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A current challenge in RNA structure prediction is the description
of global helical arrangements compatible with a given secondary
structure. Here we address this problem by developing a hier-
archical graph sampling/data mining approach to reduce con-
formational space and accelerate global sampling of candidate
topologies. Starting from a 2D structure, we construct an initial
graph from size measures deduced from solved RNAs and junction
topologies predicted by our data-mining algorithm RNAJAG trained
on known RNAs. We sample these graphs in 3D space guided by
knowledge-based statistical potentials derived from bending and
torsion measures of internal loops as well as radii of gyration for
known RNAs. Graph sampling results for 30 representative RNAs
are analyzed and compared with reference graphs from both
solved structures and predicted structures by available programs.
This comparison indicates promise for our graph-based sampling
approach for characterizing global helical arrangements in large
RNAs: graph rmsds range from 2.52 to 28.24 Å for RNAs of size 25–
158 nucleotides, and more than half of our graph predictions im-
prove upon other programs. The efficiency in graph sampling, how-
ever, implies an additional step of translating candidate graphs into
atomic models. Such models can be built with the same idea of
graph partitioning and build-up procedures we used for RNA design.

RNA 3D graph | Monte Carlo simulated annealing | RNA 3D prediction

The heightened interest in RNA biology with demonstrated
successful applications to medicine and technology has pre-

sented new challenges to computational scientists in RNA struc-
ture prediction. Though general automated prediction of RNA
tertiary (3D) structure from the primary sequence remains elusive,
many effective approaches exist for analyzing and describing 3D
RNA structures as well as predicting reasonably 3D aspects of
small RNAs, ranging from coarse-grained modeling (1) to various
structure assembly (2), energy minimization (3), molecular dy-
namics (4), and other conformational sampling approaches (5, 6).
Interest in RNA structure prediction and its modular archi-

tecture has also led to many analyses of RNA local structure
(7–12). In particular, several studies have focused on the helical
arrangements formed by internal loops, important points of
flexibility that can affect the overall 3D shape of RNAs. Indeed,
the bending and torsion of helical arms connected by internal
loops define unique helical conformations, as analyzed by Al-
Hashimi and coworkers (7), Tang and Draper (8), Hagerman
and coworkers (9), and Olson and coworkers (10). Recently, Pyle
and coworkers (11) reported a pseudotorsional angle database
from local RNA backbone geometry, and Sim and Levitt (12)
cataloged preferred helical arrangements among nucleotide frag-
ment assemblies given a secondary (2D) conformation. However,
extensive topological and geometrical analyses over a large diverse
set of RNAs do not exist.
To such endeavors, mathematical and computational tools

have been applied, including graph theory depictions of RNA 2D
structure, pioneered by Waterman (13), Nussinov and coworkers
(14), and Shapiro and Zhang (15). Our RNA-As-Graphs (RAG)
resource represents RNA 2D structures as planar tree or dual
graphs to assist the cataloging, analyzing, and designing of RNA
structures (16, 17). Interesting applications, such as prediction of

RNA-like topologies (18, 19), in silico modeling of in vitro se-
lection (20), large viral RNA analysis (21), and riboswitch
analysis and design (22), have been reported by various groups.
The main advantage of graphs is the drastic reduction of the
RNA conformational space (i.e., topology or motif space vs.
Cartesian space). Simplified graph representations, though in-
capable of capturing full details of RNA’s rich 3D architecture,
can nonetheless allow enumeration and classification of RNA
structures according to motifs, and thereby facilitate cataloging
and design applications (16, 17).
Here we pursue an innovative graph application that exploits

