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De novo molecular design and in silico prediction of polypharma-
cological profiles are emerging research topics that will profoundly
affect the future of drug discovery and chemical biology. The goal is
to identify the macromolecular targets of new chemical agents.
Although several computational tools for predicting such targets are
publicly available, none of these methods was explicitly designed to
predict target engagement by de novo-designed molecules. Here
we present the development and practical application of a unique
technique, self-organizing map–based prediction of drug equivalence
relationships (SPiDER), that merges the concepts of self-organizing
maps, consensus scoring, and statistical analysis to successfully iden-
tify targets for both known drugs and computer-generated molecular
scaffolds. We discovered a potential off-target liability of fenofibrate-
related compounds, and in a comprehensive prospective application,
we identified a multitarget-modulating profile of de novo designed
molecules. These results demonstrate that SPiDER may be used to
identify innovative compounds in chemical biology and in the early
stages of drug discovery, and help investigate the potential side
effects of drugs and their repurposing options.

drug design | target prediction | polypharmacology | machine learning |
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Computer-assisted de novo molecular design has evolved as
a popular source of ideas to combat the perceived lack of

new chemical entities (NCEs) in chemical biology and drug dis-
covery (1). We demonstrate that automated de novo design delivers
readily synthesizable NCEs with desirable activity profiles. Although
receptor-based design operates on a model of a macromolecular
binding site, ligand-based methods are either explicitly or implicitly
based on the chemical similarity principle (2) without requiring
a receptor model (3). Instead, the latter typically uses some measure
of chemical or pharmacophore feature similarity to a reference li-
gand as a fitness function, which aims to generate NCEs as template
mimetics via scaffold hopping (4–8). We report the development,
implementation, and successful prospective application of an in-
novative computational technique for the target profiling of de
novo-designed molecules. The approach combines the concepts
of self-organizing maps (SOMs) (9) for macromolecular target
prediction (10), consensus scoring (11), and a statistical evalua-
tion that provides confidence estimates for the predictions.
Predicting polypharmacological activities is a topic relevant to

chemical biology and drug discovery, not only to take advantage
of inherent drug promiscuity but also to decrease lead compound
attrition caused by unfavorable off-target modulation (12). Drug
activities on multiple macromolecular targets are responsible for
drug side effects (13), but they can also be rationally used to
increase drug efficacy (14), repurpose known drugs (15), and
design multitarget NCEs (7). For example, Mestres and col-
leagues recently predicted the inhibition of Pim kinases using
a tool compound originating from poly(ADP-ribose) polymerase
(PARP) biology (16). Lounkine et al. reported a large-scale off-
target prediction for marketed drugs (17). In fact, high target
promiscuity appears common among drug-like molecules (18).

De novo designed molecules add novelty to the chemical uni-
verse and thus risk lying outside the domain of applicability of
target prediction tools that exclusively rely on the chemical
similarity of molecular substructures. Here, we provide a theo-
retical framework to address this issue, and we demonstrate the
applicability of this framework to prospective de novo design
studies. We then describe the development of a ligand-based
target prediction algorithm [SOM-based prediction of drug
equivalence relationships (SPiDER)] and its experimental vali-
dation by finding off-targets of known drugs without strong li-
gand structural similarity. Finally, we demonstrate the model’s
applicability for identifying pharmacologically relevant macro-
molecular targets of de novo-designed NCEs, which we synthe-
sized and tested in vitro.

Results and Discussion
Computer-Based Design of New Chemical Entities. As part of an early
discovery program, we generated innovative molecules using our
ligand-based de novo design software DOGS (inSili.com LLC) (19).
The process by which DOGS generates a compound uses virtual
organic synthesis. Compound generation is steered by optimizing
the topological similarity between newly generated candidate
structures and a template molecule. In this study, amprenavir (Fig. 1),
a potent inhibitor of HIV 1 protease (HIVP) (20), served as the
template. The virtual synthesis was fueled by a set of 25,144 building
blocks and 83 organic reactions (Fig. 2A). Overall, the automated
compound design process generated 2,338 molecules, of which
856 were unique structures with 388 unique Murcko scaffolds
(21). From this set of diverse candidates, we selected compound 1
(Fig. 1) based on its chemotype novelty (no entry in the Chemical
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Abstract Service database, www.scifinder.org). Automated ligand
docking into the catalytic center of HIVP [Protein Data Bank
(PDB) code 1HPV] (22, 23) suggested a reasonable binding pose
for compound 1 (GoldScore = 86; Fig. S1). By following the
computer-generated synthesis scheme, we obtained 1 through the
Mitsunobu esterification of enantiomerically pure building blocks
(Fig. 1). We evaluated the inhibitory potency of 1 against HIVP
but did not observe any relevant activity (10% inhibition at
a compound concentration of 100 μM). We then synthesized and
tested derivative 2, which lacks the tert-butoxycarbonyl group of
compound 1 and presents a more advantageous docking pose
than 1 by potentially interacting with both catalytic Asp25 residues
in the dimeric structure (GoldScore = 82; Fig. S1). However,
compound 2 was also virtually inactive against HIVP (27% in-
hibition at 100 μM).

