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Research teams are the fundamental social unit of science, and yet
there is currently no model that describes their basic property:
size. In most fields, teams have grown significantly in recent
decades. We show that this is partly due to the change in the
character of team size distribution. We explain these changes with
a comprehensive yet straightforward model of how teams of
different sizes emerge and grow. This model accurately reprodu-
ces the evolution of empirical team size distribution over the
period of 50 y. The modeling reveals that there are two modes of
knowledge production. The first and more fundamental mode
employs relatively small, “core” teams. Core teams form by a Pois-
son process and produce a Poisson distribution of team sizes in
which larger teams are exceedingly rare. The second mode employs
“extended” teams, which started as core teams, but subsequently
accumulated new members proportional to the past productivity of
their members. Given time, this mode gives rise to a power-law tail
of large teams (10–1,000 members), which features in many fields
today. Based on this model, we construct an analytical functional
form that allows the contribution of different modes of authorship
to be determined directly from the data and is applicable to any
field. The model also offers a solid foundation for studying other
social aspects of science, such as productivity and collaboration.

team science | cumulative advantage

Contemporary science has undergone major changes in the
last half century at all levels: institutional, intellectual, and

social, as well as in its relationship with society at large. Science
has been changing in response to increasingly complex problems
of contemporary society and the inherently challenging nature of
unresolved questions, with an expectation to serve as a major
driver for economic growth. Consequently, the contemporary
science community has adopted a problem-driven approach to
knowledge production that often blurs the lines between pure and
applied, and is more permeable around disciplinary borders,
leading to cross-/multi/inter/transdisciplinarity (1). The major
staple of this approach is team effort (2–5). The increased
prominence of scientific teams has recently led to a formation of
research area, “science of team science,” which is “centered on
examination of the processes by which scientific teams orga-
nize, communicate, and conduct research” (6). If we want not
only to understand contemporary science but also to create and
promote viable science policies, we need to uncover principles
that lead to the formation and subsequent evolution of sci-
entific research teams.
Studies of collaboration in science, and coauthorship as its

most visible form, have a long history (7–11). The collaborative
mode of knowledge production is often perceived as being in
contrast to the individualistic mode of the past centuries (12, 13).
Previous studies have established that the fraction of coauthored
papers has been growing with respect to single-authored papers
(5), that in recent decades teams have been growing in size (14),
and that interinstitution and international teams are becoming
more prevalent (15, 16). In addition, high-impact research is
increasingly attributed to large teams (5, 6), as is research that
features more novel combination of ideas (17). The reasons for
an increase in collaborative science have been variously explained

as due to the shifts in the types of problems studied (1) and the
related need for access to more complex instruments and broader
expertise (15, 18, 19).
A research team is a group of researchers collaborating to

produce scientific results, which are primarily communicated in
the form of research articles. Researchers who appear as authors
on a research article represent a visible and easily quantifiable
manifestation of a collaborative, team science effort. We refer to
such a group of authors as an “article team.” In this study, we
focus on one of the most fundamental aspects of team science:
“article team size distribution” and its change/evolution over
time. (In the rest of the article, we will refer to an article team
simply as “the team.”) Many studies focused only on the mean or
the median sizes of teams, implicitly assuming that the character
of the distribution of team sizes does not change. Relatively few
studies examined full team size distribution, albeit for rather
limited datasets (10, 20, 21), with some of them noticing the
changing character of this distribution (10). The goal of the
current study is to present a more accurate characterization and
go beyond empirical observations to provide a model of scientific
research team formation and evolution that leads to the ob-
served team size distributions.
Despite a large number of studies of coauthorship and scien-

tific teams, there are few explanatory models. One such excep-
tion is the model by Guimerà et al. (2) of the self-assembly of
teams, which is based on the role that newcomers and repeated
collaborations play in the emergence of large connected com-
munities and the success of team performance. Although their
model features team size as a parameter, its values were not
predicted by the model but were taken as input from the list of
actual publications. The objective of the current study is to go
beyond the internal composition of teams to explain the features
of team size distribution and its change over the past half century.