the significant size reduction for accelerated conformational
sampling to generate a first-level graph approximation to an
RNA 3D structure (Fig. 1). Essentially, we develop 3D graphs
with size measures that extend our prior planar graph objects and
sample these graphs in 3D space guided by knowledge-based
statistical potentials based on structural analyses of solved
RNAs. This combination requires several new ingredients: def-
inition of 3D graphs (Fig. 2A and SI Appendix, Fig. S1);
analysis of high-resolution RNA structures to formulate statistical
potentials based on size, bending, torsion of internal loops, and
radii of gyration measures (Fig. 2B); setup of initial tree graphs
based on size measures and junction topology predictions by
RNAJAG (Fig. 1A) (23); Monte Carlo/Simulated Annealing
(MC/SA) sampling of graphs (Fig. 1B); and candidate assess-
ment—comparison of final graphs to translated graphs obtained
from experiment or ensemble graphs generated in the absence of
experimental references (Fig. 1C). These aspects are described
here based on statistical analysis performed on a high-resolution
set of 1,181 hairpin loops [single-stranded (ss) regions adjacent
to one helix], 2,118 internal loops (ss regions connecting two
helices), and 244 junctions (ss regions connecting three or more
helices), derived for a set of 781 solved RNAs (SI Appendix).

Significance

RNA molecules are important components of the cellular ma-
chinery and perform many essential roles, including catalysis,
transcription, and regulation. Because the structural features
are intimately connected to their biological functions, there is
great interest in predicting RNA structure from sequence.
Present RNA 3D folding algorithms are limited to small RNA
structures due to inefficient sampling of RNA structure space.
We report a computational approach to predict RNA 3D to-
pologies based on hierarchical sampling of RNA 3D candidate
topologies represented as 3D graphs guided by geometrical
measures based on known structures. The combination of tools
shows great promise for assembling global features of RNA
architecture. Applications to RNA design can be envisioned.
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This analysis reveals local and global relationships for size,
bending, torsion, and radii of gyration (Fig. 2B). Namely, the
sizes of helices, hairpins, internal loops, and junctions (measured
as distances between vertices) increase linearly as the corre-
sponding lengths (measured in bases for loops and junctions and
base pairs for helices) increase. The bending and torsion angles of
two helices adjacent to internal loops depend on the lengths of the
two single strands of internal loops (denoted as L and R, where
L ≤ R in base units; Fig. 2B). For example, in short loop sizes with
L = 0 and R = 1, bending and torsion angles average as 23± 228
and 148± 378, respectively; corresponding values for long loops
with L = 3, R = 4, average as 34± 338 and 113± 498, respectively.
The radii of gyration of RNA 3D graphs increase logarithmically
with the RNA length and the vertex number of 3D graphs.
These measures, along with our junction data-mining approach

(RNAJAG) (23), are combined to develop a RAG-based graph
sampling method for structure assembly (Fig. 1). Given a 2D
structure as input, we extend RAG tree graphs to represent all
helical arrangements (e.g., parallel, antiparallel, perpendicular
orientations) by adding vertices to helical ends. We scale each
edge to represent helix lengths and sizes of unpaired regions and
lock junction parts of initial graphs, if present, by predicting the
three-way and four-way junction families by RNAJAG (23). The
three- and four-way junctions are classified into families—A, B,
and C for three-way, and H, cH, cL, cK, π, cW, ψ, cX, and X for
four-way junctions—according to resulting topologies (SI Ap-
pendix, Fig. S2) (23). We then sample RNA 3D space by MC/SA
guided by our knowledge-based statistical potentials (SI Appen-
dix, Figs. S3–S5) to predict overall helical arrangements to pro-
duce candidate 3D graphs. Our two MC/SA protocols are based
on restricted pivot moves (from 360° to 10° reciprocally along

MC steps), which converge to one region of conformational space
as well as random pivot moves, requiring further clustering analysis.
We assess results for a representative set of 30 solved RNAs

that range in size from 25 to 158 nt and span diverse motifs, from
a linear structure with internal loops to a compact four-way
junction (Table 1 and SI Appendix, Table S1). Our predicted
graphs are compared with reference graphs constructed from
solved structures by graph-based rmsds. Graph rmsds for these
RNAs range from 1.37 to 14.56 Å (restricted moves), 1.30–12.57 Å
(random moves), and 2.52–28.24 Å (lowest-scored cluster rep-
resentative, random moves) compared with 1.22–27.13 Å using
best results from MC-Sym (2), FARNA (3), and NAST (1). In all
cases, our graphs improve upon other programs for more than
half of the test cases. These results indicate overall promise for
our graph sampling approach for constructing global architectures
of RNAs. The translation of predicted graphs into atomic models
can be addressed using our build-up process based on graph
partitioning (23) (Fig. 1D).

