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Abstract
Patterns of risk in injecting drug user (IDU) networks have been a key focus of network
approaches to HIV transmission histories. New network modeling techniques allow for a
reexamination of these patterns with greater statistical accuracy and the comparative weighting of
model elements. This paper describes the results of a reexamination of network data from the
SFHR and P90 data sets using Exponential Random Graph Modeling. The results show that
“transitive closure” is an important feature of IDU network topologies, and provides relative
importance measures for race/ethnicity, age, gender, and number of risk partners in predicting risk
relationships.
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INTRODUCTION
Patterns of social and risk bearing connectivity in injecting drug user (IDU) risk networks
have been a consistent concern as researchers attempt to understand disease transmission
among people who inject drugs (PWID) and between their networks and surrounding
communities. Until recently, however, statistical modeling of network connectivity has
posed considerable difficulty. The reasons for this are straightforward: ordinary statistical
modeling techniques involve linear regression and other forms of tests-against-randomness
to determine the relative importance of model factors as they influence the likelihood of
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particular data samples. Such tests against randomness, however, are not feasible when
considering patterns of connectivity in networks, even with recent gains in computational
power.1

For this reason, past analyses of IDU and other social network data has had to be content
with insights derived from the cross-tabulation of connection data (how many men, for
example, connect to other men, versus how many men connect to women). While insightful
and capable of answering questions of the dependence and independence of network
variables, such statistics do not provide measures of certainty or error, nor relative weights
of model elements vis-à-vis one another; nor can they tell us how likely the observed
patterns are to be the product of random assortment (rather than the result of actual
connection preferences among network members). Exponential Random Graph Modeling
provides an alternative to these techniques. Described in more detail below, ERGM
techniques can provide likelihood-based estimates of how factors such as gender, age, or
race/ethnicity, injection history or network position influence overall network connection
tendencies where ordinary statistical methods cannot.

A discussion of the results of a reanalysis of the two well-known IDU network data sets
follows. The strategy employed here was (step 1) to use ERGM techniques to consider each
of several potential network-influencing variables in isolation, and then (step 2) to isolate
the effects of attribute homophily (the tendency of people with “like” attributes to form
connections with one another) from disproportionate interconnectedness that may be due to
differences in the network size of subcategories of each variable (i.e. “degree homophily,”
as when, for example, men to have larger risk networks than women and thus wind up with
more connections to men, not through choice but due to the sheer size of their networks). In
the 3-nal stage of the analysis, several multivariate models composed of elements shown to
be significant in steps 1 and 2 are tested. These results allow us to see the relative
importance of a number of model variables to the patterns of connectivity demonstrated by
two well-known IDU risk networks, thereby extending and clarifying many of the findings
by the initial study authors, and allowing us to reflect on current trends in disease prevention
advocated for PWID.2

Exponential Random Graph Modeling
ERGM is a statistical technique aimed at determining the extent to which the likelihood of
network linkages appears to be biased towards (or against) the creation of specified network
substructures, above and beyond what is expected by chance occurrence. Such substructures
can be as simple as the tendency of “like” nodes to be connected (at a greater rate than
expected by a random distribution of connections), or as complex as specific substructures
of connection between several individuals (Bearman, Moody, & Stovel, 2004). ERGM is a
relatively new technique, and at present is the only technique available capable of producing
results akin to those expected for the statistical analysis of nonnetwork social data. The
theoretical basis for ERGM analysis was laid down by Holland and Leinhardt (1981) and

1Because the number of possible configurations of a network progress at a combinatorial (rather than a linear or geometric) rate, our
ability to estimate the likelihood of a particular (discovered) configuration against possible random permutations of the same data is
much more difficult. This is because, in a network of n individuals, the number of possible configurations of connections (say, for
example, risk connections) is 2(n)(n−1)/2. This means that for even a small network of 6 individuals, the number of possible network
configurations is 2(6)(5)/2 = 32,768 possible combinations. A network the size of that described in the Social Factors for HIV Risk
study (SFHR, discussed below), which contains 767 respondents, would demonstrate 2(767)(766)/2 = 2293,761 possible
combinations, an incalculable number in practical terms.
2The analysis was undertaken by the authors as part of a larger project aimed at creating a large scale, dynamic simulation of IDU
networks capable of modeling the transmission HIV through time. The purpose of the ERGM analysis was to discover trends in
connectivity previously unanalyzed in the SFHR and P90 data set that could form the basis of the network dynamics in the simulation.
The discovery of a list of relevant variables and their influence on the making of new connections could be used to guide the
simulation and help maintain real-world-viability across changes induced by network dynamism.
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Frank and Straus (1986), but estimation questions were only finally settled recently (Snijders
et al., 2006).

Like ordinary statistical regression analysis, ERGM modeling aims to determine the
probability, as a linear function, of one or more predictors for the distribution of a set of
observations (in this case, the observed set connections in the network under consideration).
In this paper, we follow the analytical lead of Goodreau, Kitts and Morris (2009) in using
ERGM to ascertain the importance of both specific network substructures (triads) and node-
based homophily (the tendency of association between “like” nodes). The same analysis is
carried out over two separate and well-known IDU/Sexual Risk networks.

