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Abstract
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning
were restricted to studying human behavior and non-human neural systems. However, recent
advances in neuroimaging technology have enabled the concurrent study of human behavior and
neural activity. We propose that the integration of behavioral response with brain activity provides
a powerful method of investigating the process through which internal representations are formed
or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning
either (1) focus on outcome rather than process or (2) are built on the untested assumption that
learning unfolds uniformly over time. We discuss here various challenges faced by the field and
highlight studies that have begun to address them. In doing so, we aim to encourage more research
that examines the process of learning by considering the interrelation of behavioral measures and
fMRI recording during learning.
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1. Introduction
Relatively recent advances in neuroimaging technology, specifically functional magnetic
resonance imaging (fMRI), have made possible the large-scale study of neural systems
underlying learning in the human brain. Learning, or the experience-based process by which
we form representations of the world around us, is a topic particularly suited to investigation
using neuroimaging. Crucially, fMRI has the potential to reveal fluctuations in neural
activity as learning unfolds over time, thereby allowing researchers to tap into the process
through which internal representations undergo change.

Despite the natural fit between fMRI and the study of learning, a critical review of the
relevant literature reveals that studies tend to address the question of which brain areas
subserve retrieval or recognition of already learned items, not the process which generates
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changes in representation in the first place. While an outcome-focused approach is certainly
valuable and germane to the study of learning, we suggest that the time is ripe for the field to
focus instead on the process of acquisition rather than its outcomes. In this review, we will
discuss some corresponding challenges, both methodological and theoretical in nature, and
offer suggestions for improved experimental design and analysis. Specifically, we will
consider the benefits of incorporating on-line behavioral testing and the use of
computational models to predict the time-course of learning. Along these lines, we will
discuss those studies that have begun to surmount these challenges to begin to uncover the
neural systems engaged over the time-course of learning. This review also explores the
critical yet open question of how to interpret the neural changes that occur before behavioral
evidence of learning emerges. We begin by considering the unique niche of fMRI in the
study of learning and the ways in which this methodology has already shaped and been
shaped by the field of cognitive neuroscience.

1.1 What fMRI has Already Offered the Study of Learning
For over a century, there has been a voluminous and fruitful tradition of research aimed at
the general study of learning in both animals and humans (Rescorla, 1988; Shanks & St.
John, 1994; Skinner, 1938; Thorndike, 1931; Tolman, 1951). Until very recently, most of
our understanding of this process has relied on studies of either human behavior (e.g.,
through learning tasks and behavioral manipulations) or non-human neural systems (e.g.,
through electrophysiological recordings). While research on the neural mechanisms of
human learning has benefitted from examining the effects of brain lesions, this case study
approach has limited power in revealing the neural systems supporting cognitive
mechanisms (Zurif, Swinney & Fodor, 1991; but see also Caramazza & Badecker, 1991).

While our review certainly intersects with the study of learning in general, we will focus on
the interrelated and overlapping research areas of (1) incidental learning, or acquisition in
the absence of specific intention to learn; (2) statistical learning, or acquisition of structural
representations via distributional regularities in sensory input; and (3) sequence learning, or
acquisition of sequential information across perceptual modalities using both motor
measures (motor sequence learning) and measures not specifically focused on motor
responses1.

In the past decade or so, the emerging use of neuroimaging methods, particularly fMRI, has
provided the unique opportunity to study the relationship between neural systems and
behavior in human participants on a large scale. While other neuroimaging modalities such
as electroencephalography (EEG) and positron emission tomography (PET) have been
employed to study learning, fMRI offers a combination of unambiguous spatial location of
signals (as opposed to EEG), while being less invasive and safer than PET with high
functional and anatomical image resolution (not available using either EEG or PET). The
significant technological advances of this method have resulted in a veritable explosion in
fMRI studies of human learning.

In addition to opening up the door to the concurrent study of behavior and neural activity in
humans, fMRI allows for the (virtually) simultaneous recording of activity across the entire
brain and, for some tasks, across the entire time-course of learning. Indeed, the use of fMRI
has already enabled investigations into learning that had been tortuous or impossible when

1The majority of studies falling into one or more of these three categories purportedly involve implicit learning or learning without
conscious awareness. While the distinction between explicit and implicit forms of learning (both neurally and behaviorally) remains a
major area of active debate, we elect not to make any strong claim as to the extent to which the learning studies covered here are
wholly implicit or wholly explicit. In order to focus on the broader points laid out above, we will neither weigh in on this debate nor
discuss any differences between the studies reviewed along this dimension.
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using historically employed methods. For example, the theory that the basal ganglia and
hippocampus comprise multiple, dissociable learning and memory systems has been
investigated and supported using lesion studies in both human and non-human animals and
electrophysiology (see Eichenbaum & Cohen, 2001 for an excellent historical review).
However, the ability to record activity across the entire human brain with fMRI has enabled
the in vivo investigation of the activity of both of these systems, allowing researchers to ask
questions such as, are the basal ganglia and hippocampus simultaneously active during a
single learning task (Poldrack, Prabhakaran, Seger, & Gabrieli, 1999)? If not, then do they
directly inhibit each other (Poldrack et al., 2001)? Are there some tasks where these systems
complement each other (Shohamy & Wagner, 2008)? While the answers to such questions
remain elusive, this example serves to illustrate the way in which the goal-directed use of
fMRI has fueled productive discussion and advanced our understanding of learning. Thus,
fMRI has already provided new avenues to consider the interrelationship between functional
neural activity and human learning.

While fMRI continues to be a popular and powerful method for answering a variety of
empirical questions, no single method can fully delineate a system as complex as the human
brain. FMRI is no exception, in part because it is an indirect measure of the neural activity in
the brain that results from changes in blood oxygenation (the blood-oxygen-level-dependent
or BOLD response). It has been well established that the BOLD response can be stimulus-
evoked (e.g., Belliveau et al., 1991; Ogawa et al., 1992) and, by extension, sensitive to
functional neural activity. However, the specific aspects of the neural signal producing the
BOLD response are still not entirely clear. Logothetis and Wandell (2004) propose that the
BOLD response best corresponds to local field potentials (LFPs) rather than spiking activity
directly. Of course, these two aspects of the neural signal are interrelated, but LFPs and
spiking pick up on separable aspects of the neural signal; LFPs reflect sub-threshold
integrative processes or computations on the input of neural signals, while spiking reflects
the output of this computation. If the BOLD response does reflect LFPs more directly than
spiking, fMRI can then be considered complementary to the spiking activity typically
gathered using electrophysiological methods. It therefore follows that fMRI and
electrophysiology can be seen as distinct but highly compatible methods capable of probing
neural computations.

1.2 The Current Use of FMRI to Study Learning
Given the current impact and future potential of fMRI as a method of investigating human
learning, it is perhaps surprising that a significant number of fMRI studies dealing with this
topic have elected to focus on the outcome of learning (Forkstam, Hagoort, Fernandez,
Ingvar, & Petersson, 2006; Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004;
Petersson, Folia, & Hagoort, 2012; Petersson, Forkstam, & Ingvar, 2004; Seger,
Prabhakaran, Poldrack, & Gabrieli, 2000; Skosnik et al., 2002; Yang & Li, 2012). That is,
fMRI recordings are typically collected during tests of already acquired information, not
during the initial processing of structured stimuli (henceforth referred to as the exposure/
acquisition phase). In such cases, the extent of learning is often measured using post-
acquisition tasks that typically involve novelty detection and/or accuracy judgments.
Implicit in this approach is that learning is a relatively uniform, time-invariant process that
can be adequately examined using post-acquisition outcome measures. Importantly, it has
been largely unstudied whether the neural systems involved in recognition or retrieval
overlap with the systems involved in initial acquisition. Thus, it is best to be cautious in
interpreting activation during posttest as reflecting learning related activity. There is,
however, emerging but indirect evidence that outcome measures and novelty detection may
tap into systems that are not involved in acquisition. Thus, the widespread use of these
methods to study the neural bases of learning may actually tap into different, if related,
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cognitive processes. In a critical review below, we will compare and contrast studies
examining neural activity after acquisition and those examining neural activity during
acquisition.