Target Prediction Using Publicly Available Software Tools. Because
the applicability of compounds 1 and 2 as anti-HIVP chemotypes
appeared limited, we investigated the possibility of exploiting the
readily synthesizable NCEs 1 and 2 by leapfrogging to another
drug target. Initially, we relied on publicly available target pre-
diction tools. HIVP was the top predicted target for 1 according
to the similarity ensemble approach (SEA) (24), fully corrobo-
rating the original DOGS design intended to mimic amprenavir
(Table S1). The second most confident SEA prediction for 1 was
β-secretase-1 (BACE-1), which was also suggested by the se-
mantic link association prediction (SLAP) (25) for amprenavir
(Table S2). In addition, the prediction of activity spectra for

substances (PASS) (26) predicted that compound 1 would ex-
hibit HIVP and BACE-1 inhibition (Table S3). Finally, the
software SuperPred (27), which suggests targets via a pairwise
comparison of query molecules to known drugs, identified
HIVP inhibitors, including amprenavir, as the drugs most similar
to query compound 1 (Table S4). For compound 2, SuperPred
and SEA again advocated HIVP as the drug target (Tables S1
and S4). These results suggested that DOGS retained the es-
sential structural features of amprenavir in the design of com-
pound 1 and in its derivative 2, which clearly favored HIVP and
BACE-1 as the expected targets. In vitro testing revealed that
compound 1 was also inactive against BACE-1, thus rendering
these target predictions incorrect. We reasoned that structures
1 and 2 may lie outside the domain of applicability of the
existing fingerprint- and substructure-based target prediction
methods, and therefore, we pursued the development of a
novel target prediction method (SPiDER) as a complementary
approach with a stronger focus on the prediction of targets
for NCEs.

SPiDER Approach. Chemically abstract (“fuzzy”) molecular rep-
resentations, such as pharmacophoric feature descriptors, can be
used to find subtle functional relationships between compounds,
thereby allowing a molecule to leapfrog onto an unrelated target
(28, 29). When used in similarity searches, such fuzzy molecular
representations have often demonstrated greater scaffold-hop-
ping potential than atomistic approaches (10, 30). Consequently,
we implemented SPiDER as a software tool that builds on fuzzy
molecular representations for use with de novo-designed NCEs.
We relied on the established concept of SOMs to capture the
local domains of model applicability (Fig. 2A). SOMs were
originally developed as a neural network-inspired heuristic to
reduce dimensionality (9), and they have become a workhorse of
molecular informatics (31, 32). Using the unsupervised SOM al-
gorithm, we clustered 12,661 manually annotated, pharmaceuti-
cally relevant drugs and lead compounds [collection of bioactive
reference analogs (COBRA); inSili.com LLC] (33). The resulting
2D map tessellates this reference space into clusters of drug
molecules representing local neighborhoods (10, 34–36). A
query compound is assigned to exactly one target cluster on
this map. For target inference via SPiDER, only the known
drugs from this local domain are considered.
One aspect of the SPiDER method is the estimation of the

statistical significance of each target prediction. The pairwise
Euclidean distances between the query and the local reference
drugs are calculated and evaluated according to a background
distance distribution. Averaging the false-positive error proba-
bilities for the reference drugs annotated to bind to different
targets emulates a false-discovery rate in multiple hypothesis
testing and provides a motivated confidence score for the pre-
diction. SPiDER performs the target prediction twice, using the
following two different molecular representations for two SOM
projections: (i) the chemically advanced template search [chemi-
cally advanced template search (CATS)] topological pharma-
cophore descriptor (SOM1) (10, 37) and (ii) the Molecular
Operating Environment (MOE) physicochemical properties and
indices (SOM2) (Chemical Computing Group). Jury consensus
predictions are obtained as the average of the two confidence
scores. Finally, a background score distribution allows for the
P value calculation of the jury scores to indicate the significance
of an acquired prediction (Fig. 2A).
We performed a stratified 10-fold cross-validation (38) to es-

timate the scope of the SPiDER model. To measure performance,
we analyzed the percentage of molecules with all annotated bio-
chemically confirmed targets scored at P < 5%. On average, 10.9
predictions per query compound were statistically significant (Table
S5), which is in agreement with other studies that have reported
3–10 targets per drug depending on the target class (39). The