According to Kolaczyk (2010, p. 180–181), an exponential family random graph takes the
following form: given a random graph G = (V, E) with binary random variable Y = [Yij] that
expresses the presence or absence of an network connection e ε E from i to j, then the
probability of a set of ties Y can be given as

(1)

where H is a possible set of edges in G. Here, gH(y) is taken to be 1 if H actually occurs in y,
or 0 if it does not, and a non-zero value for θH is said to exist where Yij are dependent for all
pairs {i,j} in H. The normalizing constant κ = κ(θ) is defined as

(2)

As with ordinary statistical regression analysis, here gH(y) can stand for a series of model
covariates that may be deemed important to network formation and which may be calculated
on y: g1 g2 g3 … gh. The coefficients of gh, (θ1, θ2, θ3 … θh) determine the weight of the
respective covariates which are to be estimated by the ERGM process.

Following Goodreau et al. (2009, p. 109), Equation (1) can be reexpressed as the conditional
log odds of individual ties (in logit form):

(3)

where  is all dyads other than Yij and δzh(y) is the amount by which the covariate gh(y)

changes when Yij is changed from 0 → 1, or from 1 → 0. Here,  ensures the mutual
dependence of ties in the conditional, and obviously a single tie may affect multiple
covariates.

The interpretation of θ in the expression above is that, where the addition of a tie i → j
increases zh by 1, then the log odds of that tie forming increases by θh. According to
Goodreau et al. (2009, p. 109), this interpretation requires three assumptions. The first is that
the ties in the network are homogenous, such that the change measured in the z statistic (say,
when counting the number of such connections in the network between “like nodes,” or the
number of ties which complete a triad) with the toggling of i → j would treat all other
examples of such ties present in the network as equally probable. Second, when modeling
the effect of node-based attributes (such as gender or age) on the presence or absence of ties
between nodes, the model assumes that the importance of a given attribute on a dyad pair

Dombrowski et al. Page 3

Subst Use Misuse. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



will be determined based only on the presence or absence of that attribute, and not on the
value of other ties in the network. That is, where a node attribute is considered for its
importance in tie formation, the effects of this attribute are assumed to function independent
of the effects of other attributes.3

And finally, as Goodreau et al. (2009, p. 109–110) point out, the determination of θ which
provides the maximum likelihood of the known graph is problematic, given that the
normalizing constant κ(θ) is incalculable for all but the smallest networks (see note 7,
above). However, the estimation of κ(θ) can be undertaken using Markov Chain Monte
Carlo methods, as shown by Snijders (2002; Snijders et al., 2006) and others (Hunter,
Handcock, Butts, Goodreau, & Morris, 2008; Morris et al., 2008; Robins, Pattison, Kalish &
Lusher, 2007). As Goodreau et al., (2009, p. 110–111) discuss, such procedures can be used
to simulate network dynamics (Goodreau, 2007) and to test for model degeneracy as well.
Such a system can also make use of any number of ordinary network measures (such as
“centrality measures” or “constraint”), the number of ties incident to a specific attribute
class, or network-structure-based characteristics like the tendency to “transitive closure.” In
such a case, each of these is treated as a distinct model variable, and each assigned a
separate coefficient.

In the following analysis, special attention is paid to homophily and transitive closure.
Homophily is the tendency of “like” nodes to connect with one another—in this case as a
variable that measures the extent to which, respectively, racial/ethnic affiliation, age, or
gender “sameness” affects the likelihood of there being a connection among two randomly
chosen nodes (individuals) in the network above a level expected by simple random mixing.
In addition, we also investigate the extent to which network importance—in this case as
indicated by self-estimated total number of injection partners—displays homophilous
tendencies as well.4

Beyond homophily in gender, age, race/ethnicity, and number of injection partners, another
significant variable traced here is transitive closure, also known as network transitivity
(Goodreau, Kitts, & Morris, 2009). Transitive closure in this sense is the tendency of two
nodes (or people) to share a connection with one another given their simultaneous mutual
connection to a third node, independent of other considerations (such as homophily of
degree or some other attribute). Thus in Figure 1, transitive closure is defined as the
tendency for A to form a connection with C, given their mutual connection with B (over and
above the likelihood of that connection existing via random mixing).

As above, the strategy of the ERGM analysis that follows contains three steps. In the first
step, we isolate each potential variable and test its influence on the formation of network
connections (given the total size and density of the network; see Table 1a and b). In this
case, we draw on the conclusions of the studies’ original authors. Specifically, the variables
we tested were homophily with regard to race/ethnicity, disease status of HIV and syphilis,
gender, marital status, income, age, education level, work as prostitute, number of injection
partners, transitive closure, and cycle lengths of 4 and 5. This produces a table for each of

3Conversely, when network structural features are being modeled—say, for example, the role of already existing mutual connections
in the probability of tie formation between two nodes—the question necessarily involves the examination of dyadic dependence. In
this case, the assumption reverses and the likelihood of the additional tie is assumed to occur independent of consideration of the
attributes of the endpoints of that edge. Thus the attribute independence assumption applies only to attribute-based consideration and
allows for the differentiation of node-based and network-based influences on network topology. This independence assumption is
important to the discussion that follows, where the relative importance of network-structural versus attribute-based influences on tie
formation is a central feature of the analysis.
4Here, we use self-estimated degree of study informants, however, rather than the degree of the node in the discovered network. In
this case the value of θ will indicate the extent to which those with high or low numbers of partners tend to associate primarily with
others who also claim similar numbers of partners.
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the two studies in which each individual variable found to be significant, and each of its
possible categorical values, is assigned an exponent, together with an error score and
significance level. These tables provide the extent to which each variable, taken in isolation,
appears to influence the pattern of connectivity in each network. Of the variables we tested,
we found that ethnicity, gender, age, number of injection partners, and transitive closure
were the most influential (and statistically significant) in predicting observed network
topologies in the SFHR and P90 data.

