsimoniously using a semi-competing risks model, wherein we call
either death or discontinuation of follow up at YT “fatal” toxicity, indicated by δTD, with δTA
indicating “non-fatal” toxicity that allows follow up to continue for YR. Thus, δTD + δTA =
δT, and (δTD, δTA) has possible values (1,0) or (0,1) if δT = 1 and (0,0) if δT = 0. If δTD = 1
and YT < YR then response will not occur. In this case, we define YR = +∞ and δR = 1, and

extend the domain of (YR, YT) from E2 = [0, ∞)2 to . We do not
assume that YR censors YT, however. Suppressing τ and θ, we define an extended

distribution  in terms of πTD = Pr(δTD = 1) and the conditional

probabilities  and

, where πNR = Pr(YR

> YT) is the probability of death before response if δTD = 1. It follows that  is a

probability distribution on , since

.

To extend the likelihood (5) to this case, we first note that lines 2 and 4 of (5) are unchanged
since in these cases YT is right-censored. The first line of (5) becomes

For line 3 of (5), if YR is censored and fatal toxicity occurs, then δTD = 1 and YR = +∞, a
case already accounted for by line 1. If YR is censored and non-fatal toxicity occurs, this is
accounted for by simply replacing δT with δTA.

The utility may be modified to accommodate death by considering the scaled original utility,
U(yR, yT)/100, as a multiplicative discount factor for survival time on the follow-up interval
[0, Tmax]. A utility function that does this is U +(yR, yT) = Tmax U (yR, yT)/100 if yT is the
time of non-fatal toxicity and U +(yR, yT) = yT if yT is the time of death. Thus, 0 ≤ U+(yR, yT)
≤ Tmax, and the trial is conducted as described above. The model may be extended similarly
if follow up is stopped at YR, although this is not commonly done if toxicity occurring over a
prespecified follow up period of Tmax is considered important. One also might model πTD as
a function of (s, d), if the death rate is sufficiently high to estimate the additional parameters,
although this may be unlikely in practice.

6 Application to the SCT Trial
6.1 Prior and Design Parameters

We assumed that the positive real valued parameters αR,1, αR,2, βR,1, βR,2, λR, αT,1, αT,2,
βT,1, βT,2, λT followed lognormal priors. The means were determined from the elicited values
in Table 2 using a pseudo-sample based method similar to that described in Section 4.2 of
Thall et al. (2011). Prior variances were calibrated to obtain a design with good performance
across a broad range of scenarios. We assumed that ζ followed a beta distribution with
parameters (1.1, 1.1), rescaled to have support on (−1, +1). Numerical values of the prior
hyperparameters are given in Supplementary Table 1.

Thall et al. Page 10

Biometrics. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since each schedule effect acts multiplicatively on the outcome-specific standardized doses,
we found that γm,j ≤ 0.80 or ≥ 1.20 may have a large effect on xm,j. For example, γm,j = .80
would reduce some xm,j values by more than one full dose level. A more disperse prior on
the γm,j’s also may cause the method to misinterpret a dose effect for a schedule effect in
certain cases, especially those where a middle dose has highest utility. Consequently, we
specified the priors of the γm,j’s to be highly concentrated beta distributions with domain [0,
2] and parameters (47.3, 47.3), which gives Pr[0.80 < γm,j < 1.20] = 0.95. Although these
priors may appear to be overly informative, in fact small changes within the subdomain
[0.80, 1.20] of [0, 2] allow the posterior mean utility to change substantively, so that one
may detect true differences between schedules. In this case, the observed data easily have
the necessary effect on the posterior distributions of the γm,j’s.