Significance

Science is an activity with far-reaching implications for modern
society. Understanding how the social organization of science
and its fundamental unit, the research team, forms and evolves
is therefore of critical significance. Previous studies uncovered
important properties of the internal structure of teams, but
little attention has been paid to their most basic property: size.
This study fills this gap by presenting a model that successfully
explains how team sizes in various fields have evolved over the
past half century. This model is based on two principles: (i)
smaller (core) teams form according to a Poisson process, and
(ii) larger (extended) teams begin as core teams but conse-
quently accumulate new members through the process of cu-
mulative advantage based on productivity.
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Thus, the model we propose in this paper is complementary to the
efforts by Guimerà et al. Our model is based on several simple
principles that govern team formation and its evolution. The
validity of the model is confirmed by constructing simulated team
size distributions that closely match the empirical ones based on
150,000 articles published in the field of astronomy since the
1960s. We reveal the existence of two principal modes of knowl-
edge production: one that forms small core teams based on a
Poisson process, and the other that leads to large, extended teams
that grow gradually on the principle of cumulative advantage.

Empirical Team Size Distributions
The significant change in the character of team size distribution
is the key insight underlying the proposed model. Previous
studies have shown a marked increase in the mean team size in
recent decades, not only in astronomy (e.g., refs. 2 and 22), but in
all scientific fields (5). Specifically, the average team size in as-
tronomy grew from 1.5 in 1961–1965 to 6.7 in 2006–2010
(marked by arrows in Fig. 1, which shows, on a log-log scale,
team size distributions in the field of astronomy in two time
periods). However, Fig. 1 reveals even more: a recent distribu-
tion (2006–2010) is not just a scaled-up version of the 1961–1965
distribution shifted toward larger values; it has a profoundly
different shape. Most notably, although in 1961–1965 the num-
ber of articles with more than five authors was falling pre-
cipitously, and no article featured more than eight authors, now
there exists an extensive tail of large teams, extending to team
sizes of several hundred authors. The tail closely follows the
power-law distribution (red line in Fig. 1). The power-law tail is
seen in recent team size distributions of other fields as well (25).
In contrast, the “original” 1961–1965 distribution did not feature
a power-law tail. Instead, most team sizes were in the vicinity of
the mean value. The shape of this original distribution can in-
stead be described with a simple Poisson distribution (blue curve
in Fig. 1), an observation made in some previous works (10, 20).

Note that the time when the distribution stopped being Poisson
would differ from field to field.
We interpret the fact that the distribution of team sizes in

astronomy in the 1960s is well described as a stochastic variable
drawn from a Poisson distribution to mean that initially the
production of a scientific paper used to be governed by a “Pois-
son process” (26, 27). This is an intuitively sound explanation
because many real-world phenomena involving low rates arise
from a Poisson process. Examples include pathogen counts (28),
highway traffic statistics (29), and even sports scores (30). Team
assembly can be viewed as a low-rate event, because its re-
alization involves few authors out of a very large possible pool of
researchers. Poisson rate (λ) can be interpreted as a character-
istic number of authors that are necessary to carry out a study.
The actual realization of the process will produce a range of
team sizes, distributed according to a Poisson distribution with
the mean being this characteristic number.
In contrast, the dynamics behind the power-law distribution

that features in team sizes in recent times is fundamentally dif-
ferent from a simple Poisson process, and instead suggests the
operation of a process of “cumulative advantage.” Cumulative
advantage, also known as the Yule process, and as preferential
attachment in the context of network science (31, 32), has been
proposed as an explanation for the tails of collaborator and ci-
tation distributions (25, 32–38). Unlike the Poisson process, cu-
mulative advantage is a dynamic process in which the properties
of a system depend on its previous state. How did a distribution
characterized by a Poisson function evolve into one that follows
a power law? Does this evolution imply a change in the mode of
the team assembly? Does a Poisson process still operate today?
Fig. 1 shows that, for smaller team sizes ðk< 10Þ, the power law
breaks down, forming instead a “hook.” This small-k behavior
must not be neglected because the great majority of articles
(90%) are still published in teams with fewer than 10 authors.
The hook, peaking at teams with two or three authors, may
represent a vestige of what was solely the Poisson distribution in
the past. This simple assumption is challenged by the fact that no
single Poisson distribution can adequately fit the small-k portion
of the 2006–2010 team size distribution. Namely, the high ratio
of two-author papers to single-author papers in the 2006–2010
distribution would require a Poisson distribution with λ= 2Pk=2=
Pk=1 = 5:5. Such distribution produces a peak at k= 5, which is
significantly offset compared with its actual position. Evidently,
the full picture involves some additional elements.
In the following section, we present a model that combines the