Fig. 1. The de novo design software DOGS generated compound 1 as a
potential HIVP inhibitor using amprenavir as the template and suggested a
feasible one-step synthetic pathway. Compound 2 was synthesized as a de-
rivative of lead design 1; (i) HCl 4 M/1,4-dioxane 0 °C → rt.
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CATS-based (SOM1) prediction alone yielded 41 ± 0.7%, and the
MOE-based (SOM2) method yielded 41.3 ± 0.5% complete
target profile predictions. To investigate the complementarity of
the selected molecular representations, we compared the per-
formance of the individual prediction methods per target. The
two molecular representations performed differently for most
targets with only weak correlation (Pearson r2 = 0.44; Fig. S2A).
This finding supports the implementation of a prediction method
that combines these multiple models and potentially benefits
from their different scopes.
We studied different mathematical functions to merge the

prediction scores from SOM1 and SOM2. We found that com-
bination functions sensitive to low scores are the most accurate
and yield target profile predictions that are ∼65% complete
(Table S5). The observed accuracy level is in agreement with
the values reported by Hopkins and colleagues, who found
that a fingerprint-based model correctly predicted at least one
target for 64% of their data (12). We calculated the ROC
AUC values to include the global ranking of true positives as
a second evaluation criterion. Both the geometric average and
the minimum value suffer because predictions made by only
one model are neglected, resulting in the loss of low-confidence
true-positive predictions (Fig. S2B). The arithmetic average
performed equivalently in early retrieval and exploited singlemodel

predictions, thereby yielding a high ROC AUC value of 0.92
(Table S5).

Off-Target Prediction for Known Drugs via SPiDER. To prospectively
probe the applicability of SPiDER, we predicted off-targets for
the library of pharmacologically active compounds (LOPAC)
collection of compounds (Sigma Aldrich) by mimicking the tar-
get prediction for NCEs. For this experiment, we only considered
those predictions relying on COBRA reference drugs with a
structural Tanimoto similarity <0.2 (Daylight Fingerprints) to the
respective LOPAC query. This procedure attempted to find non-
trivial, unexpected target relationships between reference drugs
that are structurally dissimilar to the respective query molecule
(expressed by a low structural Tanimoto similarity) and thus un-
recognizable using substructure-based approaches. We investigated
LOPAC queries for which SPiDER reported the most confident
target predictions with the lowest Tanimoto similarity to the asso-
ciated reference compounds. Among such high-confidence pre-
dictions (P < 0.001), we found monoamine oxygenase (MAO) as
the top off-target prediction for the serotonin reuptake inhibitor
fluoxetine. In full support of the SPiDER prediction, fluoxetine
is in fact a MAO inhibitor both in vitro and in vivo (40). Simi-
larly, we experimentally tested the top off-target prediction for
fenofibrate (P < 0.001, Tanimoto similarity = 0.16 to the nearest
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Fig. 2. (A) Scheme of the de novo design (DOGS)
and SPiDER target prediction. (B) SOM depiction of
the distribution of aspartic protease inhibitors (Left)
and bradykinin receptor ligands (Right). The com-
pound density in each of the 13 × 10 = 130 clusters
(circles) is represented by the black color intensity.
The concentric layers in each cluster denote quantile
ranges of the compound distribution according to
the distance from the centroid. On the CATS-based
map (B), amprenavir is located in cluster (12/4), and
the de novo-designed compounds 1 and 2 are lo-
cated in cluster (12/5). On the MOE-based map (C),
amprenavir and 1 are located in cluster (2/10), and
compound 2 is in cluster (8/10). The toroidal SOMs
were trained using the in-house command line tool
molmap (56). The SOM size was chosen to have
∼100 molecules per cluster, which proved expedient
in preliminary experiments. The initial learning step
size was 1, and the initial neighborhood update
radius was 7 to allow for full signal propagation
through the map topology. Training was performed
using linear parameter decay and random sampling
over 500,000 training cycles (9).
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reference compound; Fig. S2C) and confirmed the Nav1.5 ion
channel (IC50 = 69 μM ± 1.2 log units; Fig. 3B). Fenofibrate
presents natriuretic and cardiac remodeling effects (41, 42) and
blocks basolateral KCNQ1 K+ channels (43). To the best of our
knowledge, its binding to Na+ channels has not been previously
reported. Nav1.5 is the principal Na+ channel isoform in car-
diomyocytes, and variants of the Nav1.5-encoding gene have been
linked to congenital and acquired long QT syndromes (44). Al-
though fenofibrate demonstrated only a weak affinity to Nav1.5 in
the assay, the data suggest that related chemotypes may present
similar traits and liabilities.