Given the challenges arising from scanning during acquisition, we consider a number of
different ways in which researchers can leverage well-designed behavioral measures to tap
into changes in neural signals that correlate with the time-course of learning. Finally, we
will consider how to investigate neural changes that necessarily must occur during
acquisition but before any behavioral evidence of learning can be obtained.

2. Processes and Stages of Learning
While learning is often referred to as a single cognitive process, it undoubtedly involves
several neural mechanisms (e.g., those associated with neural plasticity such as long term
potentiation vs. depression) encompassing several neural regions (e.g., the hippocampus,
basal ganglia, frontal cortex). Moreover, there might be multiple, separable neural or
psychological processes that are engaged as learning, defined in the broadest sense, takes
place. It remains an open question which one or combination of these processes constitutes
“learning.” Here we present a simple, generic architecture of the basic cognitive processes
that are likely involved in learning (Figure 2). Our goal is not to provide a detailed or
unifying theory of learning, but rather to illustrate the immense complexity and
interconnectedness of the cognitive components involved in learning tasks, and the
challenges involved in isolating, and subsequently mapping each of these component
processes to specific brain areas, particularly when time-course data are not available.

As alluded to above, there are likely a number of dissociable processes that are necessary for
learning to take place. For example, many tasks might first involve detection of structure or
pattern extraction from the sensory input (e.g., by drawing attention to relevant aspects of
the input or calculating statistical or associative information). Then, subsequent processes
might come on-line, allowing participants to capitalize on these initial processes to change
behavior. These latter processes have been conceptualized in a number of ways, but in
general could be framed as model building. For example, after extracting a component or
feature of the pattern from sensory input, a participant might rely on prediction and
prediction error to support additional pattern extraction and behavioral change (Pavlov,
1927; Rescorla & Wagner, 1972; Schultz, Dayan, & Montague, 1997; Thorndike, 1911;
Waelti, Dickinson, & Schultz, 2001). Alternatively, in a Bayesian framework, a participant
might search for latent causes to explain the pattern of data and engage in belief updating
when the input fails to match their current model (Gerschman & Niv, 2010). In both of these
cases, a participant must build some knowledge about the structure of the environment (e.g.,
a prediction or representation of an association, a latent cause or structure in the
environment) using processes that then likely feedback to the pattern extraction mechanism
(e.g., via prediction error or belief updating). Finally, a retrieval or recognition process is
likely necessary for participants to demonstrate knowledge acquisition and produce an
outcome measure via some decision process.

While it is beyond the scope of this review to provide a unifying account of the (potentially
numerous) processes necessary for learning, Figure 2 presents a generic architecture
containing four essential components: 1) sensory or input encoding which involves
transmission of sensory input to the cortex; 2) pattern extraction, 3) model building and 4)
retrieval/recognition. These processes likely all have different time-courses of operation
during a given learning task. For example, processes involved in pattern extraction are likely
engaged quite early in learning but then taper off, while model building might be engaged
for the majority of the task. Model building processes might interact in large part with
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pattern extraction processes early in learning and then more directly with retrieval or
recognition processes later in learning. The time-course of involvement of each of these
systems is an open empirical question, but it is likely that these processes are engaged at
different times during learning.

While all of these processes are likely necessary for a participant to ultimately display
behavioral evidence of learning in a posttest, it is unclear whether a single process in this
architecture independently reflects “learning.” To illustrate with an extreme example, while
vision is necessary for visual statistical learning, not all aspects of the visual pathway are
considered part of the learning process. That is, while the ability to perceive visual stimuli is
necessary, it is not sufficient for learning in this task. However, in the generic architecture of
Figure 2, pattern extraction and model building are likely the processes that are most directly
associated with learning, compared to input encoding on one end of the architecture and
retrieval on the other. We return to these points in Section 5 of the paper.

In sum, we will refer to all four of these processes in general terms in order to simplify the
current discussion, but they are not meant to indicate a particular theoretical commitment.
Moreover, it is important to note that the studies discussed throughout this review likely tap
into more than one of the processes outlined in this learning framework.

3. Current Methods Aimed at Capturing Learning Using fMRI
In this section, we consider some standard methods of studying learning using fMRI and
examine their effectiveness at capturing the process of learning. In general, fMRI studies of
learning take one of three forms: (1) functional imaging data are collected during the
entirety of the exposure phase; (2) the entirety of the exposure phase takes place outside the
scanner and imaging data are collected only at test; (3) some pre-exposure or training takes
place outside the scanner and imaging data are collected for only a portion of the exposure
phase. Each of these design types has the potential to inform a step in the progression from
acquisition to application/retrieval of knowledge for recognition (see Figure 2), but we argue
here that the latter two designs may neither directly nor fully reveal the neural substrates
underlying learning. For example, it is possible that scanning after the exposure phase or
when the structure of the task has already been learned may not tap into areas supporting
learning (e.g., pattern extraction and model building). Rather, these post-acquisition
assessments may reflect the outcome of a recognition or retrieval process. As a result,
studies employing these designs may have unintended and often unrecognized limitations on
the conclusions that can be drawn from them with regard to understanding the processes
underlying learning, at least until the assumptions behind these conclusions have been
investigated directly.

We begin by exploring a body of literature that examines learning by focusing on outcome
measures (i.e., the relationship between behavioral performance and activation during a
posttest). We examine neural evidence supporting distinct learning and knowledge
application systems and probe the potential overlap between expectancy violation on
outcome measures and the formation of predictions during learning (see Textbox 2). We
then consider studies that acquire imaging data during a portion of the exposure phase but
also involve some learning outside of the scanner (study type 3 above). The implications of
employing a design that confines fMRI data collection to only a part of the acquisition phase
are discussed. In a subsequent section, we consider designs that focus exclusively on the
complete exposure phase, the period of time in which the neural changes associated with
learning are most likely to be observed.
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Textbox 2

The Relationship between Expectancy Violation and Learning

One possible implementation of the architecture illustrated in Fig. 2 is that separable
neural regions are active during exposure and outcome (i.e., post-test) phases. Activation
in these distinct regions could reflect two types of learning systems, with the system
engaged during test being responsive to negative evidence present in incorrect or
inconsistent stimuli (e.g., the partwords or nonwords from McNealy et al., 2006). While
McNealy et al. (2006) specifically observed greater activation for words relative to
partwords and nonwords in frontal cortex (i.e., greater activation for test items consistent
with the syllable statistics from the exposure phase), this result stands in contrast to a
robust finding that emerges from the AGL literature – namely, the involvement of
specific frontal areas in response to the violation of previously learned grammatical rules
at test (e.g., Forkstam et al., 2006; Petersson et al., 2004; Petersson et al., 2012). Along
these lines, Petersson et al. (2004) proposed that prefrontal activation during the
classification of ungrammatical strings could be framed in terms of a model that learns
through negative evidence (i.e., the difference between input and prediction; see Elman,
1990 and Haykin, 1998). The violation-based approach to pattern/rule acquisition has
also been applied to the processing of probabilistic pure-tone sequences (Furl et al.,
2011). MEG results showed that both learning and post-test classification were supported
by error-driven activation in the temporoparietal junction (TPJ), though at different
stages in time (200ms and 150 ms, respectively). That is, violations of predictions led to
sudden increases in neural activity in this region. These findings suggest a possible
convergence between areas involved in learning (the acquisition phase) and areas
activated by expectancy violations (the testing phase), albeit with different neural
systems likely supporting (1) initial learning when negative evidence is absent and (2)
learning when negative evidence (via feedback) is present.