aforementioned processes and provides answers to the questions
raised in this section, demonstrating that knowledge production
occurs in two principal modes.

Model of Team Formation and Evolution
We next lay out a relatively simple model that incorporates
principles of team formation and its evolution. We produce
simulated team size distributions based on the model and vali-
date them by testing how well they “predict” empirical dis-
tributions in the field of astronomy. This model is universally
applicable to other fields, as will be discussed later.
The model consists of authors who write papers over time.

Each paper has a “lead” author who is responsible for putting
together a team and producing a paper. Each lead author is
associated with two types of teams: “core” and “extended.” Core
teams consist of the lead author and coauthors. Their size is
drawn from a Poisson distribution with some rate λ. If the
drawing yields the number 1, the core team consists of the lead
author alone. We allow λ, the characteristic size of core teams, to
grow with time. Existing authors, when they publish again, retain
their original core teams. The probability of publishing by an
author who has published previously is 0.8. Unlike core teams,
extended teams evolve dynamically. Initially, the extended team
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Fig. 1. Distribution of article team sizes in astronomy in two time periods
separated by 45 y. The distribution from 1961 to 1965 is well described by
a Poisson distribution (blue curve). This is in contrast to 2006–2010 distri-
bution, which features an extensive power-law tail (red line). The arrows
mark the mean values of each distribution. For k> 10 (k> 5 for 1961–1965),
the data are binned in intervals of 0.1 decades, thus revealing the behavior
far in the tail, where the frequency of articles of a given size is up to million
times lower than in the peak. All distributions in this and subsequent figures
are normalized to the 2006–2010 distribution in astronomy. Error bars in this
and subsequent figures correspond to 1 SD. The full dataset consists of
154,221 articles published between 1961 and 2010 in four core astronomy
journals (listed in SI Materials and Methods), which publish the majority of
research in this field (23). Details on data collection are given elsewhere (24).
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has the same members as the core team. However, the extended
team is allowed to add new members in proportion to the ag-
gregate productivity of its current members. New extended team
members are randomly chosen from core teams of existing
members, or from a general pool if no such candidates are
available. The cumulative advantage principle that governs the
growth of extended teams will mean that teams that initially
happen to have more members in their core teams and/or whose
members have published more frequently as lead authors, will
accrete more new members than the initially smaller and/or less
productive teams. (We have tested several flavors of cumulative
advantage and found that the empirical distributions are best
reproduced when the growth follows the aggregate productivity
of all members as lead authors, rather than their productivity
that includes coauthorships.) This process allows some teams to
grow very large, beyond the size that can be achieved with
a Poisson process. The process is gradual, so very large teams
appear only when some time has passed. It is important that
extended teams do not replace core teams; they coexist, and the
lead author can choose to publish with one or the other at any
time. This choice is presumably based on the type or complexity
of a research problem. In simulation, we assume a fixed proba-
bility ðpext = 0:3Þ for an article to require an extended team. Core
and extended teams correspond to traditional and team-oriented
modes of knowledge production, respectively.
We also incorporate several additional elements to this basic

outline that brings the model closer to reality. First, the empirical
data indicate that in recent times there is an excess of two-author
papers over single-author papers, especially from authors who
have just started publishing. Apparently, such authors tend not to
publish alone, probably because they include their mentors as
coauthors. To reproduce such behavior, we posit in the model