The second step in the analysis involved examining the effects of different average personal
network size on the results of step 1, to eliminate the possibility that homophiles discovered
in step 1 may be due to differences in the average level of connectedness of any one of the
subgroups within each attribute class (Table 2a & b). In the third and final step, a series of
composite models are tested to determine the relative importance of each attribute versus
transitive closure, and a full model of the variables from Table 1a and b is produced to
indicate the relative importance of all variables relative to one another. All three steps are
carried out for each data set: both SFHR and P90. As discussed below, while the
distributions of race/gender/age/injection pairings within both of these networks has been
well documented, the likelihood of the pattern of connections appearing as discovered
(given the size and density of each network) has not been previously analyzed, largely
because such methods were not possible until long after these studies were concluded.5 The
purposes of the analysis here is to do just that.

The SFHR and P90 Data
Existing publications from the SFHR and Project 90 studies focus on the unique topology of
their respective “risk” networks, with a view to explaining disparate rates of sex/injection
transmitted infections, including HIV transmission and prevalence within geographically-
differentiated high-risk populations; in retrospect, the Bushwick and Colorado Springs
networks appear as complementary examples, helping to clarify trends that might seem
idiosyncratic to one or the other, while ultimately revealing mutually supporting findings
between network location and HIV risk.

The SFHR study produced a wealth of landmark data on network substructures, and their
relationship to HIV/infection transmission (Friedman et al., 2010). Conducted between 1990
and 1993, SFHR was a cross-sectional, mixed methods project that asked 767 out-of-
treatment IDUs about their risk networks and HIV risk behaviors in the prior 30 days.
Interested in both individuals’ network composition (namely, the presence of high-risk
partners) and sociometric risk position, the SFHR study produced several major findings
relevant to risk populations with high HIV prevalence and low secondary incidence
(Friedman, Furst, et al., 1998; Friedman, Mateu-Gelabert et al., 2007; Goldstein et al., 1995;
Des Jarlais et al., 1998; Jose et al., 1993; Kottiri et al., 2002; Neaigus et al., 1994, 1995).
SFHR documented 92 connected components among 767 subjects, including a 105-member
2-core within a large connected component of 230 individuals. With subjects located within
the 2-core more likely to be infected with HIV (Friedman et al., 1997), the study emphasized
the importance of HIV prevention within densely-connected network. Yet the unique
microstructures of the SFHR network also explained surprisingly low rates of ongoing HIV
transmission among IDUs and their contacts, particularly in the absence of network

5As above, Exponential Random Graph Modeling (ERGM) is relatively recent phenomena in Social Network Analysis, though its
roots go back to the 1970s and 1980s (Frank & Strauss 1986). Until recently, the estimating of likelihood errors remained problematic
in network terms (Strauss & Ikeda 1990); Handcock, 2003). But in the last several years, these problems have been overcome with the
use of Maximum Likelihood Estimating procedures for use in network contexts (Handcock, 2003; Handcock, Hunter, Butts, Goodreau
& Morris, 2008; Snijders et al., 2006). Since this time, ERGM has been used in a number of innovative network analyses. The ERGM
package used here that which is implemented as part of the ERGM/Statnet package in R (Handcock et al. 2008).
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saturation with HIV. Where the relatively small sizes of subnetworks consisting wholly of
HIV-negative individuals limited the likelihood of large-scale outbreaks, the authors posited
the importance of network “firewalls,” i.e., long-term HIV-positive individuals, whose
infectivity had diminished over time (Friedman et al., 2000). Investigation of the causes of
several of the phenomena noted by SFHR study remains ongoing and of particular
importance to HIV prevention and control.

Among the most central findings, SFHR characterized the salience of personal network
composition with regards to race/ethnicity. While membership in the 2-core was roughly the
same across ethnic groups, SFHR documented significantly higher rates of HIV infection
among African-American and Hispanic subjects. Study authors ultimately tied elevated HIV
prevalence in these groups to homophily in edge formation along ethnic/racial lines
(Friedman et al., 1997). Writing that HIV spread more rapidly among African American and
Hispanic individuals in the earliest stages of the epidemic, SFHR reasoned that the tendency
among study subjects to form ethnically homogeneous networks accelerated HIV infection
within existing high prevalence groups (Kottiri et al., 2002).

Conducted between 1988 and 1992 in Colorado Springs, Project 90 was a prospective study
of heterosexual subjects who were defined as being at “high-risk” for STI/HIV infection
(Klovdahl et al. 1994; Potterat et al., 2002). Eligible subjects reported at least one of the
following behaviors in the past 12 months: exchanging sex for money or drugs, sex (paying
or nonpaying) with a prostitute, injection of illicit drugs, or sex with an injection drug user.
Unlike the cross-sectional SFHR, the Project 90 study followed its subjects for up to 5 years,
with no requirement for year-to-year continuity; new subjects were additionally recruited
each year. Five hundred ninety-five enrolled individuals produced 1091 interviews, which
named 8164 network contacts overall. The multitude of papers arising from the Project 90
study linked the low prevalence and incidence of HIV in Colorado Springs to the relative
dearth of HIV positive individuals in the densely connected network core (Klovdahl et al.,
1994; Potterat, Rothenberg, & Muth, 1999; Potterat et al., 1993; Potterat et al., 2002;
Rothenberg, Potterat, & Woodhouse, 1996; Woodhouse et al., 1994). While 36 subjects in
the cumulative study population (including reported contacts) were HIV positive, only 16
were located within the large connected component of the network linking 7151 individuals,
and they occupied peripheral positions therein; no HIV-positive individuals were found
within the 3-core of the largest connected component—the “heart of the risk network”
(Potterat et al., 2002, p. 103). Although Project 90 revealed a densely-connected network of
individuals involved in high-risk behaviors, it simultaneously spoke to the importance of
network centrality for infected individuals in predicting the epidemic spread of HIV.