Target Identification for NCEs via SPiDER. Having validated the
SPiDER model for its ability to correctly infer off-targets despite
a lack of structural similarity to the reference drugs, we predicted
potential targets of de novo-designed compounds 1 and 2. Al-
though HIVP and BACE-1 were also predicted, SPiDER ranked
other targets with higher confidence (Table 1). Similar target
profiles were predicted for 1 and 2 that occasionally overlapped
the predictions for amprenavir. In contrast with all publicly avail-
able prediction models, the top consensus SPiDER prediction for 1
and 2 was the bradykinin B1 receptor, a G protein-coupled re-
ceptor involved in the mechanisms of inflammatory pain (45) and
coronary vasomotor function (46). Being confidently predicted
and practically exclusive to our approach, we tested compounds 1
and 2 for antagonistic activity toward the B1 receptor. Although
compound 1 presented only modest antagonism (EC50 ∼ 100 μM;
Fig. 4A), compound 2 exhibited high affinity and potent concen-
tration-dependent B1 antagonistic activity (KB = 3.6 μM; EC50 =
17 μM; Fig. 3A). The B1 receptor was correctly predicted by
SPiDER based on the structures of reference compounds 3 [B1
Ki ∼ 0.1 nM (47)], 4 [B1 Ki ∼ 0.5 nM (48)], and 5 [B1 Ki ∼ 1.2 μM
(49)] (Fig. 4).
SPiDER further suggested that neurokinin 1 (NK1) and vanil-

loid 1 (TRPV1) were receptors targeted by compounds 1 and 2
with favorable P values (Table 1). Again, these represent clinically
relevant drug targets exclusively predicted by SPiDER for both
NCEs under investigation. In full agreement with the computa-
tional analysis, we observed concentration-dependent effects for
both compounds. NK1 receptor antagonism (KB = 15 μM, EC50 =
100 μM ± 0.7 log units; Fig. 3B) and agonism on the TRPV1 ion
channel (EC50 = 76 μM ± 0.7 log units; Fig. 3C) were measured
for compound 2. To probe whether any of these activities were
inherited from the de novo design template, we investigated the
effect of amprenavir on the B1, NK1, and TRPV1 receptors. As
correctly recognized by SPiDER, amprenavir did not exhibit ac-
tivity against the B1 or TRPV1 receptor up to 100 μM. Its weak
NK1 receptor antagonism (EC50 > 100 μM) also agrees with the
prediction (P = 0.021). Taken together, we successfully and effi-
ciently used SPiDER to determine subtle functional bioactivity
traits for both de novo-designed molecular frameworks and their
drug template. For further assessment of SPiDER for NCE target
prediction, we provide a public version of the model on our
webserver (http://modlab-cadd.ethz.ch/software/).

Conclusions. Structural genomics and systems pharmacology greatly
benefit from innovations in molecular informatics (50, 51). We
implemented and experimentally validated a unique method for
ligand-based target prediction that extends the capabilities of re-
lated approaches. Our software combines multiple representations
of small molecules in a conservative jury approach, thereby re-
ducing false-positive predictions in the high confidence range. The
binding association of de novo designs 1 and 2 to the B1 receptor
indicates the explorative nature of the SPiDER approach. Be-
cause SPiDER determined all of the correct targets for two-thirds
of the test data in retrospective studies, the method is expected to
perform at least equivalently to other computational target pre-
diction tools (12, 24, 26, 27). The results of our study demonstrate

how the approach can be included in de novo drug design to
obtain target-binding confidence in the proposed NCEs or to
redirect stalled drug discovery projects.