that some fraction of lead authors will form their core teams by
adding an additional member to the number drawn from a Poisson
distribution. We call such teams “core +1 teams,” as opposed to
“standard core teams.” Furthermore, we assume that repeat pub-
lications are more likely from authors who started publishing more
recently. Finally, we assume that certain authors retire and their
teams are dissolved. However, the process of retirement is not
essential to reproduce the empirical team size distribution.
The model is implemented through a simulation of 154,221

articles, each with a list of “authors.” The number of articles is
set to match the empirical number of articles published within
the field of astronomy in the period 1961–2010. The sequence
in which the articles are produced in the simulation allows us to
match them to actual publication periods (e.g., articles with
sequential numbers 51,188–69,973 correspond to articles pub-
lished from 1991 to 1995). In Fig. 2, we show a compelling
match between the real data (dots with error bars) and the
predictions of our model (values connected by colored lines)
for three time periods (1961–1965, 1991–1995, and 2006–2010).
The model correctly reproduces the emergence of the power-
law tail and its subsequent increased prominence, as well as the
change in the shape of the low-k distribution (the hook), and
the shift of the peak from single-author papers to those with
two or three authors. The strongest departure of the model
from the empirical distribution is the bump in the far tail of the
2006–2010 distribution (around k = 200). We have identified
this “excess” to be due to several papers that were published by
a Fermi collaboration (39) over a short period. Note, however,
that only 0.6% of all 2006–2010 papers were published by teams
with more than 100 authors.
In addition to predicting the distribution of team sizes, the

model also produces good predictions for other, author-centric
distributions. Fig. S1 compares model and empirical distributions
for article per author (productivity), collaborator per author, and
team per author distributions, as well as the trend in the size of
the largest connected component. The latter correctly predicts
that the giant component forms in the early 1970s. Distributions
and trends based on the implementation of the team assembly
principles of Guimerà et al. (2) are also shown in Fig. S1 for
comparison (with team sizes supplanted from our model). They
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Fig. 2. Comparison between article team size distributions based on model
simulation (values connected by colored lines) and the empirical data
(points) for the field of astronomy in three time periods. Our model for the
formation and evolution of teams reproduces the observed distributions
remarkably well. The model assumes that each lead author forms a core
team through a Poisson process. Additionally, extended teams arise from
core teams by adding new members in proportion to the productivity of the
team. Team growth of productive teams then facilitates further team
growth. This process of cumulative advantage leads to the appearance of
the power-law component of large teams at later times. In the model, each
time a paper is produced the lead author can choose to work with his/her
core team or the extended team, thus leading to two main modes of
knowledge production. Interestingly, in our simulation, the probability of
choosing core or extended teams does not need to change over time
to match the data. Kolmogorov–Smirnov (KS) tests were run to formally
assess the match between the model and data. For the three time periods
shown, the maximum deviations are D = 0.11, 0.06, and 0.17, corresponding
to <1% of chance match. All distributions are normalized to the 2006–2010
distribution.
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Fig. 3. Distribution of article team sizes according to the generating author-
ship mode (for astronomy, 2006–2010). A lead author can choose to publish
with his/her core team or the extended team. The mode that involves core
teams dominates in articles with fewer than 10 authors. Furthermore, to ac-
curately reproduce the empirical distribution, it is necessary to assume two
types of core teams: standard and “core +1” teams. The latter type is also
drawn from a Poisson distribution but includes an extra member. The majority
of such articles are presumably produced by teams based around student–
mentor pairs.
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yield predictions of similar quality. Collaborator distribution has
been the focus of numerous studies (34–38). Here, we follow the
usual determination of collaborators based on coauthorship. In
the limiting case in which each author appears on only one ar-
ticle (which is true for the majority of authors over time periods
of a few years), the collaborator distribution, FC, is related to
team size distribution as follows: FCðnÞ= ðn+ 1ÞFðn+ 1Þ, where
F is the team size distribution. Therefore, the power-law tail in
the collaborator distributions, which has been traditionally
explained in the network context as the manifestation of the
“preferential attachment” in which authors with many collabo-
rators [“star scientists” (40)] have a higher probability of ac-
quiring new collaborators (nodes that join the network), may
alternatively be interpreted as authors (not necessarily of “star”
status) belonging to extended teams that grow through the mech-
anism of cumulative advantage.
Interestingly, the model predicts the empirical distribution