Description of Data Manipulation—Original data from the Project 90 and SFHR
studies was procured with the full consent of all original authors. While each study collected
overlapping network information on IDU subjects, their respective research goals and study
designs varied widely, requiring limited manipulation of existing data for reanalysis. The
design of the Project 90, a multiwave prospective study, also posed a unique analytic
challenge.

The SFHR study collected baseline information on the demographic traits, risk behaviors,
and risk network of 767 subjects, additionally documenting 662 edges within the network.
All SFHR subjects and their mutual connections were included in this reanalysis, and the
original coding of subject attributes was retained for use as partition data in the ERGM
analysis. While Project 90 collected similar demographic data on all subjects, all variables
were recoded for concordance with SFHR. In addition, not all subjects in the Project 90 data
set were included in this analysis. Subjects eligible for inclusion in this analysis included
only those who (1) received an HIV test during the original study, (2) completed at least one
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survey during the study period, and (3) were linked to at least one other study subject who
also met criteria 1 and 2. In the end, this reanalysis included 401 vertices and 921 edges
from the original Project 90 data set.6

Results: Step 1
In the tables below, a number of models are presented. In the first set of analyses (Table 1a
& b), ERGM analysis was used to obtain an initial “edges” measure (row 1). The value of
the “edges” measure represents the log odds that a randomly chose pair of nodes in the
network will have a connection between them based only on the total number of connections
in the network. Such a statistic is given because it provides a “baseline” measure against
which the influence of the other “tested” variables can be determined. Thus, in each
subsequent model, the edges measure is tested in bivariate mode with another single variable
(transitive closure, age, gender, race/ethnicity, and number of partners) to determine the
extent to which homophily in the second variable (i.e., age, race/ethnicity, gender, and
number of injection partners) and network considerations (i.e., transitive closure) influence
edge formation over and above that expected when only the density of the graph (shown as
edges) is considered. This adjusted θedges value is given in the “edges” column in each table
for easy comparison with the θvariable value for each covariate. In these bivariate cases, the
edges coefficient is expected to diminish in those cases where the additional variable exerts
significant positive influence on the pattern of connectivity. Thus, for the interpretation of
each model (i.e., row), one first examines the edges value and compares the subsequent
variable value θ to determine the relative influence of the identified variable against the
value expected given a random distribution seen in edges.7

Several observations can be made from the above data.

• Both Table 1a and b show transitive closure to be the most significant factor, when
taken in isolation, in determining the given patterns of edge formation. Put another
way, in comparison with the other variables (considered individually), structural
features trump attribute features in determining the patterns of connection seen in
both the SFHR and P90 networks by a considerable margin.

• For P90, homophily across self-identified number of injection partners proved more
important than other forms of homophily. That is, the tendency of people to partner
with others who share roughly the same number of partners was a more important
consideration than age, race/ethnicity, or gender in predicting the pattern of
connections seen in the network documented by researchers in Colorado Springs.

• Homophily among self-estimated number of injection partners was also significant
among network members in the SFHR network, although it was of less importance
there than race/ethnicity.

• In both networks, the highest level of homophily among number of injection
partners was seen among particular variable values, i.e., those with higher numbers

6Because the two studies used different criteria for injection drug use partnering (injection partners in the SFHR study, and needle
partners in the P90 study), and two very different time periods (30 days versus 5 years, respectively), we refer to this under the label
“injection partners,” which is the more inclusive of the two and subsumes the latter—needle partners are by definition injection
partners but not vice versa. Because this data was closely related to subjects self-estimated degree in the drug couse network, we did
not attempt to normalize the time frame. We note, however, that the number of injection partners over longer periods of time in the
SFHR network (as seen in retrospective data also collected at the time) appears relatively steady.
7Thus, by way of example, in a univariate analysis of the baseline measure of edges (or connection likelihood) in the SFHR network
(Table 1a), the odds that a particular, randomly chosen pair of nodes in the network will share a connection is e−6.34 (see line 1). Yet
if that pair of randomly chosen nodes both happen to be already connected to a third node, such that their connection would complete
a transitive closure triangle, the odds of there being a connection between them increase by e3.42 (line 2) against a now adjusted
“edges” value of e−6.26. As such, the odds an edge appearing between a pair of randomly chosen nodes where transitive closure
would result from their joining is e−6.26+3.42 = e−2.84.
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of partners—three or more partners in the SFHR network; four or more partners in
the P90 network. Homophily levels among those with lower numbers of self-
identified partners were much lower. Thus, in both networks, those with the
greatest number of partners tended to be connected to one another, validating the
findings of a tightly connected core in both the P90 and SFHR studies.

• Gender homophily was not significant in the P90 data, though the overall nature of
the measure in the aggregate may have masked an important feature of the network.
In the Colorado Springs data, men and women showed robust but opposite trends.
Men showed significant (p < .001) negative homophily (sometimes called
heterophily) in their risk relationships—indicating that, as per the original design of
the study, heterosexual sex was a primary risk relationship governing connectivity
trends. Women in the same data set, on the other hand, showed a lower but equally
robust trend to homophily (also p < .001).8

• The same was not true of gender in the SFHR network, where both men and
women showed positive trends toward homophily, though here too women showed
a stronger trend to mutual association in their risk relationships than men.