Results
We assess candidate graphs before and after MC/SA for our 30
test RNAs in Table 1 and SI Appendix, Table S2 and Fig. S6.
After MC/SA, we compare results to 3D graphs of solved RNAs
by three procedures (P1–P3). P1 directly compares the lowest-
graph rmsd among the final pool of accepted graphs to the ref-
erence graph translated from the solved structure. P2 compares
our lowest-scored graph among accepted graphs to the reference
graph. For random moves, conformational space is more globally
sampled compared with restricted moves, and additional clus-
tering is required to select a representative graph from among
five clusters (P3) (Fig. 3). We choose five clusters because this
yields silhouette coefficients (24) greater than 0.4 for all 30
RNAs, indicating satisfactory clustering (SI Appendix, Table S3).
These procedures uncover interesting relationships between
rmsd/score landscape and the nature of the RNA (self-folding,
protein-binding, etc.). Because prior work (23) and our statistical
analyses here show that graph rmsds are positively correlated to
all-atom rmsds, our assessment of candidate topologies based on
graph rmsd is fair.

Graphs Before MC/SA Sampling. Following graph scaling by size
measures and junction predictions by RNAJAG (23), our graphs
present reasonable starting candidate topologies for MC/SA.
Table 1 shows that initial graph rmsds range from 2.42 [Protein
Data Bank (PDB) ID code 2IPY] to 46.11 Å (PDB ID code 1GID).
Though internal loop geometries are further optimized by MC

sampling, edge lengths and imperfect junction predictions are
not changed further. Edge lengths are mostly well-estimated
except for RNAs bound to proteins or other ligands. For ex-
ample, the estimated edge length for the internal loop of the box
C/D RNA–protein complex (1RLG) is short (19.9 Å vs. 24.8 Å).
For RNAs with junctions (12 of 30 test RNAs), junction

families and coaxial stacking are generally predicted well by
RNAJAG (23) based on a collective training set of 244 junctions.
RNAJAG was developed by a 10-fold cross-validation that ex-
cluded each junction in turn when predicting its topology. That
protocol yielded good accuracy: prediction accuracy for coaxial
stacking was 95%/92% in three-way/four-way junctions and,
for family type, 94%/87% in three-way/four-way junctions (23).
However, for the unique junction topology 1LNG not repre-
sented by other junctions in the training set, family A and coaxial
stacking in H1H2 were predicted instead of correct family C and
coaxial stacking in H1H3 (23), as also predicted here using the
collective training set. (If this incorrect junction would have been
used here, there would be 23.77 Å rmsd before MC/SA compared
with 6.20 Å in Table 1 and 17.12 Å after MC/SA compared with
14.56 Å in Table 1.) Note that even when a correct junction to-
pology is predicted, geometric differences can result with respect
to helix orientations. Overall, size measures and junction predictions
provide good starting points for MC/SA, which tends to improve the
internal loop geometries and overall 3D topologies.

Fig. 1. Hierarchical MC/SA sampling protocol. (A) Given a 2D structure, an
initial planar graph embedded in 3D is constructed by scaling the edges of
a 2D tree graph according to size measures. The three-way and four-way
junction helical arrangements and coaxial stacking are predicted by RNAJAG
(23). (B) From junction geometries and edge lengths, initial planar tree
graphs are subject to MC/SA in 3D space guided by knowledge-based sta-
tistical potentials for bending and torsion angles of internal loops and radii
of gyration. (C) Candidate graphs after MC/SA are selected by lowest rmsd,
lowest score, or lowest cluster representatives, and compared with reference
graphs translated from solved RNAs. (D) All-atom models are constructed by
graph partitioning, fragment search, and assembly of corresponding all-
atom modules in 3D-RAG.
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Graphs After MC/SA Sampling with Knowledge of Reference Graphs.
For our 30 test RNAs, we run 104 steps of MC for both restricted
pivot moves (which converge to one region of conformational
space) and random pivot moves (which explore multiple regions
of space and thus requires clustering analysis; SI Appendix, Figs.
S7 and S8). The total acceptance ratio is 40–60% for the former
and 30–50% for the latter.
For rmsds relative to reference graphs (P1 in SI Appendix,