quite well (Fig. 2), even though we assumed that the propensity
to publish with the extended team has remained constant over
the 50-y period ðpext = 0:3Þ. This suggests a hypothesis that (at
least in astronomy) there always existed a similar proportion of
problems that would have required nonindividualistic effort, but
it took time for such an approach of conducting research to become
conspicuous because of the gradual growth of extended teams.
The model allows us to assess the relative contribution of

different modes of authorship. In Fig. 3, we separately show the
distribution of articles produced by both types of core teams and
the extended teams. By definition, “core +1” teams and ex-
tended teams start at k= 2, and therefore single-author papers
can only be produced in a standard-core team mode. Two-author
teams are almost exclusively the result of core teams with equal
shares of standard and “core +1” teams. The contribution of
“core +1” teams drops significantly for three or more authors,
which is not surprising if such teams are expected to be primarily
composed of student–mentor pairs. Standard core teams domi-
nate as the production mechanism in articles containing up to
eight authors, i.e., they make up most of the hook. Extended
teams become the dominant mode of production of articles that
include 10 or more authors; thus, they are responsible for the
power-law tail of large teams.

Analytical Decomposition of Team Size Distributions
Deriving the relative contribution of different types of teams as
performed in the previous section and shown in Fig. 3 requires
a model simulation and is therefore not practical as a means of
interpreting empirical distributions. Fortunately, we find (by testing
candidate functions using the maximum-likelihood method) that
the distribution of the articles produced by each of the three types
of teams can be approximated by the following functional form
equivalents: standard core and “core +1” teams are well de-
scribed by Poisson functions, FP1ðkÞ and FP2ðkÞ, whereas the
distribution of articles produced by extended teams is well
described by a power-law function with a low-end exponential
cutoff, FPL. Therefore, the following analytical function can
be fit to the empirical team size distribution to obtain its
decomposition:

FðkÞ=FP1ðkÞ+FP2ðkÞ+FPLðkÞ

=

8><
>:

n1
λk1e

−λ1

k!
; k= 1

n1
λk1e

−λ1

k!
+ n2

λk−12 e−λ2

ðk− 1Þ! + n3e−β=ðk−1Þk−α; k> 1:

[1]

In the above expression, λ1 and λ2 are the Poisson rates for
FP1ðkÞ and FP2ðkÞ, α is the power-law slope, and β determines the
strength of the exponential truncation. Relative normalization of
the three components is given by n1, n2, and n3. This expression
features six independent parameters. Although other analytical
functions can, in principle, also provide a good fit to the overall
size distribution, Eq. 1 is constructed so that each component
corresponds to a respective authorship mode. Furthermore, as
shown in Fig. S2, removing various components of Eq. 1 leads to
decreased ability to fit the empirical distribution.
The best-fitting functional form FðkÞ for the most recent team