However, this possibility must contend with evidence showing similar patterns of
activation in change-detection tasks that are not learning related. Zevin, Yang, Skipper &
McCandliss (2010) argue that the TPJ, the region implicated in learning from the
violation of expectations in Furl et al., (2011), is actually a domain-general change-
detection region. Indeed, Zevin et al., (2010) obtained greater activity in the TPJ when
simply contrasting repeating vs. alternating syllable conditions in participants engaged in
a passive listening task. TPJ activation was also modulated by speaker identity shifts,
providing further evidence that this region supports domain-general change detection
outside the realm of learning. Prior work has also shown temporal cortex involvement in
similar tasks involving the detection of deviant tones (i.e., those mismatched in
frequency) in a lengthy stimulus train (Opitz, Rinne, Mecklinger, von Cramon, &
Schröger, 2002). The key point here is that the learning of any structured sequence of
elements (e.g., abbccc) is typically assessed by presenting test sequences that violate
some aspect of that structure. If the violation involves a novel element (e.g., abbccd) then
neural activations may reflect both a response to the low-level change (i.e., the novelty of
element-d) and a response to the higher-level change (i.e., violation of the 1-2-3 pattern).
Importantly, the former change does not necessarily involve any learning (only novelty
detection), while the latter clearly involves the formation (and then violation) of a
pattern. While these studies cannot rule out the possibility that change detection supports,
rather than results from, learning, the relationship between these related processes
remains an open question – one with implications for the study of learning using
functional neuroimaging.
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3.1 Outcome vs. Process: Do the Neural Systems Engaged at Test Support Learning?
As introduced in Section 1.2, many fMRI studies of pattern learning within the AGL
literature examine the neural response at test rather than during exposure/acquisition
(Forkstam et al., 2006; Lieberman et al., 2004; Petersson et al., 2012; Petersson et al., 2004;
Seger et al., 2000; Skosnik et al., 2002; Yang & Li, 2012). Classic AGL study-test designs
begin with exposure to a structured set of artificial grammar strings. During the presentation
of the strings, participants may be asked to perform a cover task such as reproducing it from
memory after a brief interval of time (Lieberman et al., 2004). Following the exposure
phase, subjects typically participate in a testing phase while undergoing an fMRI scan.
During this post-acquisition test phase, subjects often perform a behavioral task (e.g.,
recognition, familiarity judgment, grammaticality rating). Standardly, fMRI contrast
analyses are then performed: activations for grammatical strings relative to ungrammatical
strings are compared in addition to activations for the familiarity judgment task relative to a
recognition control task (e.g., Seger et al., 2000).

This task design and analysis enables the investigation of neural substrates underlying
recognition or retrieval. However, it is yet unclear whether or not these substrates
additionally support the process of learning. To be clear, we are not claiming that the
investigation of learning outcomes is without independent merit. Indeed, it is crucial that we
examine how the human brain taps into acquired representations during test. We simply
argue here that an important avenue of research involves validating the assumption that the
process of learning and the result of learning are essentially interchangeable. This step is
necessary before the regions involved in discrimination at test can be considered to also
reflect the same processes involved in the initial learning.

In fact, some evidence suggests that brain areas engaged during pattern learning are distinct
from those areas engaged at test. In reviewing the diverse set of paradigms found in studies
of learning, it is apparent that the results of studies focusing on the process of acquisition
diverge from the results of studies focusing on the outcomes of acquisition. Dolan &
Fletcher (1999), for example, found that encoding during exposure to an artificial grammar
relied on anterior hippocampus, but retrieval of learned sequences relied on posterior
hippocampal areas2. Using a word segmentation task in the statistical learning framework,
McNealy, Mazziota and Dapretto (2006, see also 2010) provide an additional opportunity to
compare neural activation underlying both phases, as the authors scanned during the
exposure phase as well as at posttest. After exposure to a continuous stream of both
statistically regular and random syllables, a subset of participants was presented with shorter
sequences that varied in their syllable-to-syllable predictability. Increases in activation were
observed throughout the exposure phase in bilateral temporal cortices and left-lateralized
parietal areas, yet contrasting activity at test for structured (words) and unstructured
sequences (partwords and nonwords) revealed prefrontal activation. Thus, results from
McNealy et al. (2006) suggest that neural activity involved in the acquisition and outcome
phases appear to be at least partially separable. While, it is difficult to determine the full
extent of overlap given the paucity of studies that directly compare the learning process and
its outcomes, there is little evidence that the neural regions involved in recognition or
outcome of learning are the same regions involved in the initial acquisition.

2See Ross, Brown, and Stern (2009) for evidence that both learning and retrieval of sequences of faces rely on the medial temporal
lobe, but that the hippocampus shows greater activation during retrieval. While this suggests that knowledge acquisition and
knowledge application do engage some overlapping areas, data from these and other learning studies indicate that neural involvement
for each task is not identical.
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3.2 Considerations for Early vs. Late Stages in the Process of Learning
Unlike AGL tasks, which often conduct the full exposure phase outside the scanner, many
motor and perceptual sequence learning studies present a portion of the exposure phase prior
to or between fMRI scans (Daniel & Pollmann, 2012; Gheysen, Van Opstal, Roggeman,
Van Waelvelde, & Fias, 2011; van der Graaf, Maguire, Leenders, & de Jong, 2006;
Willingham, Salidis, & Gabrieli, 2002). Though this experimental design clearly involves
scanning during some part of acquisition, it may only reveal patterns of activation involved
in later learning stages, especially in the case of a pre-exposure phase. Notably, there is
evidence that initial acquisition of a sequence (i.e., in the first stages of exposure) engages
different neural regions than the processing of the same sequence after a period of short-
term exposure (i.e., later in the exposure phase) and long-term consolidation (i.e., after
sleep). Shadmehr and Holcomb (1997), for example, found that though behavioral
performance on a motor sequence task was maintained 6 hours after initial practice, early
exposure relied more on prefrontal cortex while later exposure involved more posterior
regions such as parietal and cerebellar cortex. Across the literature, activation patterns have
been shown to differ in terms of spatial extent (such as increases in motor cortex activation
as shown by Karni et al., 1995) and/or anatomical location. Doyon et al. (2009) contrasted
performance on a commonly practiced stitch sequence vs. a novel stitch sequence in a group
of expert knitters (experience range 14–58 years). Expert knitters showed predicted patterns
of activation in the striatum and motor cortex when performing the standard stitch but the
cerebellum was engaged when completing the novel stitch pattern. Furthermore, Seger and
Cincotta (2006) examined trial-by-trial pattern learning in the visual modality, comparing
stages they termed “rule learning” (i.e., early learning that involved many mistakes) and
“rule application” (i.e., when performance indicated a participant had ceased to make
errors). They demonstrated that the early process of learning relied on a widespread network
including the cerebellum, occipito parietal areas, prefrontal areas, and the striatum. In
contrast, the ability to apply learned knowledge later in the exposure phase3 was associated
with activation in right hippocampus and bilateral insula. Findings such as these suggest that
different stages of learning engage different brain regions and provide evidence against the
implicit assumption that neural regions revealed in latter stages of learning or during post-
test tasks may be indicative of the neural regions involved in acquisition of these
representations or the process of learning.

4. The Importance of Time-course Information in Learning
In this section we focus on studies that have collected functional imaging data during
exposure, but lacked (or did not capitalize on) behavioral indications of the time-course of
learning. We also offer some possible solutions to methodological challenges (i.e., between-
subject variability) associated with examining the time-course of learning. In Textbox 3, we
briefly place this discussion in historical context.

Textbox 3

Brief Historical Perspective on the Study of Individual and Developmental
Variability in Implicit Learning

There has been little study of individual variability and developmental change in implicit
learning tasks. In fact, it has been argued that this type of learning is exceptionally devoid
of such variability. In an effort to examine individual differences in implicit learning,
Reber, Walkenfeld, and Hernstadt (1991) showed that the distribution of performance

3They did not include a clearly indicated posttest phase but rather elected to divide one acquisition phase into “learning” and
“application” stages based on trial-by-trial accuracy data.
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scores on an explicit series-judgment task had significantly greater variance than scores
on an implicit AGL task. Moreover, they found no significant correlation between
intelligence quotient and artificial grammar learning ability. These results were
interpreted as lending support to the hypothesis that,

…implicit processes, owing to their phylogenetic antiquity, will show less
individual-to-individual variation than comparable explicit processes and, given
the nature of standard psychometric techniques for measuring intelligence, will
show lower correlations with IQ (p. 894).