6.2 Simulation Study
We simulated the SCT trial with N1 = 36, N = 72, and c = 3, with YT monitored continuously
and YR interval censored per the actual evaluation schedule at 1, 3, 6, 9, 12 months. We
studied three competing designs: the hybrid design (Design 1), the greedy design (Design 2),
and a randomized design with no interim decisions, restricting the randomization to treat
exactly 12 patients at each of the six τ pairs, with the regime maximizing u(τ, data) selected
at the end. We considered eight simulation scenarios (Supplementary Table 2). In Scenario
1, there is no schedule effect, toxicity is acceptable, and efficacy increases with dose.
Scenario 2 also has no schedule effect, but toxicity is much higher, so the lowest dose has
the highest utility. In Scenario 3, the 2-day schedule is superior due to higher efficacy. In
Scenario 4, the 1-day schedule is superior. Scenario 5 has no schedule effect, but the middle
dose is best. In Scenario 6, for both schedules, the utility is “V” shaped, lowest for the
middle dose with the highest dose optimal. All regimes are unacceptably toxic in Scenario 7,
and unacceptably inefficacious in Scenario 8. Each case was simulated 3000 times.

We use the statistic Rselect = {utrue(τselect) − umin}/(umax − umin), (cf. Thall and Nguyen,
2012) to quantify reliability of regime selection. This is the proportion of the difference
between the utilities of the best and worst possible regimes achieved by τselect. A statistic
quantifying the ethics of how well the method assigns regimes to patients in the trial is

, where utrue(τ[i]) is the true utility of
the regime given to patient i, and N is the final sample size.

The main simulation results are summarized in Table 3. In each of Scenarios 1 – 6, the
hybrid design does a good job of selecting regimes with high true utilities, and is very likely
to correctly stop early in both Scenarios 7 and 8. Table 4 compares the hybrid, greedy, and
balanced designs in terms of Rtreat and Rselect. More detailed summaries of the simulations
of the greedy and balanced non-adaptive designs are given in Supplementary Tables 3a and
3b, respectively. The main messages from Scenarios 1 – 6 in Table 3 are that (i) compared to
the greedy design, the hybrid design has the same or higher Rselect while neither design is
uniformly superior in terms of Rtreat; (ii) compared to the balanced design, the hybrid design
has nearly identical Rselect but much higher values of Rtreat, so is much more ethical; and
(iii) in Scenarios 7 and 8, both the hybrid and greedy designs correctly stop early with high
probability, and both have much higher Rselect and Rtreat than the balanced design. In
summary, the hybrid design has the best overall performance of the three designs and, as
may be expected, the balanced design is ethically unacceptable.

In supplementary Table 4, we evaluate robustness of the hybrid design to the true event time
distribution (lognormal, gamma, Weibull, or uniform). It shows that that (i) Rtreat is
insensitive to the distributions studied, (ii) Rselect is insensitive to whether the true
distribution is lognormal, gamma, or Weibull, but (iii) for a uniform distribution Rselect may
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be lower (Scenarios 1 and 3) or higher (Scenarios 2 and 4) than for the other distributions.
Supplementary Table 5a shows that the hybrid design is insensitive to changes in prior
hyperparameter σ̃ = 8 to 14, the assumed common prior sd of log(αm,l), log(βm,l), and
log(λm) for all m = R, T and l = 1, 2. Supplementary Table 5b shows that the hybrid design is
insensitive to changes in the 95% prior interval for the γm,j’s varying from (0.9, 1.1) to (0.6,
1.4), although Rselect and Rtreat both decrease slightly with the width of this interval in
Scenario 5. This motivated our use of the 95% prior interval (0.8, 1.2). Supplementary Table
6 shows that Rselect is insensitive to c = 1, 2, or 3, and that Rtreat may increase or decrease
slightly with c depending on the scenario. Supplementary Table 7 shows that, as N is
increased from 48 to 360, both Rselect and Rtreat increase substantially.

We also evaluated the hybrid design for an extended version of the SCT trial, with 4 doses
and 3 schedules (12 regimes), obtained by interpolating the elicited priors and scenarios of
the original 6-regime design. The three doses of the original trial are mapped into the first,
third and fourth doses of the extended trial, with a new, second lowest dose corresponding to
d = 160 mg/m2 added. Elicited prior and scenario probabilities of the original first two doses
were interpolated to obtain values for the new dose. A new third schedule was obtained by
averaging the prior and scenario probabilities of the two original schedules. Results for this
12-regime setting are given in Supplementary Tables 8 – 12.