Table S2), lowest values range from 1.37 Å (1I6U) to 14.56 Å
(1GID) using restricted moves (<6 Å for 25 of 30 RNAs) and
1.30 Å (2PXB) to 12.57 Å (2LKR) using random moves (<6 Å
for 26 of 30 RNAs). Thus, graph sampling using knowledge-
based statistical potentials can approach reasonably the topology
of native-like RNAs. Fig. 3 and SI Appendix, Fig. S9 present
corresponding landscapes—score vs. rmsd from experimental
structure graph and score vs. rmsd from lowest-scored graph.
These landscapes indicate downhill shapes when the experi-
mental structure is known for most RNAs except protein-bound
RNAs and RNAs with inaccurate junction predictions. When
lowest-scored graph is used as reference instead, all landscapes
are downhill in shape by design.

Assessment of MC/SA Results Without Knowledge of Reference
Graphs. In a true prediction, the reference graph is not known,
and lowest scores can be used instead. Our analysis shows that

whereas low-scored clusters correlate to low rmsds, individual
scores do not always correspond to lowest rmsds (Table 1). Thus,
we consider both lowest-scored graphs (P2) and lowest-scored
graph representatives among five clusters (P3, for random
moves) as references for the rmsds given in Table 1 and SI Ap-
pendix, Table S2.
For P2, graph rmsds range from 2.38 Å (2IPY) to 30.89 Å

(2LKR) for restricted moves (P2 in Table 1) and 2.29 Å (2IPY)
to 28.63 Å (1GID) for random moves (P2 in SI Appendix, Table
S2). Although these graph rmsds are higher than lowest rmsds
compared with solved RNAs (P1 in SI Appendix, Table S2), lowest
scores provide reasonable predictions of RNA 3D topologies.
Fig. 3 and SI Appendix, Fig. S9 show clustered landscapes with

respect to graph rmsds from lowest-scored graphs based on
random moves. Representative graphs from five clusters sorted
by score from low to high offer candidate 3D topologies in the
absence of solutions (SI Appendix, Table S4). For example, for
L1 protein–mRNA binding RNA (1ZHO), the lowest-scored
graph has 7.46 Å but the representative graph of cluster 3 has
3.99 Å. For most cases, representative graphs with lower scores
have low rmsds from the reference graph (SI Appendix, Table
S4). Representative graphs from cluster 1 have rmsds ranging
from 2.52 Å (1I6U) to 28.24 Å (1GID) (P3 in Table 1), similar to
lowest-scored graphs (P2).

Fig. 2. (A) RNA 3D graph representations. Helix ends (cyan) and centers of unpaired regions (hairpins, internal loops, and junctions; blue) are translated into
two different classes of vertices. Coordinates for each helix end are defined by the origin of each terminal base pair (O′) (27). Helices are translated to edges.
The vertex coordinate representing a hairpin is defined by an average of C1′ atoms of all unpaired bases of a hairpin loop. The Cartesian centroid (C) of an
n-way junction is an average of coordinates of n adjacent vertices for n helix ends, as illustrated for internal loops, three-way, and four-way junctions. Edges
connect a centroid vertex to adjacent vertices of the proximal helix ends. The three- and four-way junction topologies are predicted by RNAJAG (23). (B)
Knowledge-based statistical potentials for bending and torsion of internal loops, and radii of gyration of an RNA 3D graph. An internal loop between double-
stranded regions (v1 and v3) connected by a bulge (v2) is defined by L and R bases, where L ≤ R. The bending angle θ is between v1 and v3, and the dihedral
angle τ is between v1 and v3 along v2. These angles relate to the size and symmetry of L and R. The radii of gyration measure global compactness by the mean
distance from each vertex to the center of mass of all vertices.
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To understand these clustering results, we investigate in Fig. 4
and Table 1 landscapes with respect to graph rmsd from native
structures and the correlation coefficient, r, between score and
graph rmsd from native structures (r ranges from −1 to 1). A
positive coefficient indicates high accuracy; a coefficient near
zero indicates no correlation between graph rmsd and score; and
a negative coefficient indicates a less-accurate prediction than
random selection. For 25 of 30 cases, we have positive correla-
tions between graph rmsd and score (Table 1), with 16 having
r > 0.5 and classic downhill landscapes. For example, the iron-
responsive element (2IPY) has r = 0.96 (Fig. 4A). For protein-
binding RNAs or inaccurate junction topology cases, the correlation
is neutral (i.e., 0≤ r< 0:5) or negative. In these cases, corre-
sponding landscapes are downhill in part or flat. For example,
mRNA–L1 ribosomal RNA complex (1ZHO) and the thiamine
pyrophosphate riboswitch with three-way junction (3D2G) have
values of 0.2 and −0.42, respectively (Fig. 4 B and C).