size distribution in astronomy is shown in Fig. 4. The fitting was
performed using χ2 minimization. The overall fit is very good and
the individual components of Eq. 1 match the different modes of
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Fig. 4. Functional decomposition of the empirical article team size distri-
bution (for astronomy, 2006–2010). Different modes of authorship identified
by the model have their functional equivalents, thus allowing the empirical
determination of the contribution of each mode to the team size distribu-
tion. Core teams are well fit by Poisson functions, whereas the extended
teams are well fit by an exponentially truncated power-law component.
Based on the best-fitting function given in Eq. 1, for k< 100. KS test yields
D= 0:05, corresponding to <0:1% of chance match.
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Fig. 5. Functional fits (Eq. 1) to the article team size distribution in the fields
of mathematics, ecology, literature, social psychology, and for arXiv (for
2006–2010). All distributions are well fitted by the functional form that is
a sum of two Poisson functions and a truncated power law (Eq. 1), dem-
onstrating that the proposed analytical description is universal. Distributions
are normalized to the 2006–2010 distribution in astronomy, which is also
shown with its best-fitting function for comparison (without data points, for
clarity). A KS test yields D = 0.06, 0.17, 0.08, and 0.05 for ecology, mathe-
matics, social psychology, and arXiv, respectively, which all correspond to
<0:1% probability of chance match. Literature has too few points for
a KS test.
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authorship, as derived by the model (Fig. 3). By integrating these
components, we find that currently 57% of articles belong to FP1
and can therefore be attributed to standard core teams. Another
12% are due to “core +1” teams ðFP2Þ, whereas the remaining
31% of articles are fit by the truncated power-law component
ðFPLÞ and can therefore be interpreted as originating from
extended teams.
The principles that underlie the proposed model are universal

and not field dependent. Only the parameters that specify the
rate of growth or the relative strength of the processes will differ
from field to field. Consequently, the analytical decomposition
given by Eq. 1 can be applied to other fields. Fig. 5 shows the
best-fitting functions (Eq. 1) to the empirical team size dis-
tributions in the following fields: mathematics, ecology, social
psychology, literature, and for articles from arXiv, all for the
current period (2006–2010). Core journals used for these fields
are listed in SI Materials and Methods. All of the distributions are
well described by our model-based functional decomposition.
Parameters for the fit and contributions of different authorship
modes are given in Table 1. There is much variety. In litera-
ture, the standard core team mode accounts for nearly the entire
output (99%) with very small teams. Mathematics also features
relatively small teams and a steep decline of larger teams. Nev-
ertheless, the functional decomposition implies that 9% of arti-
cles are produced in the extended-team mode (see also Fig. S3),
but these teams are still not much larger than core teams (2.9 vs.
1.8 members on average). Mathematics and social psychology
feature the largest share of “core +1” teams. Team size dis-
tributions for ecology and social psychology both have more
prominent power-law tails than mathematics ðα∼ 4Þ, but they are
not yet as extensive as in astronomy ðα∼ 3Þ. Both fields feature
a hook at low k similar to that of astronomy. Finally, articles
from arXiv (mostly belonging to the field of physics) have
a power-law slope very similar to that of astronomy.

Application of Analytical Decomposition for Describing
Trends in Team Evolution
Analytical decomposition, introduced in the previous section,
allows us to empirically derive the contribution of different
modes of authorship over time and to explore the characteristics
of teams as they evolve. We now fit Eq. 1 to article teams in
astronomy for all 5-y time periods, from 1961 to 2010. Fig. 6,
Left, shows the change in the best-fit Poisson rates of both types
of core teams as well as the evolution of the slope of the power-
law component. As previously suggested, the Poisson rate of core
teams has gradually increased from close to zero in the early
1960s to a little over three recently. However, the slope of the
power-law component has gradually been flattening, from α= 6
to α= 3, i.e., the power-law component has been gaining in
prominence.
Fig. 6, Center, shows the relative contributions of the three

modes of authorship in astronomy over the time period of 50 y,
obtained by integrating the best-fit functional components. Re-
markably, the contributions have remained relatively stable, with
articles in the power-law component (i.e., articles produced by
extended teams) making ∼30%. This stability in the fraction of
power-law articles is directly connected to the fixed propensity of
authors to write articles with extended teams, as indicated in the
model simulation. In all time periods, most papers (∼60%) have
been published by standard core teams (the Poisson component).
Core teams with an extra member seem to appear in the early
1970s, but their contribution has remained at around 10%.
As pointed out earlier, many studies have emphasized the

impressive growth of “mean” team sizes. We can now explore
this trend in the light of the various authorship modes. In Fig. 6,
Right, we show the change in the mean size of all teams, and
separately of core teams (standard and “core +1” teams to-
gether) and of power-law (extended) teams. In the early 1960s,
both the core and the extended teams were relatively small (1.1