Supplementary Table 8a gives a hypothetical utility that places greater weight on quick
responses. Either for the 6 regime case (Supplementary Table 8b) or 12 regime case
(Supplementary Table 15), the hybrid design’s behavior for this different utility, compared
to the actual utility, has an equally high probability of correctly stopping the trial early in
Scenarios 7 and 8, and in Scenarios 1 – 6 is better in three cases and worse in three cases.
This is desirable, since otherwise there would be little point in using an elicited, subjective
utility as an objective function.

7 Discussion
We have proposed an adaptive Bayesian method for jointly optimizing schedule of
administration and dose in phase I-II trials based on event times for efficacy and toxicity.
We modeled schedules qualitatively because either of the two outcome events may occur
long after administration. This is very different from the additive hazard model, with a
component for each administration, used by Braun et al. (2007), who dealt with time to
toxicity occurring over a much shorter time frame. For regimes administered over a period
longer than a few days, our methodology could be extended to allow each patient’s initial
dose to be changed adaptively based on interim events or new data from other patients.

Our design uses a regime assignment algorithm that is a hybrid of a greedy algorithm and
adaptive randomization. Extensive simulations show that, for a maximum sample size of 72,
the proposed model and method provide a design that is reliable, safe, and robust, and that it
works well in the cases of either six or 12 regimes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Fitted utility surface for the times to response and toxicity in the multiple myeloma stem cell
transplantation trial. Black and red dots show elicited values above and below the fitted
surface, respectively.

Thall et al. Page 14

Biometrics. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thall et al. Page 15

Ta
bl

e 
1

U
til

iti
es

 f
or

 r
ec

ta
ng

le
s 

of
 Y

R
 =

 ti
m

e 
to

 r
es

po
ns

e 
an

d 
Y

T
 =

 ti
m

e 
to

 to
xi

ci
ty

 in
 th

e 
m

ul
tip

le
 m

ye
lo

m
a 

au
to

lo
go

us
 s

te
m

 c
el

l t
ra

ns
pl

an
ta

tio
n 

tr
ia

l. 
Fo

r 
ea

ch
 (

Y
R
,

Y
T
) 

re
ct

an
gl

e,
 th

e 
tw

o 
ta

bl
ed

 v
al

ue
s 

ar
e 

U
(e

)  =
 th

e 
el

ic
ite

d 
ut

ili
ty

 a
nd

 Û
 =

 th
e 

fi
tte

d 
pa

ra
m

et
ri

c 
fu

nc
tio

n 
ev

al
ua

te
d 

at
 th

e 
re

ct
an

gl
e’

s 
m

id
po

in
t.

Y
T
 =

 M
on

th
s 

to
 T

ox
ic

it
y

Y
R
 =

 M
on

th
s 

to
 R

es
po

ns
e

[0
, 1

)
[1

, 3
)

[3
, 6

)
[6

, 9
)

[9
, 1

2)

[9
, 1

2)
95

, 9
3.

9
88

, 8
6.

0
74

, 7
4.

5
64

, 6
2.

8
54

, 5
3.

1

[6
, 9

)
85

, 8
5.

3
76

, 7
7.

4
63

, 6
5.

8
53

, 5
4.

0
43

, 4
4.

3

[3
, 6

)
75

, 7
3.

5
64

, 6
5.

5
52

, 5
3.

8
42

, 4
1.

9
32

, 3
2.

1

[1
, 3

)
62

, 6
0.

2
52

, 5
2.

1
41

, 4
0.

3
31

, 2
8.

3
21

, 1
8.

4

[0
, 1

)
50

, 5
0.

3
40

, 4
2.

2
30

, 3
0.

2
20

, 1
8.

1
10

, 8
.1

Biometrics. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thall et al. Page 16

Ta
bl

e 
2

E
lic

ite
d 

pr
io

r 
m

ea
ns

 o
f 

F
R
(t

 | 
τ)

 a
nd

 F
T
 (

t |
 τ

) 
fo

r 
th

e 
au

to
lo

go
us

 s
te

m
 c

el
l t

ra
ns

pl
an

ta
tio

n 
tr

ia
l t

o 
op

tim
iz

e 
(s

ch
ed

ul
e,

 d
os

e)
 o

f 
m

el
ph

al
an

. F
or

 e
ac

h 
to

ta
l

do
se

 d
, t

he
 p

ri
or

 m
ea

ns
 f

or
 th

e 
re

gi
m

es
 τ

 =
 (

−
2,

 d
) 

an
d 
τ 

=
 (

(−
3,

 −
2)

, d
) 

w
er

e 
id

en
tic

al
.