This historical claim that implicit forms of learning rely on a system that is evolutionarily
older and therefore highly consistent across the population may have had the unintended
consequence of shaping the study of learning using modern imaging methods. Though
many of the issues we bring up here are not specific to implicit AGL studies, the
discounting of individual learning differences appears to recur across a variety of study
types. While performance on largely implicit learning tasks might be less variable across
subjects, participants may still show meaningful differences in learning rates. Indeed,
there has been some suggestion that individual differences might actually be heightened
in neuroimaging studies of learning due to the stress-inducing nature of the scanner
environment (see Muehlhan, Lueken, Wittchen, & Kirschbaum, 2011). Embracing these
differences may be beneficial to revealing the complex neural systems that support the
learning process, enabling researchers to separate early learning, later learning, and the
retrieval of pattern or rule knowledge. Rather than impeding the fMRI study of learning,
we propose that individual differences in the accuracy and time-course of learning may
actually provide uniquely valuable insight into its process.

Related to the historical claim that implicit learning arose from an evolutionarily
primitive neural substrate and has relatively little variability across subjects is the claim
that implicit learning is developmentally invariant (i.e., available from birth without a
marked developmental improvement, Reber, 1993). While such a view has resulted in an
academic disinterest in studying how differences and changes in implicit learning could
relate to the development of learning systems, this claim has limited empirical support.
There have been only a small number of studies that have specifically compared implicit
learning abilities over developmental time and even fewer that have compared the neural
systems engaged during implicit learning through development. The few studies that
have been conducted to this end argue against a developmentally invariant account of
implicit learning. Notably, Thomas et al., (2004) had children (7 to 11 year olds) and
adults perform a SRT task in the scanner. Age-related differences were found in
numerous cortical regions including the putamen and hippocampus. Taken together with
studies comparing behavioral outcomes of implicit learning across development (see
review in Forkstam and Petersson, 2005), there is an emerging view that implicit learning
has a substantial developmental trajectory, arguing against a commonly assumed
developmental invariance model.

In sum, there are historical roots to the view that implicit learning is an evolutionarily
primitive learning system that is relatively homogenous across individuals and invariant
over development. This view, we argue, has dissuaded researchers from using individual
differences and changes in implicit learning across development to undercover the neural
systems involved in learning. However, these claims have relatively little empirical
support and indeed, there are differences in implicit learning outcomes and their neural
substrates within and between individuals.
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4.1 Collecting Temporally Sensitive Measures of Learning throughout Exposure
As made clear in the previous description of McNealy et al. (2006), researchers have
recently begun to examine the brain areas specifically subserving statistical learning during
passive viewing/listening tasks (see also Cunillera et al., 2009; Turk-Browne, Scholl, Chun,
& Johnson, 2009). However, the results of such studies can be challenging to interpret
without (1) strong behavioral evidence of learning at test (i.e., participants showing that they
could consistently discriminate statistically structured from unstructured sequences) and (2)
behavioral measures across the time-course of learning (but see Turk-Browne, Scholl,
Johnson, & Chun, 2010). In this section, we review evidence that points to the importance of
the inclusion of temporally-sensitive learning measures throughout the acquisition phase.

A key feature of our perspective is that correlating outcome scores with activation patterns
during learning can only provide, at best, an approximate answer to the question of which
brain areas underlie the learning process. To illustrate this point conceptually, we present
trajectories from data gathered in a replication of the learning paradigm used by Shohamy
and Wagner (2008). In this task, participants are presented with two scenes (out of 32
possible scenes) and a face (out of 32 possible faces) and asked to determine which of the
two scenes goes with the face. Initially, there is no basis to answer this question, and
participants must render a guess. But eventually, through exposure to these 3-element trials,
participants learn which particular scene is associated with a given face. Their selection
accuracy is collected on each trial, thereby providing a running estimate of each
participant’s learning trajectory. In a sample of 17 participants, we found clear examples
where the learning accuracy in the final block does not represent that participant’s learning
trajectory. Fig. 3 presents three of the 17 learning trajectories. Two participants (both in
blue) have similar outcomes (note that the error bars in the final block overlap) but divergent
learning trajectories. Specifically, the participant in dark blue shows a greater increase in
performance in the second block, and their performance appears to plateau. This participant
might be in the latter stages of learning after having reached their maximum performance.
The participant represented in light blue has a lower level of performance in the first three
blocks and exhibits an increase in performance in the last block. This person may be in the
earlier stages of learning but with an overall slower trajectory. However, these differences in
rate of learning are not well represented by their performance in the final block. Comparing
the participants presented in dark blue and pink, we see that they have nearly identical
learning trajectories in the first three blocks but diverge in the final block (note that the error
bars in the final block are not overlapping). Thus, it is clear that individual learning
trajectories and outcomes of learning vary such that the final learning outcome does not well
represent these different learning trajectories. If we used outcome measures as a proxy for
learning trajectories, these participants would be treated quite differently (e.g., a strong vs.
intermediate learner) despite the striking similarity of their trajectories for the majority of
the task. These are examples where a simple outcome measure lacking any temporal
information would not tease apart participants’ actual learning trajectories. The correlation
of outcome scores with activation patterns during learning is a common method employed in
the use of fMRI to study learning. However, in most cases, a single outcome measure does
not neatly represent the learning trajectories of individual participants and thus, at best,
using outcome measures can only act as an approximation for a particular point in the
process of learning.

Another common analysis method involves contrasting different epochs within the exposure
phase (e.g., Schendan, Searl, Melrose, & Stern, 2003). Contrast analyses are performed for
each run during the acquisition phase relative to the other runs, presumably with the goal of
discriminating between early, mid and late stages in learning. However, contrasting arbitrary
chunks of exposure might mask important differences in individual learning rates. A
comparison of the first and last runs is a weak test if one subject learns best during the first
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run and another learns best during the last. Crucially, time-point contrast analyses rest on the
assumption that participants share common learning trajectories. Using ERPs, Alba,
Katahira and Okanoya (2008) present evidence that this assumption can be unwarranted,
finding that variations in learning outcomes in a statistical learning task were correlated with
temporal variations in changes in the neural signal. They examined the neural changes
associated with statistical learning across three sessions of training. Overall test performance
was significantly above chance after training, but participants exhibited high, medium, and
low levels of learning in the post-test. The three groups demonstrated qualitatively different
changes in neural activity, including an increase in the N400 component in session 1 for
high learners and session 2 for medium learners. Moreover, low learners, despite achieving
above chance behavioral performance, did not show evidence of the same, qualitative neural
changes in any of the three sessions. This study provides evidence that differences in
learning outcomes map onto different time-courses of neural change and highlights the
significant degree of inter- and intra-subject variation present across the acquisition phase,
which can be related to variability in patterns of neural activity.

Generally, we see that taking a single outcome measure of learning as representative of the
entire time-course of learning or assuming that all participants learn at the same rate (e.g., by
using an average learning trajectory) is at best introducing substantial noise into the resulting
analyses, and at worst producing results that do not reflect learning but other cognitive
processes. There are a number of methods that can be employed to incorporate time-course
information into fMRI analyses to circumvent this problem, thereby more completely
capturing the neural systems underlying the process of learning. One method would be to
employ the average learning time-course, calculated across all participants, and to use this
change in behavior to uncover correlated neural changes representative of the entire group.
However, while employing an average time-course of learning could prove beneficial, we
argue that it may fail to resolve the discrepancy between an individual’s performance on an
outcome measure and their learning time-course. Thus, the remainder of this section will
discuss a complementary approach: applying individual behavioral measures of learning
(i.e., as regressors at the single subject level) to uncover areas of the brain that are related to
learning across all participants (i.e., results at the group level). The logic of this individual
differences approach lies in the fact that it provides a more fine-grained indicator of changes
in general learning systems active across a population. Moreover, it offers greater fidelity
than 1) an average time-course and 2) a simple group contrast of high-performing vs. low-
performing learners based on a simple outcome measure. It is important to note that this
approach rests on the assumption that differences in learning across participants are not
simply a result of task-irrelevant processes or noise but reflect important differences in the
engagement of relevant learning systems.

