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Abstract
Multi-dimensional NMR spectra have traditionally been processed with the fast Fourier
transformation (FFT). The availability of high field instruments, the complexity of spectra of large
proteins, the narrow signal dispersion of some unstructured proteins, and the time needed to record
the necessary increments in the indirect dimensions to exploit the resolution of the highfield
instruments make this traditional approach unsatisfactory. New procedures need to be developed
beyond uniform sampling of the indirect dimensions and reconstruction methods other than the
straight FFT are necessary. Here we discuss approaches of non-unifom sampling (NUS) and
suitable reconstruction methods. We expect that such methods will become standard for multi-
dimensional NMR data acquisition with complex biological macromolecules and will dramatically
enhance the power of modern biological NMR.
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1. Introduction
Conventional linear sampling of the indirect dimensions in multi-dimensional NMR
experiments together with the fast Fourier transformation (FFT) have dominated data
acquisition since the introduction of 2D NMR (1–3). However, the development of
spectrometers working at very high field, and research targeting larger and more complex
biological macromolecules rendered this process inadequate. Thus, advanced methods
beyond linear sampling and FFT processing are emerging and are increasingly adopted by
the NMR community.

Clearly, the most important innovation in NMR spectroscopy since its initial invention was
the introduction of pulsed excitation and data processing with the Fourier transformation (4).
This has been used ever since as the prime method for processing one-dimensional and
multi-dimensional NMR experiments. The processing method requires acquisition of arrays
of spectra at linear increments of dwell times so that the Fast Fourier Transformation (FFT)
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can be applied. This has been extremely successful and was key for instating NMR
spectroscopy as one of the methods for structure determination in solution at an atomic
resolution. However, when targeting increasingly larger proteins and nucleic acids, spectra
are more crowded as more resonances fall into the same standard spectral widths. Even
when dispersing signals in three and four dimensions, unambiguous peak assignments can
remain a challenge. This is particularly difficult for membrane proteins where the
transmembrane regions are full of methyl groups but often have only a few aromatic
residues and exhibit only a narrow disperion of cross peaks. Thus, it is very important to
record spectra at the highest resolution, with precise, accurate and reproducible chemical
shift definition across multiple experiments. However, high-precision measurements that are
theoretically possible with current state-of-the-art high-field NMR spectromters are not
pratically reachable with standard routines of recording and processing 3D and 4D NMR
spectra. When sampling linearly all indirect dimensions of the Nyquist grid of 3D and 4D
experiments spectra can only be recorded at very low resolution within a reasonable overall
measuring time. As a consequence, essentially all uniformly sampled 3D and 4D NMR
experiments are obtained far below the resolution that would be achievable with modern
high field NMR hardware.

Besides obtaining high resolution, NUS also permits faster acquisition of standard resolution
spectra if the signal-to-noise ratio is sufficiently high. In addition, if optimal sampling
schedules are used the sensitivity of detecting weak signals can be increased. However, there
are also numerous obstacles to overcome, and it may take some time to make this approach
generally available for routine data acquisition. There is a large body of literature covering
NUS and reconstruction methods. Here we focus primarily on our own work; however, we
also try to reference other approaches, which must be incomplete within the format of a
perspectives article.

2. Advantages of NUS
2.1 High resolution obtainable with non-uniform sampling

The advent of high field spectrometers promises higher resolution. An unfortunate
consequence of this is that high field magnets have shorter dwell times for a given spectral
width (in ppm). Thus one needs longer time to reach the same resolution in the indirect
dimension on a high field magnet when compared to a low field magnet and substantially
longer time if one were to exploit the resolution the high-field magnet is capable of, in
particular when recording 3D and 4D spectra.

High resolution in the indirect dimensions can only be obtained in a reasonably short time
with non-uniform sampling (NUS) in the indirect dimensions. An early example is shown in
Fig. 1, adapted from Hyberts et al. (5). A total of 1250 indirect points were sampled either
linearly with 50 and 25 increments in the nitrogen and carbon dimensions or non-linearly
covering 400 and 100 grid points in the two indirect dimensions, respectively. Typical HN-
C’ strips are shown on the left, and HN-N projections are on the right. Both spectra were
recorded for the same total measuring time of six hours. The projections (right) clearly
demonstrate the superior resolutions obtainable with NUS, the strips reveal that the higher
resolution achievable with NUS eliminates the “bleading through” between adjacent strips,
and peaks are narrower in the C’ direction.