D
ay

s 
of

 F
ol

lo
w

 u
p

P
ri

or
 M

ea
ns

 o
f 

F
R
(t

 | 
τ)

P
ri

or
 M

ea
ns

 o
f 

F
T
 (

t |
 τ

)

T
ot

al
 d

os
e 

of
 M

el
ph

al
an

 (
m

g/
m

2 )
T

ot
al

 d
os

e 
of

 M
el

ph
al

an
 (

m
g/

m
2 )

d 
= 

14
0

d 
= 

18
0

d 
= 

20
0

d 
= 

14
0

d 
= 

18
0

d 
= 

20
0

t =
 1

–
–

–
.0

1
.0

2
.0

3

t =
 3

–
–

–
.0

5
.0

7
.0

9

t =
 6

–
–

–
.1

5
.1

8
.2

0

t =
 1

0
–

–
–

.2
5

.3
0

.3
2

t =
 1

4
–

–
–

.3
0

.3
5

.4
0

t =
 2

8
–

–
–

.3
3

.3
8

.4
3

t =
 3

0
.0

5
.0

8
.1

0
–

–
–

t =
 9

0
.0

9
.1

1
.1

5
–

–
–

t =
 1

80
.1

3
.1

6
.1

9
.3

4
.3

9
.4

4

t =
 2

70
.1

6
.1

9
.2

4
–

–
–

t =
 3

60
.2

0
.2

5
.3

0
.3

5
.4

0
.4

5

Biometrics. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thall et al. Page 17

Ta
bl

e 
3

T
he

 m
ai

n 
si

m
ul

at
io

n 
re

su
lts

 u
si

ng
 th

e 
hy

br
id

 a
lg

or
ith

m
 w

ith
 s

am
pl

e 
si

ze
 7

2 
an

d 
co

ho
rt

 3
. T

he
 tr

ue
 ti

m
e 

di
st

ri
bu

tio
n 

is
 a

ss
um

ed
 to

 b
e 

lo
gn

or
m

al
.

Sc
en

ar
io

1-
D

ay
 S

ch
ed

ul
e

2-
D

ay
 S

ch
ed

ul
e

N
on

e
R

se
le

ct
R

tr
ea

t
D

os
e 

1
D

os
e 

2
D

os
e 

3
D

os
e 

1
D

os
e 

2
D

os
e 

3

1
ūtr

ue
(s

, d
)

52
.2

57
.5

62
.9

52
.2

57
.5

62
.9

%
 S

el
5

8
38

5
8

35
1

0.
82

# 
Pa

ts
11

.6
9.

8
14

.5
11

.6
9.

5
14

.4
0.

54

2
ūtr

ue
(s

, d
)

59
.0

53
.7

48
.1

59
.0

53
.7

48
.1

%
 S

el
39

7
4

39
6

5
1

0.
85

# 
Pa

ts
22

.6
8.

2
5.

0
22

.7
8.

2
4.

9
0.

75

3
ūtr

ue
(s

, d
)

53
.1

58
.4

63
.8

56
.8

62
.1

67
.6

%
 S

el
3

5
16

6
12

58
1

0.
81

# 
Pa

ts
11

.1
9.

1
12

.9
11

.6
10

.5
16

.5
0.

54

4
ūtr

ue
(s

, d
)

58
.6

54
.6

49
.7

55
.4

51
.4

46
.5

%
 S

el
54

12
5

18
5

5
1

0.
80

# 
Pa

ts
23

.1
9.

0
5.

1
21

.0
8.

3
5.

1
0.

69

5
ūtr

ue
(s

, d
)

52
.9

63
.6

50
.2

52
.9

63
.6

50
.2

%
 S

el
8

34
6

9
36

6
1

0.
74

# 
Pa

ts
13

.0
16

.7
0.

5
12

.8
16

.7
6.

2
0.