Table 1. Characteristics of different fields obtained from analytical decomposition

Field Articles (2006–2010) λP1 λP2 αPL fP1 fP2 fPL μP μPL μall

Astronomy 31,473 3.25 0.67 2.8 0.52 0.11 0.37 3.21 11.20 6.14
Ecology 5,420 3.23 0.83 3.8 0.62 0.13 0.25 3.20 4.58 3.54
Mathematics 3,244 0.87 0.75 13.4 0.57 0.33 0.09 1.84 2.87 1.93
Social psychology 4,122 2.24 1.58 4.5 0.46 0.36 0.18 2.72 3.89 2.93
Literature 725 0.06 0.02 5.0 0.99 0.00 0.01 1.03 3.75 1.05
arXiv 235,414 1.80 4.93 2.6 0.72 0.05 0.23 2.38 6.56 3.36

The meaning of the columns is given in the legend of Fig. 6.
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Fig. 6. Trends in team evolution in astronomy from 1961 to 2010. (Left) Fifty-year trend of parameters characterizing the three components of the dis-
tribution, derived from a functional fit (Eq. 1). The characteristic size (i.e., Poisson rate) of standard core teams has ðλP1Þ been rising throughout this period,
whereas that of “core +1” teams ðλP2Þ has remained constant in the last two decades. The power-law slope ðαPLÞ has been getting shallower, i.e., the sig-
nificance of the power-law component has been increasing. (Center) Fraction of articles produced by different modes of authorship (team types): standard
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and 2.5 members, respectively). Subsequently, the mean size of
core teams has increased linearly to 3.2 members. However, the
mean size of extended teams has grown exponentially, and most
recently averages 11.2 members. The exponential increase in the
size of extended teams is affecting the overall mean, despite the
fact that the extended teams represent the minority mode of
authorship. Although the growth of core teams is more modest,
it nevertheless indicates that the level of collaboration, as mea-
sured by article team size, increases for this traditional mode of
producing knowledge as well. Whether this increase is a re-
flection of a real change in the level of collaborative work or
simply a change in the threshold for a contributor to be con-
sidered a coauthor is beyond the scope of this work.
In a similar fashion, we explored the evolution of fit param-

eters, mode contributions, and team sizes for mathematics and
ecology (Figs. S3 and S4). Mathematics features a small ex-
tended-team component (10%) that emerged in the mid-1980s.
Extended teams in mathematics are still only slightly larger in
size than the core teams. The share of “core +1” teams is in-
creasing. The mean size of all core teams has increased, albeit
moderately (from 1.2 to 1.8 members). In ecology, the overall
increase in mean team size mostly reflects the increase of the
characteristic size of standard core teams in the 1980s. The ob-
served increase of the share of extended teams appears to come
at the expense of standard core teams.

Implications and Conclusions
The model proposed in this paper successfully explains the
evolution of the sizes of scientific teams as manifested in author

lists of research articles. It demonstrates that team formation is
a multimodal process. Primary mode leads to relatively small
core teams, the size of which may represent the typical number
of researchers required to produce a research paper. The sec-
ondary mode results in teams that expand in size, and which are
presumably used to carry out research that requires expertise or
resources from outside of the core team. These two modes are
responsible for producing the hook and the power law-tail in
team size distribution, respectively.
This two-mode character may not be exclusive to team sizes.

Interestingly, a similarly shaped distribution consisting of a hook
and a power-law tail is characteristic of another bibliometric dis-
tribution, that of the number of citations that an article receives.
Recently, a model was proposed that successfully explained
this distribution (33) by proposing the existence of two modes
of citation, direct and indirect, where the latter is subject to
cumulative advantage.
Understanding the distribution of the number of coauthors in

a publication is of fundamental importance, as it is one of the
most basic distributions that underpin our notions of scientific
collaboration and the concept of “team science.” The principles
of team formation and evolution laid out in this work have the
potential to illuminate many questions in the study of scientific
collaboration and communication, and may have broader impli-
cations for research evaluation.
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