2.2 The size of space to be sampled with respect to resolution
This question relates to how many points should be sampled per line width. Following the
discussion in (6), the Number of Points per Linewidth, NPL, can be expresses as:
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(1)

where L is the line width, N is the number of sampling points and Δt is the dwell time. For
simplicity we assume that there is no zero filling and the number of points in the frequency
domain is the same as that in the time domain. We are interested in how many points N
should we sample to get a desired NPL. From equation (1) we get for the number of points
to be sampled in the Nyquist grid N is:

(2)

For example, if we want to separate two frequency data points, NPL=2, for a line width of 1
Hz and a spectral width of 5,000 Hz we would have to sample 1000 points.

We can express this in terms of relaxation rates assuming

(3)

we get

(4)

These obvious relations tell us the trivial fact that we have to sample more data points, the
larger the SW and the sharper the lines. However, the number of frequency points per line
width L can be increased by zero filling and/or linear prediction. Nevertheless, the relations
tell us that it is impractical to sample that many points in 2D, 3D and 4D spectra with
traditional sampling.

2.3 The size of space to be sampled with respect to sensitivity
This question has been treated in detail by Rovnyak et al. (6). It was pointed out that the best
sensitivity is obtained for

(5)

After this value for tmax each additional increment adds more noise than signal (Fig. 2), and
it seems advantageous to sample points with evolution times out at tmax and no further to
avoid diminishing returns on time. However, sampling beyond tmax can be considered if
sensitivity is not a problem as samples that extend to π/R2 will, for example, increase
resolution.

When sampling to this tmax we have for the number of points N to be sampled

(6)

This can be compared with equations 2 and 4 above and tells us that we obtain optimal
sensitivity when sampling only 0.5 points per line width. A table of the desired number of
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increments has been given in (6). However, the number of time-domain data points to be
sampled for optimal sensitivity is impractical for recording multi-dimensional NMR spectra
with conventional linear sampling in solution NMR. This is easily accomplished in solid
state NMR due to the fast relaxation, and it has indeed been suggested (7, 8).

2.4 How sparse can we sample?
Although the advantage of sparse sampling is now increasingly accepted it is not yet clear
what is the lower limit of sparsity. This may depend on the many conditions of the spectra to
be recorded, such as spectral width, number of signals in the spectrum and/or line width.
However, when concerned with typical protein spectra, it appears that the vast majority of
spectra obtained can be sampled reliably at 20% sparsity for each indirect dimension.
Practically this means that we can sample a NUS-HSQC at 20%, a NUS 3D triple resonance
spectrum, such as HNCA at 4%, and a 4D NUS acquired methyl-methyl TROSY NOESY at
0.8% (see examples in (9)).

Obviously this is a rule of thumb only, and a definite answer to this question is still missing
although several suggestions regarding sparsiness have been made. Already prior to the
proposal by Jeener for recording two-dimensional spectra, a general theory for non-uniform
sampling was proposed by Landau (10) who stated: “The average sampling rate (uniform or
otherwise) must be twice the occupied bandwidth of the signal, assuming it is a priori
known what portion of the spectrum was occupied”.

This means that the amount of sampling is not dependent on the product of sweepwidth and
resolution, as the Nyquist theorem proposes, but rather a function of the number of signals in
the spectrum. Further research in the field of signal theory finds that given various types of
reconstruction algorithms, and pre-exsisting models, the exact number of sampling points
varies somewhat. That is, with no noise and assuming pure Lorenzian lineshape, exaclty S
number of sampling points in the time domain are required for correct representation of S
signals in the frequency domain (11). However, not all signals have Lorenzian lineshape,
and most spectra of interest are far from noise free.

Non-Uniform Sampling is closely related to Compressed Sensing (CS), a term introduced
for imaging applications. While images are not sparse in contrast to NMR spectra many
aspects of data acquisition are related. Thus, the term CS is now frequently used also for
NUS of high-resolution NMR spectra. In particular, the problem of sparseness in CS was
treated generally by Candés and Wakin (12) who discussed the parameters that influence the
possible sparseness of sampling. This general theory would have to be adapted to the NMR
situation and be calibrated. However, there are a number of different approaches for
reconstructing NUS or CS spectra, including minimization of target functions, using
Lagrangian multipliers. Thus, while CS covers essentially all NUS applications it is also
used for a multitude of reconstruction methods that vary largely in the strategy and speed of
reconstruction.