• Age homophily was significant in both networks, though in both cases it applied
only narrowly across age variable values. The overall effect, although, was a
significant if somewhat less important source of connectivity dynamics than either
race or structural considerations.

Results: Step 2
To determine whether the homophily results shown in Tables 1a and b were the result of
attribute homophily rather than degree homophily, a further set of analyses were done
(Tables 2a and b). Such tests are necessary where potential differences in average degree
across attribute values can mistakenly appear as tendencies to mutual affiliation. For
example, in a network where the average number of network connections of women is twice
that of men, a random distribution of edges that follows the degree patterns would result in
many more connections between women than between men, even where the number of men
and women were the same, and even where no actual preference for same-gender affiliation
was present. The latter would be an example of degree-based confounding of attribute
homophily.

For purposes of determining whether differences in average degree by attribute value
figured importantly in the distribution of connections, ERGM analysis was used to
determine the probability of an edge appearing between two randomly selected nodes where
either one of the nodes was a member of the subcategory in question. Such a test isolates
degree-based values from any homophily considerations by considering the attribute in only
one half of the dyad pair. Thus Table 2a, line 1 shows that the likelihood of a randomly
chosen connection in the SFHR network will have a single node identified as male as one of
its end points. In this case the value of e−3.16 in line 1 can be compared with the value for
women, e−3.20 in line 2, to see that gender value has little effect on the likelihood of being
incident to a connection. In such a case, the gender homophily for the SFHR network (in the
corresponding Table 1a) can be seen as largely the result of gender assortment preferences,
and not the result of markedly different levels of connection between men and women.

8While such a finding may ask the question of whether something other than heterosexual risk was determining the connectivity
trends of women, the analysis in Step 2 shows that the level of homophily shown by women in the P90 data set can be largely
explained by differences in the average number of risk partners for women over and above that of men.
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Put more generally, similar values for exponents across the list of values for a particular
attribute indicate that differences in average degree across those same categories do not play
a significant role in explaining the homophily scores identified in Tables 1a and b. When we
turn to Table 2a and b, then, the result of degree-based tests for all attribute values (with the
exception of self-estimated number of injection partners, which is already associated with
network degree in both networks) shows that the results are robust with respect to degree in
all cases except gender in the P90 network.

According to the results shown in Table 2a and b, the following observations can be made:

• The results of these analyses indicate that for the SFHR network (Table 2a), degree
considerations do not play a major role in any of the attribute homophily trends
seen in Table 1a. Large differences in the θ value for attribute values in Table 2a
are rare, appearing mainly at the lowest and highest age brackets, and accompanied
there by relatively large error scores.

• In the P90 network, noticeable differences appear between genders (θ = −3.08 for
men; = −2.52 for women). Such a score indicates that women are e−2.52−(−3.08) =
e.56 = 1.75 times more likely to be part of a dyad because of differences in average
degree than are men. Given that this difference is roughly equivalent to the
homophily exponent for women in the P90 network (θwomen (attribute homophily) =
0.541 in Table 1b; θwomen (degree homophily difference) = 0.563 from Table 2b), it is
likely that the majority of the homophily between women in the P90 network seen
in Table 1b may be due to differences in average degree rather than tendencies for
women to engage in risk relationships with one another (at a higher rate than
predicted by random assortment, and at a higher rate than their male network
counterparts).

• Similar differences exist among a small number of age categories in the P90 data as
well. Such differences are difficult to quantify across a large number of
subcategories, but a comparison of these subcategories with their exponents given
in Table 1b indicates that all of the divergent values (age 45–49, age 55–59) appear
in subcategories whose internal connectedness was too low to compute meaningful
homophily scores (as indicated in Table 1b by the –inf value of θ).

Results: Step 3
Given these results, several larger multivariate models were tested to determine the effect of
various model parameters on one another, and to get a better understanding of the relative
importance of network-based (i.e., transitive closure) versus node attribute-based (i.e.,
homophily across personal attributes) factors in both networks. These results are available in
Table 3a and b. In both cases, four models were tested. In the first three, transitive closure
was tested against the influence of age-based, gender-based, and race/ethnicity-based
homophily. In the final model (4), a composite of transitive closure, self-estimated number
of injection partners, and the three attributes from models 1–3 was tested.

• As in Tables 1a and b, transitive closure continues to show far greater exponent
values than any other variable. This is true for both the SFHR and P90 data sets,
with the greater differences seen in the SFHR network. Given that the values given
in Tables 3a and b represent log odds, they can be interpreted to indicate that (see
model 4 in Table 3a) transitive closure is:

– e3.592–0.367 = e3.225 = ~25 times more important than age,

– e3.592–1.205 = e2.387 = ~11 times more important than race/ethnicity,
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– and e3.592–0.460 = e3.132 = ~23 times more important than the number of
recent injection partners, in determining the likelihood of individual
connection choices.

• Similar, although smaller differences can be seen in Table 3b, model 4. There,
structural features (i.e., transitive closure) are:

– e1.375–0.458 = e0.917 = ~2.5 times more important than age,

– e1.375–0.360 = e2.387 = ~2.8 times more important than gender,

– e1.375–0.614 = e0.761 = ~2.1 times more important than race/ethnicity

– and e1.375–0.574 = e0.801 = ~2.2 times more important than the number of
recent injection partners, in determining the likelihood of individual
connection choices.

• In the SFHR network, race/ethnicity remained the second most important factor in
determining node connection patterns, as discussed by the original research
(Friedman et al., 1997; Friedman et al., 2010). This was true for the P90 network as
well, though here the differences with other attributes were less.