Intermittent testing provides one possible method for exploiting individual variation across
subjects to uncover learning-related neural changes across participants. Ideally, one would
want to gather trial-by-trial accuracy or reaction time data, but this approach cannot be
applied to certain experimental designs (e.g. those involving the presentation of continuous
auditory stimuli as in a word segmentation task). Intermittent testing provides useful
“snapshots” of the extent of learning (i.e., the current output of learning) throughout the
entire exposure phase. For example, Karuza et al. (2013) made use of intermittent testing
when collecting functional imaging data across the course of four separate exposure phases.
The exposure phases consisted of streams of continuous syllables in which the primary
statistical cues to word boundaries were the non-adjacent dependencies between consonants
(Newport & Aslin, 2004). The extent to which participants had successfully segmented the
speech stream was assessed after each of the four, 2-min exposure phases. Learning
achieved on each test was quantified as the difference between word and partword ratings
and then the time-course in learning was determined by comparing the word-partword
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difference score form one test to the next (a “delta score”). Such an approach was intended
to capture the individualized learning trajectories of subjects over the course of the four
exposure phases. Figure 4 presents the change in word-partword ratings over time, thus
illustrating inter-subject variability in learning trajectories. While some participants, (e.g.,
the trend line highlighted in pink) showed large fluctuations in performance across the 4
tests, others (e.g., the trend line in purple) showed consistently high performance. The latter
pattern is indicative of an early spike in learning during the first exposure phase followed by
successful maintenance of acquired knowledge in the later stages of the experiment. In
contrast, roughly linear increases in learning were observed in some subjects (e.g., teal, who
peaked in performance on test 3 and subsequently showed fatigue effects by test 4), and
others showed little to no learning at all (e.g., orange). These vast differences in learning
rates might mask the statistical reliability of activations in a simple contrast analysis. In
Karuza et al. (2013), individual delta scores were entered as explanatory variables into a
GLM in order to reveal areas of the brain that covaried with learning over time for each
subject. A subsequent group-level analysis revealed which voxels exhibited this variation
across participants. Indeed, exploiting these differences in learning rates revealed learning-
related neural activity that was not present in simple contrast analyses.

Although this method represents an improvement over other methods, reviewed above, that
do not take both temporal and individual variability in performance into account, it is subject
to certain limitations. Though participants in Karuza et al. (2013) were informed prior to the
first exposure phase that they would be tested repeatedly, it is possible that learning after the
first testing phase was altered in some way (i.e., after the first test, perhaps participants
began to cue into triplet structure in subsequent exposure phases). This possibility would be
consistent with findings from studies of declarative memory showing improved performance
with repeated testing (e.g., Vaughn & Rawson, 2011). However, Orban, Aslin, Fiser, and
Lengyel (in prep.) and Reeder, Aslin, Newport, and Bavelier (in prep.) have gathered
substantial evidence, across several different implicit statistical learning tasks, that
intermittent tests have little or no effect on subsequent test performance after further
learning exposure. Thus, intermittent testing remains one of the few methods able to
investigate the time-course of learning during exposure to continuous stimuli.

While intermittent testing can be used to get a better view of the learning time-course, more
sensitive measures are possible if the task involves discrete trials in an event-related design.
For example, Turk-Browne et al. (2010) were able to make use of reaction time during a
cover task in order to probe visual SL of face/scene pairings. Participants were asked to
classify a series of images as either a face or a scene. Unbeknownst to them, the ordering of
the images was governed by an underlying probabilistic structure. Interestingly, the authors
found evidence of learning even on the unrelated classification task; participants showed a
reaction time increase for the first item of an ordered pair and a reaction time decrease on
the second item of a pair. Evidence that unrelated cover tasks can reveal implicit pattern
learning has exciting implications for fMRI studies, as these measures are largely incidental
and collected at consistent intervals throughout the exposure phase. Such reaction time
measures, like those obtained during the MSL task described in Section 3.2, provide an
excellent means of capturing individual variation over time, as they can be entered as
predictors of neural activation at the single subject-level. Outside of the learning literature,
reaction time has been successfully incorporated as a trial-by-trial regressor in general linear
models for individual subjects within an fMRI data set. The correlation of BOLD response
with changes in reaction time across the course of an experiment has revealed brain
activation in widespread regions for a variety of experiment types (Yarkoni, Barch, Gray,
Conturo & Braver, 2009). If time-sensitive measures can be used to reveal task-general
neural systems engaged during working-memory, decision-making, and emotion-rating
experiments, then it follows that this method can also be applied to learning studies.
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4.2 Using Computational Models to Constrain Predictions about the Time-course of
Learning

In addition to repeated behavioral testing (either on each trial or in intermittent blocks),
computational modeling provides another emerging method to tap into the fMRI activations
correlated with the time-course of learning. This approach does not employ behavioral
testing directly, but indirectly through using behaviorally-validated computational models.
These models can be used to make predictions about the underlying learning processes
evident in the average time-course of learning based on the input that the learner receives in
the MRI scanner. Changes in these parameters of the model can be used to generate
predictors that in turn can be used as regressors for the neural signal.

There has been a rich history of computational models in the field of learning and memory,
beginning with the success of the Rescorla-Wagner (R-W) model in the 1970s (Rescorla &
Wagner, 1972). Indeed, the direct descendants of the R-W model continue to shape the field
of reinforcement learning (e.g., Temporal Difference or TD learning, Sutton, 1988; for a
critical review of contemporary models, their neural correlates in relation to temporal
sequence learning see Wörgötter and Porr, 2005). It is commonplace to employ these
computational models to generate testable behavioral predictions (see Miller, Barnet &
Grahame, 1995 for a review of the successes of the R-W model in this regard; for a more
recent prediction from a neurobiological model of the MTL and semantic learning by
O’Reilly and colleagues, see Norman & O’Reilly, 2003; Bayley, O’Reilly, Curran & Squire,
2008).

The current section proposes a different use of computational models, specifically as a
method for uncovering the neural systems involved in learning. In addition to providing
behavioral predictions and elegantly capturing many behavioral phenomena, many models
can provide predictive information about the time-course of learning. For example, the R-W
model was formulated to provide a “trial-by-trial description of how the associative status of
a conditioned stimulus (CS) changes when a stimulus is trained” (Miller, Barnet &
Grahame, 1995, pp. 363). Indeed, this incremental or trial-by-trial aspect is shared with
many other computational models already populating the literature (e.g., TD learning, and to
an increasing extent in Bayesian models, see Kruschke, 2006; however, also see Sakamoto,
Jones & Love, 2008.). Thus, the parameters of these various models can be calculated for
each trial given a certain set of inputs (for example, associative strength from the R-W
model, model-estimates of probabilities for a given stimulus from Bayesian models). Given
that all of these models have been subject to extensive behavioral-validation, they can
provide an excellent estimate of the average time-course of learning given specific input,
and this estimate of learning can then be used as a regressor to examine which regions of the
brain correlate with or predict this estimated learning time-course.