54

6
ūtr

ue
(s

, d
)

53
.5

48
.1

56
.5

53
.5

48
.1

56
.5

%
 S

el
21

4
23

21
4

25
2

0.
76

# 
Pa

ts
17

.2
7.

3
11

.0
17

.2
7.

2
11

.2
0.

62

7
ūtr

ue
(s

, d
)

35
.3

34
.2

33
.0

35
.3

34
.2

33
.0

%
 S

el
0

0
0

0
0

0
10

0
0.

87

# 
Pa

ts
5.

0
1.

6
0.

5
5.

0
1.

6
0.

5
0.

81

8
ūtr

ue
(s

, d
)

39
.9

37
.8

35
.6

39
.9

37
.8

35
.6

%
 S

el
1

0
1

1
0

1
96

0.
54

# 
Pa

ts
5.

8
4.

0
4.

5
5.

8
4.

0
4.

5
0.

54

Biometrics. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thall et al. Page 18

Ta
bl

e 
4

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

th
e 

hy
br

id
 d

es
ig

n,
 g

re
ed

y 
de

si
gn

, a
nd

 n
on

-a
da

pt
iv

e 
ba

la
nc

ed
 a

llo
ca

tio
n,

 f
or

 th
e 

(3
-d

os
e,

 2
-s

ch
ed

ul
e)

 tr
ia

l. 
T

he
 “

ba
la

nc
ed

” 
m

et
ho

d
as

si
gn

s 
12

 p
at

ie
nt

s 
to

 e
ac

h 
(s

ch
ed

ul
e,

 d
os

e)
 p

ai
r 

an
d 

do
es

 o
nl

y 
on

e 
po

st
er

io
r 

co
m

pu
ta

tio
n,

 a
t t

he
 e

nd
 o

f 
th

e 
tr

ia
l. 

T
he

 n
um

be
r 

in
 p

ar
en

th
es

es
 a

ft
er

 e
ac

h
R

se
le

ct
 is

 th
e 

pe
rc

en
ta

ge
 o

f 
tim

es
 th

e 
tr

ia
l i

s 
st

op
pe

d 
w

ith
 n

o 
(s

ch
ed

ul
e,

 d
os

e)
 s

el
ec

te
d.

 B
ec

au
se

 s
ce

na
ri

os
 7

 (
to

o 
to

xi
c)

 a
nd

 8
 (

to
o 

in
ef

fi
ca

ci
ou

s)
 h

av
e 

no
ac

ce
pt

ab
le

 tr
ea

tm
en

ts
, t

he
 R

se
le

ct
 v

al
ue

s 
ar

e 
le

ss
 r

el
ev

an
t a

nd
 th

us
 a

re
 s

ho
w

n 
w

ith
 a

 g
ra

y 
ba

ck
gr

ou
nd

.

Sc
en

ar
io

H
yb

ri
d

G
re

ed
y

B
al

an
ce

d

R
se

le
ct

R
tr

ea
t

R
se

le
ct

R
tr

ea
t

R
se

le
ct

R
tr

ea
t

1
0.

82
 (

1)
0.

54
0.

78
 (

1)
0.

45
0.

85
 (

0)
0.

50

2
0.

85
 (

1)
0.

75
0.

85
 (

1)
0.

84
0.

85
 (

0)
0.

51

3
0.

81
 (

1)
0.

54
0.

78
 (

1)
0.

48
0.

83
 (

0)
0.

50

4
0.

80
 (

1)
0.

69
0.

80
 (

0)
0.

77
0.

80
 (

0)
0.

51

5
0.

74
 (

1)
0.

54
0.

65
 (

1)
0.

48
0.

77
 (

0)
0.

40

6
0.

76
 (

2)
0.

62
0.

75
 (

3)
0.

62
0.

77
 (

0)
0.

55

7
0.

87
 (

10
0)

0.
81

1.
00

 (
10

0)
0.

83
0.

94
 (

98
)

0.
50

8
0.

54
 (

96
)

0.
54

0.
54

 (
96

)
0.

59
0.

35
 (

72
)

0.
50

Biometrics. Author manuscript; available in PMC 2014 September 01.