Materials and Methods
De Novo Design. DOGS (19) was used for the de novo molecular design with
amprenavir as the template, 25,144 molecular building blocks, and 83 coupling
reactions (52) (inSili.com LLC). The similarities between the designs and the
template were computed using the iterative similarity optimal assignment
kernel (ISOAK) method on reduced molecular graph representations (5). Nine
independent runs were performed with 200 randomly selected start
fragments (ISOAK α values ranging from 0.1 to 0.9). Scaffold occurrences
in the set of designed molecules were determined by comparing the ca-
nonical simplified molecular input line entry system (SMILES) representa-
tions of extracted scaffolds on the KNIME platform v2.6.0 (53) using RDKit
nodes (www.rdkit.org) for scaffold extraction and KNIME-native nodes to
determine their frequency.

Reference Compounds. A manually curated collection of bioactive reference
compounds (COBRA, v12.6, inSili.com LLC) (33) containing 12,661 unique

A

B

C

Fig. 3. Effects of compound 1, compound 2, and amprenavir (Amp.) on
(A) bradykinin (B1) receptor (control agonist: 3 nM LysdesArg9[Leu8]-BK;
EC50 = 0.2 nM), (B) NK1 receptor {control agonist: 1 nM [Sar9,Met(O2)

11]-
SP, EC50 = 0.4 nM}, and (C ) TRPV1 (control agonist: 1 μM capsaicin, EC50 =
7 nM; n = 2, mean and SEM).
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pharmacologically active molecules annotated with one or more of 251
biomolecular targets and specific subtype activities was used for training,
retrospective, and prospective evaluations of the SPiDER model.

Data Preparation and Molecular Representation. Compounds were provided as
SMILES and processed in KNIME v2.6.0 (53) with the MOE “wash” function
(2011.10; Chemical Computing Group) using the options “disconnect salts,”
“remove ion pairs,” “deprotonate strong acids,” “remove minor compo-
nent,” “protonate strong bases,” and “add hydrogen.” The 210-dimensional
CATS vectors were calculated with an in-house software tool with a maximal
correlation distance of 10 bonds and pharmacophoic feature type-sensitive
descriptor scaling (10). The following 186 descriptors from MOE were cal-
culated using the MOE “QSAR descriptors” function (MOE 2011.10): simple
descriptors, chi indices, BCUT descriptors, PEOE descriptors, Q_charge descrip-
tors, Lipinski rule of fives, Kier indices, GCUT descriptors, SlogP descriptors, VSA
descriptors, SMR descriptors, and “other 2D descriptors.” The raw descriptor
values were standardized according to the training data distribution to pre-
vent bias due to different value ranges.

SPiDER Prediction. The respective query molecule was projected onto the
two SOMs trained with the corresponding molecular representation of the
COBRA compound set according to the winner-takes-all rule (54) using in-
house Java code. The projection defined the relevant cluster of reference
compounds (the query’s local domain). To score a target C, only the set CΘ

of coclustered reference compounds labeled to bind this target C was
considered. Euclidean distances dxy from each reference ligand x in CΘ to
the query molecule y were calculated in descriptor space and transformed
into P values P(D ≤ dxy). The empirical probability distribution P(D) of
pairwise distances between all reference compounds that are annotated
to not bind to the same target was precomputed to yield a distribution of
distances between the intertarget compounds as false-positive error
estimates for assuming that two molecules at a certain distance have
a common biomolecular target. The P values were averaged for all ligands
in CΘ, as motivated by the false discovery rate calculations for the multiple hy-
pothesis testing of individual pairwise comparisons (54). The score S for target C
is computed as Sðy,CÞ= 1−

P
x∈CΘ

PðD≤dxyÞ=jCΘj, in which a value of S close

to 1 indicates that the coclustered reference ligands are close to the query
compound in descriptor space. Individual scores were obtained for both mo-
lecular representations (SSOM1, SSOM2) (Fig. 2A) and were combined as an
arithmetic average: Sfinalðy,CÞ= 0:5 ðSSOM1+ SSOM2Þ. Predicting the targets for

all reference compounds generated a distribution of Sfinal, from which P
values for new predictions were computed based on the likelihood of
a certain confidence in the prediction of known drug targets. Note that
these P values are relatively high due to the likelihood of a more realistic
null hypothesis in our background distribution compared with other
approaches that report the P value as a measure of significance, such as the
random shuffling in sequence alignment (55) or the random assembly of
ligand sets in the target prediction by SEA (24).