Indeed, a number of papers have already successfully used parameter estimates from
computational models to uncover neural regions exhibiting online changes related to
learning. While certainly the combination of computational models and fMRI recordings can
be used to validate models and potentially to uncover neural correlates of model predictions,
these two measures can also be combined to probe broader questions. An excellent example
of this approach is den Ouden, Friston, Daw, McIntosh and Stephan (2009). While den
Ouden et al. (2009) employed the R-W model estimate of associative strength, the authors
are very clear that the goal of the study was to examine the consequences of incidental
learning on cortical connectivity between regions of occipital and temporal lobes and not to
add validation to the R-W model. den Ouden et al. (2009) focus on the R-W model as “a
generic and well-established model of associative learning that has been successful in
modeling a wide range of learning processes ” (pp. 1181). To this end, the authors employed
the R-W model’s estimate of associative strength for each trial as part of their hierarchical
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model of the fMRI data. See the top panel of Figure 5 for the parameter estimates of
associative strength. Note: the parameter estimates vary with stimulus condition, thereby
mapping out separate learning time-courses but also trial-by-trial variability depending upon
recent trials. The bottom panel of Figure 5 illustrates a subset of the regions of interest
(ROIs) that showed modulation of activity that is significantly predicted by experimental
manipulations (e.g., the presence or absence of the conditioned stimulus) as well as the
model parameter estimates (associative strength) for that trial. These ROIs were interpreted
to be involved in incidental associative learning of the modeled stimuli and were used in
additional analyses to examine the effects of learning on connectivity across cortical regions
(see also Behrens, Hunt, Woolrich & Rushworth, 2008).

This approach of using model predictions as fMRI regressors can certainly employ estimates
from other models as well. Temporal difference models have been employed extensively to
uncover regions involved in prediction error and model-updating by O’Doherty, Daw,
Dayan and colleagues (see Dayan and Daw, 2008 for a review). Similarly, recent examples
employing Bayesian model can also be found in Behrens, Woolrich, Walton, & Rushworth
(2007) and den Ouden, Daunizeau, Roiser, Friston, & Stephan (2010).

Of course, when selecting learning models and interpreting the results of a combined
computational and fMRI analysis, it is important to consider whether different models arrive
at the same results behaviorally or neurally. It is possible that not all learning models will
predict learning outcomes equally well or provide valid estimates of learning trajectories for
a given task. Even models that have comparable validity might have parameters that are
correlated with different neural regions (e.g. a R-W model might correlate well with regions
of the striatum in a given task, while a Bayesian model might correlate with a region in the
frontal cortex). It is important to consider these differences when using parameters from
computational models to uncover the neural systems correlated with the average time-course
of learning.

Despite the foregoing concerns, there are certain clear advantages to employing
computational models to uncover neural systems associated with the time-course of
learning. First, these computational models provide a trial-by-trial estimate of learning,
which can be used as part of the analysis of the fMRI data. In the case of den Ouden et al.
(2009), model parameters were employed to determine ROIs associated with learning, which
then supported further analyses (e.g., connectivity analyses and dynamic causal modeling).
Second, depending on the model and/or parameter chosen, different aspects of learning can
be probed. For example, if a given model has different parameters mapping onto different
computational aspects of the learning process, such as associative strength, prediction, or
prediction error, it is possible that trial-by-trial changes in these parameters can each be used
as regressors to examine whether dissociable neural regions are involved in these different
computational aspects of learning. Thus, employing computational models allows for the
possibility of disassociating different processes involved in learning (see Section 2 and
Figure 2 for a discussion on this topic). Third, as reviewed above, it is difficult to gather and
use trial-by-trial measures of learning to undercover the neural changes correlated with this
learning time-course. This is the case even if behavioral measures are captured on every
trial. Moreover, employing computational models allows participants to simply participate
in the task without significant behavioral intervention. As reviewed above, one of the
disadvantages of significant behavioral intervention is that it could potentially affect
learning, especially in incidental or implicit learning tasks. In sum, there are a number of
major strengths to using trial-by-trial estimates of learning provided by behaviorally
validated computational models to uncover the time-course of learning available in fMRI
recordings.
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There are, however, a number of limitations to employing computational models in this way,
most notably the lack of direct behavioral evidence of learning. As noted earlier in the case
of den Ouden et al. (2009), no behavioral measures of learning were gathered at all, not even
after scanning was complete. While computational models like the R-W model have
received extensive behavioral validation, certainly not collecting any measures of learning is
problematic for a number of reasons that are the topic of this review. For example, there are
substantial individual differences in learning outcomes, especially with incidental learning
tasks, and unless this variability is directly a result of differences in the input, this will not be
reflected in a model like the R-W model. Relatedly, this approach assumes that the
computational model provides a good description of the average time-course of learning at
the group level, an assumption that must be validated in additional behavioral studies.
However, even with such behavioral validation, this approach does not attempt to account
for individual differences that the model was not designed to predict. One possibility for
future work is to combine intermittent behavioral testing (as described in the previous
section) with computational models to have trial-by-trial estimates of learning constrained
by an individual’s learning trajectory.

In sum, in this section we have proposed that one emerging method for uncovering the time-
course of neural activity associated with learning consists of combining computational
models with fMRI recordings. Specifically, computational models can provide trial-by-trial
estimates of learning. By applying these models to the input that the learner receives in the
scanner, the changing parameters of the model (e.g., associative strength, prediction error,
Bayesian priors) can be used to generate predictors that are mapped onto the neural signal,
and the neural activity associated with the average time-course of learning can be elucidated.
While this is a relatively new method with its own trade-offs and limitations, some of which
are discussed above, this is a promising avenue for leveraging fMRI to uncover the process
of learning rather than focusing solely on learning outcomes.

5. Examining the Earliest Stages of Learning: Before Behavioral Evidence
A major focus of this article has been the use of behavioral measures to uncover the neural
systems supporting the process of learning. However, there are likely changes in neural
activity before there can be behavioral evidence of learning, presumably during initial
exposure to structured stimuli. It is difficult to examine the time-course of these earliest
stages of learning as they necessarily occur before corresponding behavioral changes are
evident. For example, in the absence of behavioral change, it would be difficult to
differentiate participants with a slower than average learning time-course (but who are
successfully engaging in the earliest stages of learning) from those who fail to learn no
matter how much training they receive. However, if the field continues to examine the
neural correlates of the online process, rather than the outcomes, of learning, it will become
increasingly important to address the issue of how to examine learning before it gives rise to
behavioral changes.4

In general, this question is most pressing for forms of learning with a protracted time-course.
Some forms of learning occur on a comparatively shorter time scale: for example, priming
and episodic memory result in behavioral change after a single trial or very few trials. For
types of learning like these, it would be exceedingly difficult to gather time-course
information from designs that rely on a slow physiological measure like the hemodynamic

4Of course, one reason why participants might fail to show behavioral evidence of learning in a given timeframe is that they fail to
pay attention to the stimuli (e.g., fall asleep) or do not follow task instructions. This is a trivial case where behavioral evidence of
learning will not arise. Experimenters should take care to ensure that participants are engaged with the task and obeying task
instructions. This can be ensured through employing a cover task that is not immediately related to the learning task or “catch” trials to
ensure that all participants are properly engaged (Turk-Browne et al., 2010).
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response. Instead, learning outcomes for individual items are often compared (e.g.,
successfully recalled vs. false memory). However, certain types of learning require a lengthy
exposure phase before participants show behavioral evidence of having learned. In these
circumstances, a participant with slower than average learning time-course could very well
not show evidence of learning during the experiment even though they are in fact engaged in
the earliest stages of learning.

The relevance of early learning is highlighted by a number of recent studies that failed to
show strong behavioral evidence of learning, yet obtained patterns of neural activity
suggesting some form of learning-related processing. Turk-Browne et al. (2009) scanned
during the presentation of two different visual sequences: One structured sequence whose
visual elements were grouped into triplets and thus had very high transitional probabilities
(i.e., p(Y|X) where X and Y are two elements of the sequence), and one random sequence
where elements were presented in random order and thus all elements are linked by much
lower transitional probabilities. As noted earlier, a rich behavioral literature shows that
participants can use these transitional probabilities to passively learn which elements cohere
within a sequence (Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 2002; Saffran et al.,
1996; Turk-Browne, Junge, & Scholl, 2005). However, in an overall post-test measure
employed by Turk-Browne et al. (2009)5, participants failed to differentiate the triplets with
high transitional probabilities from triplets with low transitional probabilities, a finding
suggesting that participants failed to learn robustly in this task. Nevertheless, comparisons of
the neural systems engaged during viewing of the structured vs. random sequences revealed
that participants engaged multiple areas of the brain that are robustly associated with
learning and memory (e.g., the hippocampus, basal ganglia) as well as a number of cortical
regions (e.g. fusiform gyrus, lateral occipital cortex or LOC). Thus, it seems likely that
participants were engaged in learning at some level during the structured condition.
However, lacking robust behavioral evidence of learning in this particular study means that
it is not clear whether participants are at early stages of learning or whether other processes
not associated with learning are being differentially engaged across conditions and result in
engagement of these neural regions. See also McNealy et al. (2006; 2010) for a parallel
example to Turk-Browne et al., (2009) in the area of language learning or auditory statistical
learning.