• Interestingly, gender dropped out of significance in the SFHR network (Table 3a,
model 4), indicating that its significance in Table 1a likely masked a more
significant covariation relationship with one of the other attributes. The opposite
was true for the P90 network. Here, gender was not statistically significant in Table
1b, but is (at the p < .001 level) in Table 3b. As discussed above, this is perhaps
due to the greater number of men in the network than women, and possible to the
fact that the positive homophily shown for women in Table 1b was a mask for
degree considerations (as indicated in Table 2b)—a confounding relationship (with
injection partners) that was uncovered in the multivariate analysis.

DISCUSSION
The most noteworthy observation from the analysis above is the extent to which structural
features of the network play a role in determining the potential paths of risk among drug
injectors. Individuals in the SFHR network choose partners of current partners far more
frequently than any other category, by a factor approaching 10–20 times more likely. Similar
if less dramatic results obtained for the P90 network as well. Together, these findings lend
weight and credibility to those approaches to risk that emphasize specific network
topological features over individual behavior in understanding disease risk management and
community dynamics.

The findings presented here also extend a central analytical emphasis in the SFHR analysis.
Prior analysis emphasized the presence of a core group of drug users with markedly
different behavioral, HIV, and risk profiles (Curtis et al., 1995; Friedman et al., 1997;
Friedman et al., 2000). The discovery of transitive closure as a paramount consideration in
understanding patterns of risk underscores these findings. Coupled with the finding that
individuals with high numbers of risk partners tend to associate with one another at levels
higher than any consideration including race/ethnicity (except transitive closure), we find a
ready explanation for how the core of Bushwick network was formed and maintained.
Indeed, among those with the highest number of injection partners, similarity of degree (i.e.
number of partners) outweighed all factors except transitivity in explaining connection
preferences (with an exponent value of θ4+partners = 4.418, compared to θrace = 1.394).
Repeated emphasis on such close clustering can be easily seen to lead to the sort of network
core described by SFHR authors (Curtis et al., 1995; Friedman et al., 1997), and provides
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further evidence for a network-based approach to IDU risk (Dombrowski et al., 2012;
Friedman, Neaigus et al., 1998).

In considering the causes of such a pattern, several phenomena noted for the Bushwick
network suggest themselves. Foremost among these is the central role that shooting galleries
played as venues for drug use (Curtis et al., 1995; Friedman et al., 2010). These and other
forms of enforced propinquity were encouraged by significant changes in drug enforcement
regimes in New York at the time. During the 1991–1993 time frame, New York City as a
whole (Curtis, 1998; Curtis & Wendel, 2000), and Bushwick in particular was undergoing a
change in drug interdiction regimes aimed at closing down “open air” drug markets and
injection locations (Curtis, 1996; Dombrowski et al., 2013). This strategy involved broad
“sweeps” in which outdoor users were routinely arrested for small amounts of drug
possession. As places serving as outdoor drug use locations were increasingly systematically
pursued by law enforcement, outdoor drug use became increasingly precarious, and indoor,
more discreet drug use locations (shooting galleries) grew in importance as a result (Curtis
& Sviridoff, 1994). Local estimates place them at 5 or 6 in Bushwick at any given time over
the course of the 2 year study, and fluidity among locations was constant as interdiction
turned toward these locations as well. All of these factors could be seen as contributing to a
situation where drug use partners of a single respective third party were likely to see much
more of one another, and where frequent users were much more likely to find themselves in
close proximity of those whose use patterns were similar to their own.

Transitive closure played a smaller but still important role in the P90 network, on a par with
the most important of attribute-based determinants. This is interesting because the P90
network was initially aimed at heterosexual risk vectors, for which partners of partners
would, one suspects, play a lesser role (Potterat et al., 2002). Certainly, the negative value of
gender homophily in the composite model (Table 3b, model 4: θ = −0.360) supports the idea
that heterosexual risk vectors were prominent and important. However, the fact that
θtransitive closure = 1.375 in this same model points to the fact that other vectors of risk
uncovered in the study play an even more important role. Whether these risks are sexual or
injection based is not clear (although we suspect the latter, especially given that one of our
criteria for inclusion when recoding the P90 data was IDU use). Indeed, one can speculate
that in the process of researching heterosexual risk, researchers in the P90 project uncovered
an IDU network whose dynamics play a significant part in determining the pattern of risk
connections in the Colorado Springs network as a whole. The relatively lower value of the
transitive closure exponent, however, lends much support and provides some explanation for
the relatively small size of the risk core, as discussed by P90 researchers (Klovdahl et al.,
1994; Rothenberg, Potterat, & Woodhouse, 1996).

These results also confirm many prior conclusions from the original analyses of the two data
sets—SFHR and P90. Among those conclusions is the central role of race/ethnic homophily
in the SFHR network, which is found here to play an important role in structuring network
connections. From Table 1a, one notes that homophily levels differed for various variable
values, with Hispanics showing the highest levels of in-group preference for risk partners,
and whites showing the second highest level. The same ordering of homophily levels held
true in the P90 data as well, with Hispanics showing the higher levels, followed by whites
and African Americans. Here, however, the Other category showed the highest levels,
slightly higher than Hispanics.