Comparison with Other Tools. Programs MC-Sym (2), FARNA (3),
and NAST (1) produce all-atom models from 2D structures
based on fragment libraries (MC-Sym and FARNA) or one-bead
models (NAST). Though these tools predict small structures
(<40 nt) reasonably, errors increase as RNA lengths increase (6).
Here, we translate predicted all-atom models from these pro-
grams to 3D graphs and compute graph rmsds between these

graphs and our predictions in Table 1 and SI Appendix, Table S2.
We had already showed that graph rmsds are comparable to all-
atom rmsds in junctions (23) (see also below).
For lowest rmsd graphs (P1), our candidates have the lowest

graph rmsds for 27 of 30 RNAs for both MC/SA protocols. For
the three RNAs (2IPY, 1S03, and 2GIS), the difference in graph
rmsd between our approach and the other tools is less than 0.7 Å.
For lowest-scored graphs (P2), our approach outperforms other
programs for 16 and 14 of 30 RNAs, for restricted and random
moves, respectively; our lowest cluster representatives (P3) based
on random moves similarly yield 16 of 30 RNAs with lowest rmsd
among all predictions; MC-Sym, FARNA, and NAST have best
results for seven, five, and two structures, respectively (Table 1).
Thus, our P2 based on restricted moves and P3 (with random
moves) emerge as best approaches when the solution is not known.
How valid is our assessment of candidate graphs with respect

to predicted graphs (translated from solved structures) rather
than predicted atomic models vs. solved atomic models? To
supplement our discussion of this point in ref. 23, we analyze
correlations between graph and all-atom rmsds using results
from three all-atom modeling tools for 30 RNAs in SI Appendix,
Fig. S10: graph and atomic rmsds are positively correlated; the
slope from the linear regression of graph rmsd with respect to
all-atom models is 0.89. For example, the graph and all-atom
rmsds of 1MFQ are very similar: 35.94 Å and 35.28 Å for MC-
Sym; 21.30 Å and 16.48 Å for FARNA; and 29.64 Å and 27.76 Å
for NAST. However, graph rmsds are smaller than all-atom
rmsds (intercept value of the linear regression of graph rmsd
with respect to all-atom rmsd is −3.10), because vertices rather
than atoms are compared, and terminal regions that exhibit
variations are not compared. Thus, overall similarity between
structures can be captured by graph rmsds.

Discussion
We have presented a hierarchical computational approach for
one aspect of the challenging task of RNA structure prediction
by predicting global helical arrangements in RNA using graph
sampling. First, we define RNA 3D graphs by representing helix
ends and unpaired regions as vertices and connecting them by
edges, thereby capturing both 2D topologies and 3D geometries.
Second, we develop knowledge-based potentials to connect 2D
topologies to their 3D geometries. Third, we set up initial planar
graphs embedded in 3D from a given 2D structure based on junc-
tion prediction and edge length estimation using RNAJAG (23).
Fourth, we sample graph conformations in 3D space by MC/SA
based on restricted or random pivot moves, score them by our
statistical potentials, and predict global helical arrangements using
clustering analysis. The final predictions consist of graphs or graph
cluster representatives, which we compare with graphs of the
solved structure (P1) or to our lowest-scored graphs (P2 and P3).
RNA 3D graphs allow us to quantify 3D global geometrical