One possibility is that while participants might not show differences in behavioral outcome
measures related to the task, they might show more indirect behavioral evidence that
learning is taking place. Recent work by Emberson and Amso (2012) points to such a
possibility. They recorded both neural activity and eye movements while participants
learned to perceive a novel visual object. The study employed both a structured condition
(presentation of the novel object in different orientations in different visual scenes) and a
random control condition (control scenes that did not contain the novel object). While the
behavioral outcome measures did indicate overall learning in the structured condition, a
substantial subset of these participants failed to show evidence of learning. Examination of
the eye movement patterns revealed that Non-learners in the structured condition more
closely resembled Learners (again in the structured condition) compared to Non-learners in
the random condition (see Figure 6). Indeed, comparing eye movements between Learners
and Non-Learners in the structured condition revealed only very subtle differences in their
looking behavior. However, there were pronounced differences in eye movements between
Non-Learners in the structured condition and Non-Learners in the random condition. By
measuring eye movements (a form of information gathering previously found to be involved
in a relevant task, Johnson, Slemmer & Amso, 2004), there was evidence that participants in

5Turk-Browne et al., (2009) did however find evidence of learning in the first half of the posttest.
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the structured condition performed differently from participants in the random condition,
regardless of whether they showed evidence of learning as assessed in behavioral outcome
measures (also see Zhao, Ngo, McKendrick & Turk-Browne, 2011).

Thus, we see that even when outcome measures of learning are not reliable, participants
exposed to conditions where learning can take place may engage different neural systems
from participants exposed to conditions where no learning can take place, and indeed there
may be changes in incidental behavioral measures such as eye movements. Such evidence
suggests that one possible way to examine the earliest stages of learning (i.e., before
behavioral evidence) is to compare neural activations between conditions where learning has
been previously demonstrated versus where learning is not possible (e.g., a random
condition). In the absence of incidental measures of behavior, the assumption of learnability
of the structured condition needs to be supported by additional behavioral studies. However,
employing a random condition can allow for an estimate of when and where neural activity
diverges between these conditions (i.e., when neural systems presumably associated with
learning are engaged, see Turk-Browne et al., 2009 for an implementation of this method).
Indeed, these claims are strengthened if a more incidental behavioral measure (e.g., eye
movements) can be relied upon to differentiate activity across these conditions without
requiring overt behavioral outcome measures.

However, comparing across learnable or structured and non-learnable, control or random
conditions has a number of limitations. First, it is not clear what computational aspect of
learning is being investigated. If the differences between these conditions tap into the
earliest stages of learning (i.e., before overt behavioral evidence), are these indicative of
differences in the processes of pattern extraction or of model building (see Figure 2 and
Section 2 for a discussion)? While it seems likely that some amount of pattern extraction
would precede model building, how much do these processes temporally overlap during
learning? As discussed above, these processes of pattern extraction and model-building may
be exceedingly difficult to disentangle, especially at the earliest stages of learning, because it
is likely that both involve pattern extraction based on structured stimuli as well as model-
building based on these structured representations. However, given the clear theoretical and
cognitive distinction between these processes and their likely separation at latter stages of
learning, it is important to consider both of these processes (pattern extraction and model-
building) even under circumstances when they will likely be difficult to disentangle.
Returning to the data from Emberson and Amso (2012), it is possible that these differences
in eye movements are reflective of differences in pattern extraction, which may be necessary
for learning, but are not sufficient. These are open questions that may not be easily
addressed using this method alone.

Second, while the comparison of structured and random sequences may be one way to
examine learning before behavioral evidence is obtained, one should consider whether the
differences between learnable and non-learnable conditions might be resulting in differential
engagement of cognitive processes other than learning. For example, in temporally ordered
statistical learning studies, random conditions often have very low transitional probabilities
between every element (e.g., in a stream of 15 elements a random stream might have an
average transitional probability of 0.07). In contrast, structured conditions have on average
much higher transitional probabilities (e.g., 0.6–1.0) and a clearly bimodal distribution
between high transitional probabilities (e.g., 1.0) and lower transitional probabilities (e.g.,
0.25). While there certainly need to be systematic differences in statistical information
between learnable and non-learnable conditions in a statistical learning study, these
differences might be engaging additional unintended processes. Indeed, recent research has
suggested that attentional mechanisms are differentially engaged depending on stimulus
predictability, with the best engagement of attention at intermediate levels of predictability
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(i.e., not too low or random and not too high or entirely predictable; Kidd, Piantadosi, &
Aslin, 2012). Thus, a learnable condition might be reflexively and unconsciously garnering
more attention than a non-learnable condition, and this might be an important aspect of the
design to control (e.g., by having a non-learnable condition with an additional attentionally-
demanding cover task like detecting a certain stimulus). While differences in the statistical
information across learnable and non-learnable conditions is simply one example of
systematic differences that may affect learning during the task, a deeper examination of the
effects of these systematic differences that lead to learning or not will aid the comparison of
neural systems engaged across these conditions and provide insight into the areas of the
brain involved in the earliest stages of learning.

In sum, this section considered the difficult question of how to examine the process of
learning before there is behavioral evidence. This issue comes into play as researchers
continue to use fMRI to examine the process as opposed to the outcome of learning. To this
end, the field must attempt to differentiate between participants who are engaged in the
processes which will ultimately support a positive learning outcome but who have not
shown behavioral evidence of learning, and those who are not engaging learning processes
at all. To foster discussion of this topic, we considered how the inclusion of a non-learnable
or random condition can help to tap into processes that separate early from later stages of
learning, and how the use of more indirect behavioral measures such as eye tracking can
provide evidence for early learning vs. non-engagement of learning mechanisms. However,
it is important to consider the possibility that uncovering differences associated with early
vs. late learning may reflect other component processes of learning that are being engaged
(e.g., pattern extraction vs. model building). This is because the relative temporal onsets of
these processes are unknown and these processes may or may not be engaged when exposed
to learnable vs. non-learnable conditions.

6. Conclusion
This review has both explored current fMRI analysis techniques employed to study the
neural basis of learning and discussed promising avenues for methodological improvement.
In describing the depth, complexity, and variability of the learning process over time, we
fully acknowledge the immense challenges surrounding this field of study, particularly in
light of the basic limitations of fMRI (i.e., fairly coarse temporal resolution). Nevertheless,
we propose that the basic assumptions implicitly forming the foundation of many imaging
methods and analysis techniques require behavioral validation. To be clear, our proposals
for improvement have evolved from over a decade of valuable neuroimaging work dedicated
to the topic of learning. Our current knowledge has been built on investigations into how the
human brain taps into acquired rule-systems during test, how it reacts to the violation of
expectations, and how it responds differentially to patterned and random stimuli6. The
questions probed within this body of work are important and interesting ones, but they
cannot advance our understanding of the process of learning without a focus on methods of
studying learning from its earliest stages onward.

To conclude, we maintain that the fMRI studies which form the basis of our understanding
of the neural systems supporting human learning have been shaped by two basic, untested
assumptions: (1) the process of learning and the results of learning are mediated by largely
overlapping neural substrates7 and (2) the time-course of learning is relatively uniform both
within and between subjects. Correspondingly, these assumptions must be either minimized
through improved experimental designs or validated by direct hypothesis-testing. It is our

6Indeed, many of the studies reviewed here point to at least some overlap in frontal, striatal, and hippocampal systems engaged during
a broad spectrum of learning-related tasks.
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hope that this review will begin a dialogue within the field and encourage more research that
examines the process of learning by considering the interrelation of behavioral measures and
fMRI recording during acquisition in a learning task.