Of interest in both networks is the high levels of homophily shown by younger network
members (Table 1a and b: θSFHR Age15–19 = 1.394 and θP90 Age15–19 = 1.278). Here we find
that younger members of both networks tend show a much higher preference for in-group
affiliation than do those older than them. Likewise, those at the highest age levels (over 40)

Dombrowski et al. Page 11

Subst Use Misuse. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



show a similar pattern, though these results are difficult to interpret given the high errors and
lack of statistical certainty associated with exponent values. Minimally, we can see that age
factors quite differently in the connectivity trends depending on the age category involved.

The implications of these findings for current HIV and related disease prevention and harm
reduction programs are significant. Currently, the bulk of intervention strategies stem from
the Centers for Disease Control funded (and frequently mandated) Diffusion of Evidence
Based Interventions (DEBIs). The majority of these programs are aimed at behavioral
change, with little or no recognition of network elements of risk, whether for PWID or those
engaged in high risk sexual activity. Programs such as Holistic Health Recovery Program9,
and Modelo de Intervencion Psycomedica10, which target PWID, continue to stress
behavioral modifications which target individuals and ignore network contexts entirely.
Programs such as the Safety First11, Popular Opinion Leader12, and Community
PROMISE13 advocate attention to social networks, but assume few network dynamics other
than popularity or “leadership.” The findings discussed above could potentially improve
programs which use peer-educators to diffuse information such as SHIELD (Self-Help in
Eliminating Life-threatening Diseases)14, by pointing out ways in which the influence of
peers will be shaped by specific social factors (race or specific age group homophily, for
example) which may not act consistently or uniformly across age categories or ethnic/racial
groups (Costenbader, Astone, & Latkin, 2006; Tobin et al., 2007). Where age based
homophily is different for young, middle age, and older participants, the social reach of peer
transfers of information can be expected to vary considerably, even given the similar
training and personal effectiveness of those involved. As importantly, the differences in the
two networks considered here show that assumptions about risk relationships in one area
(the importance of gender homophily in determining patterns of risk, for example, or the
level of transitive closure relative to attribute-based considerations) may not hold true in
other networks. In such cases, the demonstrated effectiveness of an intervention may be
contingent on network factors largely unaccounted for in the planning of the intervention.
Indeed, knowledge of the network topological structure in and through which the
intervention takes place appears in none of the institutional readiness guidelines associated
with the DEBI program.

In more general terms, the importance of network transitivity to IDU networks indicates that
strategies that target the partners of currently high risk individuals may be stopping short of
reaching the next most likely to be at risk, the current partners of those partners. As above,
cousers one step removed from one’s current partners represent the next most likely risk
partners, regardless of race, gender, age, or general couse level. Yet continued stigmatization
of HIV infection and risk of infection has discouraged link tracing in prevention strategies.
Such issues have even been underwritten by laws that discourage a network approach to
prevention; current state-level reporting requirements have no network component. To wit,
many harm reduction/syringe exchange programs have recognized the importance of
“secondary exchange” as a regular part of program effectiveness (Bryant & Hopwood, 2009;
Irwin et al., 2006; Des Jarlais et al., 2009; Latkin, Davey, & Hua, 2006). Yet few have
embraced this as a crucial topic for analysis (Des Jarlais et al., 2009). The fact that risk
relationships seem to occupy a similar niche should encourage more intensive and focused
investigation of this phenomenon, including especially its current network structure.

9http://www.effectiveinterventions.org/en/Interventions/HolisticHealth.aspx
10http://www.effectiveinterventions.org/en/Interventions/MIP.aspx
11http://www.effectiveinterventions.org/en/Interventions/SafetyCounts.aspx
12http://www.effectiveinterventions.org/en/Interventions/POL.aspx
13http://www.effectiveinterventions.org/en/Interventions/PROMISE.aspx
14http://www.effectiveinterventions.org/en/Interventions/SHIELD.aspx
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More broadly, research on the causes of injection and sexual network patterns, and of
changes in these patterns, has been pointed to as a major priority for AIDS-related social
research (Friedman, Bolyard et al., 2007; Friedman et al., 2006). Such research was
recommended in part because of its direct prevention implications, as discussed above. We
would add here that in the context of widespread discussion of structural interventions,
understanding how these interventions might affect risk networks is essential (Auerbach,
Parkhurst, & Cáceres, 2011; Friedman et al., 2006; Ogden et al., 2011; Wendel et al., 2011).
It was also recommended as basic research that is essential to understand HIV, hepatitis C
and other infectious disease epidemiology (Friedman, Bolyard et al., 2007; Friedman et al.,
2006). Finally, it was recommended as important policy research. As discussed in this
paper, network patterns shape the HIV vulnerability of communities, so anything that can
help us understand how to reduce that vulnerability is important. In policy terms, “big
events” like wars, transitions, revolutions, and perhaps economic crises can lead to major
changes in both social and risk networks, and these may unleash new epidemics (Friedman,
Bolyard et al., 2007; Friedman et al., 2006; Friedman & Rossi, 2011; Friedman, Rossi, &
Braine, 2009). It is important to know everything we can about what changes networks so
policies and programs can be put in place to counteract network changes that may increase
community vulnerability.
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GLOSSARY

Dyad Dyad is a pair of network nodes, in the context used here, two potential
risk network partners in the same risk network

ERGM Exponential random graph modeling, a technique to determine the
statistical likelihood of a risk connection existing between two network
members given the presence of absence of particular actor or nearby
network traits

Homophily As used here, it is the tendency of an actor to engage in risk behavior
with a network alter that shares some attribute, such as gender, ethnic
affiliation, or degree of network importance

Network
degree

The number of risk partners an individual risk network member has in
the network

Patterns of
connectivity

Recurring formal structures of interconnection within a risk network,
which could include the tendency of individuals to engage in risk
behaviors with the alters of their network connections, or which might
include a tendency to homophily in the risk network

Risk network A set of behavioral interactions between distinct individuals whereby
harmful pathogens such as HIV may be transmitted among them

Transitive
closure

The tendency for two previously unconnected network alters of a
common risk partner to themselves become risk partners
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FIGURE 1.
An example of transitive closure.
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TABLE 1a

Individual variable results for SFHR)#.