features such as size and helical angles. The distributions of 3D
geometrical parameters correlate to 2D structures, which provide
a reasonable scoring system for predicting preferences of helical
arrangements. Our sampling based on geometric statistical
potentials produces graphs whose 3D shapes resemble native
structures, and the lowest-scored graphs are also reasonably se-
lected without knowledge of reference graphs. In most cases, the
relationship between scores and graph rmsd from native structures
is positive, so the lowest-scored cluster representative predicts 3D
topologies close to the native structures (Table 1). Several struc-
tures including protein-binding RNAs (e.g., 1RLG, 1MJI, and
1ZHO) are better predicted by other representative graphs in
higher-scored clusters; in these cases, our scores and graph rmsds
from native structures have neutral or negative correlations. In
general, rmsd values are larger for RNAs than proteins because
RNAs occupy more volume per unit mass compared with proteins,
and thus small perturbations in RNA can induce large rmsds.
Our approach exploits coarse-grained graph motifs to reduce

the conformational space significantly to facilitate a systematic
search in global topology space. Our MC/SA sampling protocols

Table 1. Graph results for 30 test RNAs

Shown are rmsds between reference graphs from solved structures and
our sampled graphs by MC/SA—initial, lowest score (P2, restricted moves)
and lowest cluster representative (P3, random moves) after MC/SA—along
with correlation coefficients between rmsd and score (r). Compared with
predictions by MC-Sym (2), FARNA (3), and NAST (1), best rmsds for our P2
are shown in bold, and our P3 in gray highlight. See SI Appendix, Table S2 for
other assessment protocols (N/A, program fails).
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sample RNA-like graphs efficiently: compared with other all-
atom prediction tools, our lowest-rmsd graphs have best graph
rmsds for 27 of 30 test RNAs. Without knowledge of reference
graphs, our lowest-scored graphs or lowest-cluster representa-
tives yield best rmsds for more than half (∼16) of the RNAs
(compared with seven or less for other prediction tools). Because
graph rmsds are positively correlated to all-atom rmsds (SI Ap-
pendix, Fig. S10), a comparison between graphs rather than atomic
models is reasonable to assess the accuracy of prediction (23).
Though 3D tree graphs cannot handle pseudoknots, we can

approximate global interactions due to pseudoknots by closer
distances between the two interconnected strands. The distance
between two loops when they form a pseudoknot is small, as shown
in reference graphs and lowest-rmsd graphs of rRNA fragment
(1MZP) and hepatitis delta virus ribozyme (1SJ4) in SI Appendix,
Fig. S9. The loop–loop, loop–helix, helix–helix distances can further
suggest other long-range interactions (e.g., kissing loops, loop–
receptor, A-minor).
Of course, atomic models rather than 3D graphs are ultimately

desired. Our hierarchical method based on graph partitioning

shows that this translation into atomic models is feasible (23).
Our build-up approach based on 3D-RAG, an extension of the
RAG database containing solved 3D coordinates, essentially com-
bines 3D fragments of subgraphs associated with 3D coordinates
based on a search for graph isomorphisms. We select a graph
partitioning based on lowest rmsds with corresponding 3D coor-
dinates of the subgraph, add or substitute bases to match the target
subsequences, and merge the substructures to form a final all-atom
candidate for the entire target graph (Fig. 1D). This model can be
further relaxed by energy minimization or dynamics simulations.
Our restricted-move protocol P2 and clustering approach P3

using lowest scores among five clusters work well (Table 1, Figs.
3 and 4, and SI Appendix, Fig. S9). For protein-free RNAs,
correlations between graph rmsds and scores are positive. How-
ever, improvements can be envisioned to account for nondownhill
landscapes in the case of protein-binding and junction structures.
Namely, the scoring function values for size, bending, and torsion
angles could be different from protein-free cases. In addition,
our prediction of RNA junctions could be extended from the
current three discrete models: parallel ð1808Þ, perpendicular