Table 1. Drug targets predicted by SPiDER for amprenavir, compound 1, and compound 2 with P < 0.05

Amprenavir Compound 1 Compound 2

NK1–3 (0.021) Cholecystokinin A/B receptor (0.017) Opioid δ, κ, μ receptor (0.014)
20S proteasome (0.023) Bradykinin receptor B1 (0.018) Dipeptidyl peptidase IV (0.025)
Nav1.7 channel (0.027) TRPV1 and 4 (0.020) CCR1, 3, 5 receptor (0.026)
Aspartic endopeptidasea,b,c (0.027) Vasopressin receptor 1A, 1B, 2 (0.020) FSH/GnRH receptor (0.027)
Protein tyrosine phosphatase 1B (0.028) FSH and GnRH receptor (0.028) TRPV1, 4 and 8 (0.028)
Cholecystokinin A/B receptors (0.029) Cysteine endopeptidased,e (0.028) Serine endopeptidase and proteasef,g,h (0.031)
α4β1 integrin (0.029) Serine endopeptidasef,g (0.033) Bradykinin receptor B1 (0.031)
Oxytocin receptor (0.029) Aspartic endopeptidasec (0.033) Aspartic endopeptidasec (0.034)
Serine endopeptidasef (0.029) NK1–3 (0.038) NK1 and NK2 (0.035)
Tyrosine kinasei (0.033) Oxytocin receptor (0.042) Urokinase plasminogen activator surface receptor (0.036)
Cysteine endopeptidased,j (0.034) Na+v1.7 channel (0.048) Histone deacetylase (0.040)
Bombesin receptor 1/2 (0.039) Capsid assembly inhibitor (0.042)

Serine threonine kinasek (0.043)
α4β1 integrin (0.045)
RasFTase (0.048)

P values are in parentheses.
aIncludes cathepsin D, HIV protease, Pol polyprotein, and SIV protease.
bIncludes endothiapepsin and saccharopepsin (proteinase A).
cIncludes plasmepsins, renin, and secretase (Abeta secretion).
dIncludes calpain, cathepsins B, K, L, and S, cruzain, falcipain, picornavirus 3C-like protease, and virus 3C protease.
eIncludes caspase 1.
fIncludes elastase, factor Xa, and thrombin.
gIncludes β-tryptase, chymase, factor IXa, trypsin, tryptase, and urokinase.
hIncludes factor VIIa.
iIncludes c-Src, LCK, and VEGFR1.
jIncludes papain.
kIncludes CDK, NF-κB, MAPK14, NF-protein kinase B and C, and rho kinase.
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Fig. 4. Reference B1 receptor antagonists. Compound 3 is the CATS refer-
ence for both 1 and 2. Compound 4 is the MOE reference for 1, and 5 is the
MOE reference for 2.
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Retrospective Evaluation. Stratified 10-fold cross-validation was performed
(38). For each fold, the model fitting included standardizing the descriptors
according to the training fold, retraining the SOMs, and estimating the
background distance distributions. A prediction was considered successful if
all annotated targets of a test compound were predicted with a confidence
score of P < 5%. Scores for all compounds from the cross-validations were
merged to calculate the ROC curves and to integrate them numerically with
the trapezoid method for AUC calculation using in-house Java code.

Synthesis of (2R,3R)-(R)-1-Tosylpyrrolidin-3-yl 3-((tert-Butoxycarbonyl)Amino)-
2-Hydroxy-4-Phenylbutanoate (Compound 1). (2R,3R)-3-(Boc-amino)-2-hydroxy-
4-phenylbutyric acid (1.0 molar equivalent) and (R)-1-tosylpyrrolidin-3-ol (2.0
molar equivalent) were dissolved in dry tetrahydrofuran (18 mL/mmol car-
boxylic acid). Triphenylphosphine (0.8 molar equivalent) and diethyl azodi-
carboxylate (0.8 molar equivalent) were added to the solution. The mixture was
heated under microwaves (150 W) for 30 min. The crude mixture was washed
with water and purified via preparative HPLC using a gradient of 50–75%

(acetonitrile: H2O + 0.1% trifluoroacetic acid in each solvent) run over 16 min.
White solid, mp = 106–107 °C, 42% (Fig. S3A).

Synthesis of (2R,3R)-(R)-1-Tosylpyrrolidin-3-yl 3-Amino-2-Hydroxy-4-Phenylbutanoate
(Compound 2). Compound 1 (0.04 mmol) was cooled to 0 °C under nitrogen.
A 4-N solution of HCl in dioxane (1 mL) was added, and the suspension was
stirred at room temperature for 15 min. The solvent was evaporated under
a nitrogen stream, and the crude product was purified via preparative HPLC
(ACN/H2O + 0.1% formic acid – 30–95% ACN gradient run over 16 min) to
afford 2. White oil, 55% (Fig. S3B).
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