Variable name Edges value Θ Error p

Edges −6.343 0.044 ***

Transitive closure −6.257 3.422 0.076 ***

Gender homophily (all) −6.520 0.286 0.092 **

Gender (male) – 0.257 0.096 **

Gender (female) – 0.439 0.111 **

Race/ethnic homophily (all) −7.044 1.394 0.094 ***

R/E (Black) – 1.043 0.120 ***

R/E (Hispanic) – 1.801 0.122 ***

R/E (White) – 1.513 0.121 ***

R/E (Other) – –Inf NA NA

Age homophily (all) −6.43338 0.382 0.099 ***

Age (15–19) – 3.794 1.036 ***

Age (20–24) – 0.229 1.002 0.819

Age (25–29) – 0.306 0.199 0.125

Age (30–34) – 0.478 0.170 **

Age (35–39) – 0.341 0.160 *

Age (40–44) – 0.329 0.196 0.093

Age (45–49) – 0.904 1.003 0.368

Age (50–54) – 1.934 1.007 0.055

Age (55–59) – –Inf NA NA

Age (60+) – –Inf NA NA

# Injection partners last 30 days homophily (all) −6.457 0.418 0.094 ***

0 partners – 1.348 0.504 **

1 partners – 0.276 0.106 **

2 partners – 0.731 0.204 ***

3 partners – 1.155 0.321 ***

4+ partners – 2.418 0.508 ***

#
In Table 1a, and all subsequent tables, the exponent value –Inf indicates a situation where too few nodes of the respective variable value (Age 55–

59, for example) were present to allow for estimation. As a result, no exponent is estimated and the resulting error and significance levels are
labeled Not Applicable (NA).

***
(p < .001);

**
(p < .01);

*
(p < .05).
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TABLE 1b

Individual variable results for P90

Variable name Edges Θ Error p

Edges −4.668 0.037 ***

Transitive closure −5.000 1.673 0.036 ***

Gender homophily (all) −4.701 0.082 0.075 0.274

Gender (male) – −0.877 0.140 ***

Gender (female) – 0.54091 0.080 ***

Race/ethnic homophily (all) −4.99091 0.750 0.074 ***

R/E (Black/AA) – 0.585 0.080 ***

R/E (Hispanic) – 1.509 0.122 ***

R/E (White) – 0.909 0.221 ***

R/E (Other) – 1.612 0.590 **

Age homophily (all) −4.77483 0.582 0.088 ***

Age (15–19) – 1.278 0.509 *

Age (20–24) – 0.767 0.173 ***

Age (25–29) – 0.671 0.139 ***

Age (30–34) v 0.343 0.156 *

Age (35–39) – 0.337 0.241 0.161

Age (40–44) – 1.137 0.340 ***

Age (45–49) – –Inf NA NA

Age (50–54) – –Inf NA NA

Age (55–59) – –Inf NA NA

Age (60+) – –Inf NA NA

Injection partners last 5 years homophily (all) −5.066 1.053 0.074 ***

0 partners – 1.070 0.076 ***

1 partner – 0.574 0.322 0.075

2–3 partners – 0.792 0.284 **

4–6 partners – 1.162 0.455 *

6 or more partners – 1.314 0.251 ***

***
(p < .001);

**
(p < .01);

*
(p < .05).
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TABLE 2a

Degree-based homophily comparison results for SFHR

Variable subcategory θ Error p

Gender (male) −3.160 0.030 ***

Gender (female) −3.198 0.054 ***

Age (15–19) −3.469 0.408 ***

Age (20–24) −3.323 0.163 ***

Age (25–29) −3.213 0.067 ***

Age (30–34) −3.039 0.058 ***

Age (35–39) −3.093 0.055 ***

Age (40–44) −3.312 0.070 ***

Age (45–49) −3.308 0.191 ***

Age (50–54) −3.335 0.249 ***

Age (55–59) −3.757 0.577 ***

Age (60+) −3.467 1.001 ***

R/E (Black/AA) −2.848 0.277 ***

R/E (Hispanic) −3.049 0.052 ***

R/E (White) −3.144 0.050 ***

R/E (Other) −3.295 0.047 ***

***
(p < .001).
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TABLE 2b

Degree-based homophily comparison results for P90

Variable subcategory θ Error p

Gender (male) −3.084 0.043 ***

Gender (female) −2.521 0.031 ***

Race/ethnicity (Black/AA) −2.780 0.032 ***

Race/ethnicity (Hispanic) −2.536 0.051 ***

Race/ethnicity (White) −3.047 0.080 ***

Race/ethnicity (Other) −2.916 0.146 ***

Age (15–19) −2.756 0.123 ***

Age (20–24) −2.768 0.063 ***

Age (25–29) −2.591 0.049 ***

Age (30–34) −2.810 0.054 ***

Age (35–39) −2.746 0.066 ***

Age (40–44) −3.029 0.111 ***

Age (45–49) −3.470 0.291 ***

Age (50–54) −2.723 0.177 ***

Age (55–59) −3.883 0.503 ***

Age (60+) −2.971 0.282 ***

***
(p < .001).
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