Fig. 3. Predicted graphs before and after MC/SA based on random pivot moves—best graph with lowest rmsd from reference graph (P1), lowest-scored
graph (P2), and lowest cluster representative (P3) of landscapes with respect to lowest-scored graph for (A) 1MJI (34 nt, 5S rRNA), (B) 2PXB (49 nt, signal
recognition particle), (C) 1LNG (97 nt, signal recognition particle), and (D) 1GID (158 nt, group I intron P4–P6). Gray highlights indicate lower rmsds than all-atom
predictions. Landscapes with respect to lowest-scored graphs and native structure are also shown. See SI Appendix, Fig. S9 for graph results for all 30 test RNAs.
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ð908Þ, and diagonal ð458Þ helical arrangements because helical
orientations are continuous rather than discrete.
Our hierarchical graph-sampling approach already serves well

as a first-order approximation for large RNAs. To better predict
large and complex RNAs, ongoing work includes determination
of higher-order junction topologies, exhaustive rather than sto-
chastic sampling of 3D graph space, and improvement of scoring
functions based on geometrical parameters containing long-
range interactions as well as separation of self-folding RNA
parameters from those for protein- or substrate-binding RNAs.
Combined with other improvements such as more accurate 2D
folding algorithms, our hierarchical graph-sampling approach
could address 3D topology predictions for large RNAs.

Materials and Methods
Full details can be found in SI Appendix.

Junction Prediction. We determine the coordinates of junction vertices (one
for the junction loop center and 2n for n-way helices) using the RNAJAG
program (23). RNAJAG predicts three- and four-way junction topologies as
a function of sequence and length using a random forest data-mining ap-
proach with a 10-fold cross-validation procedure trained by known junc-
tions. Here we use a collective training set including all 244 known junctions
to develop a uniform junction prediction protocol applicable to all RNAs.
The three-way junctions are classified into three families by helical config-
urations: A (perpendicular), B (diagonal), and C (parallel) (SI Appendix, Fig. S2)
(25). The four-way junctions are classified into nine major families: H, cH, cL, cK,
π, cW, ψ, cX, and X (26). See SI Appendix, Fig. S2 for H (parallel), cH (crossed and
parallel), π (diagonal), and cL (crossed and perpendicular) families. Once
the junction topologies are determined, RNAJAG sets up the coordinates of
junction vertices for initial planar tree graphs by the size measures.

MC/SA Sampling of 3D Graphs. We use hierarchical sampling approaches
using our knowledge-based statistical potentials built from bending and
torsion angles of internal loops and radii of gyration based on RNA 3Dgraphs.
See SI Appendix for a detailed description of RNA 3D graphs and statistical
potentials. The MC/SA consists of three steps: (i) set-up of initial tree graphs
given a 2D structure using size measures and junction prediction; (ii) MC/SA
sampling of RNA 3D graphs with two types of move protocols (restricted
pivot moves reciprocally decreasing angle ranges from 360° to 10° along MC
steps and random pivot moves) guided by the potential scores: if the score
for a new conformation is lower than that of the old conformation, the new
conformation is accepted. If the new score is higher, the simulated anneal-
ing sampling proceeds: the move for each step j is accepted with probability
Pð jÞ= 2Ej=Tj , where Ej is the score difference from new to old conformations
and the decreasing system temperature Tj = c/log2(1 + j/s) where s is the total
MC step, and c = 1/4log2(10) (for restricted moves) or c = 1/log2(10) (for
random moves); (iii) assessment of resulting sampled graphs by three pro-
cedures: lowest rmsd from known structures (P1), lowest-scored graph (P2),
and lowest-scored cluster representative for five clusters (P3).
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Fig. 4. Clustered energy landscape and correlation between score and
graph rmsd from native structure for three cases. (A) Typical positive cor-
relation (2IPY, r = 0.96, also for 1OOA, 2IPY, 1MJI, 1I6U, 1F1T, 1S03, 1XJR,
2PXB, 2OIU, 1MZP, 2HGH, 1DK1, 1D4R, 1KXK, 1P5O, and 1MFQ). (B) Neutral
correlation (1ZHO, r = 0.20, also for 1RLG, 2OZB, 2HW8, 1ZHO, 1U63, 1SJ4,
2LKR, and 1GID). (C) Negative correlation (3D2G, r = –0.42, also for 1MMS,
3D2G, 2HOJ, 2GDI, and 2GIS). Red horizontal lines mark scores of the native
structure. (Lower) Representative graphs (red) from clusters with native-like
scores are superimposed upon solved structures (gray).
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