Text Box 1

Relevant Behavioral Paradigms

In studies of human learning, the most common experimental design consists of two
phases: an exposure phase to a set of structured stimuli and a subsequent testing phase
(posttest). The extent to which participants have extracted, maintained and retrieved
information acquired during the exposure phase is evaluated during the posttest. To
uncover supporting neural systems, studies employing fMRI have collected imaging data
at various stages in this process, ranging from initial exposure to final posttest, and often
after some level of acquisition has taken place outside the scanner. This experimental
method has been extensively applied to various forms of pattern learning including, but
not limited to, artificial grammar learning (AGL), visual and auditory statistical
learning (SL), and motor sequence learning (MSL). Because learning paradigms within
these different literatures comprise the majority of studies discussed in this review, we
detail the basic methods and principles of these paradigms here (Figure 1).

Pioneered by Reber (1967), the classic artificial grammar learning (AGL) paradigm
involves exposure to a set of letter strings generated by a finite state grammar. The rule-
governed relationships between elements in the strings are intended to be so complex as
to preclude explicit learning of the underlying grammar. Nevertheless, after an
acquisition period, participants shown novel grammatical and ungrammatical letter
sequences are able to discriminate the test items (strings or partial strings) significantly
better than chance performance (e.g., Dienes, Broadbent, & Berry, 1991; Knowlton &
Squire, 1996).

In a related vein, statistical learning (SL) of both visual (e.g., Fiser & Aslin, 2002,
2005; Fiser, Scholl & Aslin, 2007) and auditory stimuli (e.g., Newport & Aslin, 2004;
Gebhart, Newport & Aslin, 2009) entails the extraction of regularities, such as the
transitional probabilities between elements, in order to form structured representations of
initially unfamiliar exposure stimuli. Following a period of passive exposure, participants
discriminate statistically consistent combinations of items from combinations that violate
these statistical regularities. Learning takes place without conscious intent or awareness;
participants are not explicitly tallying up co-occurrence frequencies during the exposure
and dividing them by individual element frequencies (p (Y|X)). Correspondingly, they
cannot concretely verbalize why some combinations seem more familiar at test. Studies
by Saffran, Newport, and Aslin (1996) with adults and Saffran, Aslin, and Newport
(1996) with infants demonstrated that learners are able to use the statistical relationships
between adjacent syllables in order to segment word-like units from a continuous stream
of nonsense syllables.

Finally, motor sequence learning (MSL) encompasses a diverse set of tasks that
typically measure learning by recording reaction time and/or accuracy on a sequence

7There are notable exceptions to this in the field of memory where there is a focus on the non-overlapping neural regions involved in
encoding and retrieval of memories (e.g., the HERA model, Habib, Nyberg, & Tulving, 2003). However, as discussed above (e.g.,
Textbox 1, Section 5), the current review is focused on different behavioral phenomena than those typically examined in the field of
memory where stimuli are seen and remembered through single or a very few identical experiences. The learning paradigms examined
in this review unfold over a, comparatively, lengthy period of time and can incorporate variability in presentation to create relative
probabilities (e.g., some items follow each other with a high probability but others are marked by variable or random order). Despite
these obvious differences between explicit tasks and the types of implicit learning discussed in the current paper, any future steps may
benefit from knowledge of other fields that are already making this important distinction.
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generation or completion task. MSL tasks range in difficulty from simple skill learning
such as touching the thumb to the fingers in a repeated 5-item sequence (e.g., Karni et al.,
1995) to executing a timed motor response to visual elements that occur in a complex
ordering (e.g., Rauch et al., 1997; also known as a serial reaction time task). MSL tasks
vary widely in the extent of their implicit learning component, with some studies
involving explicit instruction to learn (Lehericy et al., 2005), others requiring the subject
to learn by trial-and-error (Sakai et al., 1998), and still others in which subjects are
unaware of the patterned nature governing sequence order (Hunt & Aslin, 2001; Nissen
& Bullemer, 1987).
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Highlights

• We examine the current use of fMRI to study the neural basis of human
learning.

• We describe challenges involved in studying the process of learning with fMRI.

• We discuss the value of relating neural response to behavior over time.
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Figure 1.
Structure of various learning paradigms relevant to this review. (A) Motor Sequence
Learning: Participants initiate a motor response to temporally-patterned visual stimuli. (B)
Artificial Grammar Learning and Statistical Learning: Participants undergo an exposure
phase during which they are presented with finite-state grammar sequences (AGL) or
probabilistic auditory/visual patterns (SL). In a subsequent test phase, they make
acceptability judgments on structured and unstructured test items.
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Figure 2.
A generic architecture of the processes involved in learning for purposes of the present
discussion: 1) sensory or input encoding; 2) pattern extraction; 3) model building; 4)
retrieval or recognition process. The latter process is denoted by a dashed line and involves a
match process between a current sensory input and a stored representation resulting from
learning and memory processes. This process also likely involves a decision component.
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Figure 3.
Comparing learning outcomes (performance on the final block of a learning task) with
overall learning trajectories in a replication of Shohamy and Wagner (2008). On the right of
panel, dots represent individual performance on the final block of learning or learning
outcomes for all participants’. The learning trajectories of three participants are presented.
The two participants presented in blue have similar learning outcomes but divergent learning
trajectories. The participants represented in dark blue and pink have very different learning
outcomes despite having nearly identical learning trajectories for the first three blocks. Error
bars represent the standard error of the mean.
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Figure 4.
Variability in individual learning trajectories (adapted from Karuza et al. (2013)). Data
points plotted above were calculated as the word rating - partword rating (i.e., the extent of
learning) for each test. A high score indicates that a participant was able to successfully
discriminate words from partwords, whereas a score at or below zero indicates a failure to
learn or to maintain previously acquired knowledge. A score below zero indicates that a
participant rated partwords as more familiar than words. The bolded black line represents
mean performance. Selected individual participants are presented in color to allow for
examination of their individual trajectories.
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Figure 5.
Classic computational model (Rescorla-Wagner model) examining the effects of incidental,
associative learning on cortical connectivity (from den Ouden et al. A dual-role for
prediction error in associative learning. Cerebral Cortex, 2009, 19, pp. 178, 180, by
permission of Oxford University Press). Top panel: parameter estimates of associative
strength from the model for each stimulus condition in a 2x2 design (presence or absences of
the conditioned visual stimulus, CS+ vs CS-, and presence or absence of the predictive
auditory stimulus, A+ vs. A-). Bottom panel: a subset of the regions of interest that showed
modulation of activity by experimental condition but also model-estimated associative
strength.
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Figure 6.
Distribution of eye movements (fixations) for participants in learnable (Structured) and non-
learnable (Random) conditions who showed evidence of learning in outcome measures
(Learners) and those who did not (Non-Learners). Top left panel: Areas of Interest for the
critical visual stimulus in Emberson and Amso (2012). Right Panel: Proportion of fixations
for each AOI for Learners in the Structured condition, Non-learners in the Structured
condition and Non-learners in the Random condition. Note: there were extremely few
Learners in the Random Condition and thus they are not depicted. Since Areas of Interest
(AOIs) were different sizes, proportions of looking were normalized relative to the AOI’s
proportion of the scene (corrected proportion of fixations) and thus zero can be considered
baseline expected looking if eye movements were randomly distributed in the scene. There
are significant differences in looking between Learners vs. Non-Learners in the Structured
Condition for Object1 only. However, there are significant differences for all other AOIs
between both outcome groups in the Structured Condition and the Non-Learners in the
Random condition. Bottom left panel: depiction of the distribution of fixations for
representative Non-learners in each exposure condition (Structured and Random).
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