2.5 Speeding up data acquisition
The most important use of NUS appears to be enabling acquisition of high-resolution
multidimensional spectra; however, it also can significantly enhance speed of data
acquisition for experiments of less complexity. This includes recording suites of triple
resonance experiments for small proteins (13), measuring relaxation parameters, residual
dipolar couplings, hydrogen exchange rates, pH titrations in 2D correlated spectra, or
characterizing metabolite mixtures. For such experiments it is important to obtain accurate
peak positions, or reliable signal intensities. The former can obviously be achieved but the
latter deserves more consideration.
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Relaxation measurements typically use sets of 1H-13C or 1H-15N HSQC spectra recorded
with different waiting delays and fitting the time dependence of peak intensities or heights.
Recording the spectra can be accelerated dramatically with NUS. The relative values of
relaxation rates are essentially identical to those obtained with traditional US methods.
However, it appears that the absolute values of the rates obtained by fitting time courses of
decaying signals may be up to 5% faster than those meassured with US. However, this bias
is usually well within the precission of the measurements; moreover, the bias can readily be
compensated for (to be published).

Applying NUS to 2D spectra of metabolite samples is straight forward, such as speeding
up 1H-13C HSQC or 1H-13C HMBC experiments. The transverse relaxation of 13C in
metabolites is typically very slow relative to the sweep width, and collecting in the order of
8k complex data points in the indirect dimension is not unreasonable to approach 1.26 T2
(see equation (6)). To cover this, only a small fraction needs to be acquired in a non-uniform
manner. This can speed up acquiring spectra of metabolite mixtures at natural
abundance 13C; however, it can be a game changer when recording spectra obtained
with 13C enriched precursors.

2.6 Enhancing Signal to Noise Ratio (SNR) and Detection Sensitivity
When analyzing SNR and detection sensitivity we compare time-equivalent spectra. For a 1/
n sparse NUS experiment n-fold more scans are recorded than the equivalent US
experiment, resulting in the same total measuring time. As we have shown recently, the peak
heights in the NUS are n-fold higher than in the time-equivalent US spectra while the noise
increases by less than a factor of n, resulting in a de-facto enhancement of the SNR.
However, quantifying the SNR enhancement depends on how the noise is measured. For
example, median, mean or maximum noise measurements can be used. As can be seen in the
simulation displayed in Figure 3, the mean noise does not increase from US to 25% NUS or
10% NUS. This results in a dramatic increase of the signal-to-mean noise, essentially by the
factor n. Similarly, the mean noise increases by approximately the square root of n. On the
other hand, the maximum noise (peak noise) increases equally with the hight of the signal.
Thus, time equivalent NUS increases the SNR when using mean or rms noise as the noise
metric. However, SNR doesn’t increase signifiantly when using the peak noise metric.

It may be possible that false positives (peak noise) can be recognized based on the line shape
since it appears as sharp spikes. However, this needs further examination.

3. NUS sampling schedules
3.1 Overview of sampling schedules

As is discussed in the Compressed Sensing literature (12), the “goodness” of the sampling
schedule comes into question when determening how sparse we can sample. If the
“goodness” of the sampling schedule did not matter we could, without penalty, sample (a)
everything in the beginning (this is the case of Linear Prediction) and predict the remainder
of the time domain data, or (b) we should be able to sample, say, every other point without
the penalty of folding. This obviously doesn’t work.

Thus, CS recommends complete random sampling. This is an intuitive solution, and works
well for CS when applied to its original problem of imaging. Random sampling was also
pursued in the early publication on NUS in NMR by Barna et al (15) with the modification
of an additional exponential weighting to take in account NMR signal relaxation.

“Random” is, however, a poorly defined term and a mathematically challenging concept,
although there is an intuitive understanding of the concept. The traditional random schedule
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implementation is to create a vector or matrix, and to pick points by essentially ‘throwing
darts’, modelled by a random number generator, or more correctly, a “pseudo-random
generator”. An example pseudo-random generator is the C “drand48” function that produces
non-negative double-precision floating-point values uniformly distributed between [0.0,
1.0). The generated values are then weighted to span the length of the vector or matrix.
Presently, there are many suggestions in the literature for Computational Science of “blue-
noise” weighting by Poisson-disks. The implementation with Poisson-disks in NMR
spectroscopy has also been suggested by Kazimierczuk et al (16).

3.2 Poisson-Gap sampling
As shown previously (17), we found that the fidelity of the reconstruction varies
dramatically when using different seed values to initiate the ‘dart throwing’ algorithm,
especially for sparse sampling of relatively short time domain data sets, such as picking 256
of 1024 data points. Studying this by eye, we made three observations: (1) large gaps in the
sampling schedule are generally unfavorable, (2) gaps at the beginning or end of the
sampling are worse than those in the middle and (3) the sampling requires sufficiently
random variation to minimize folding-like artifacts that would be severe when selecting, for
example, every 5th point.

When investigating the distribution of the gap lengths generated by the non-weighted “dart
throwing” algorithm, one finds that this creates an exponential distribution of the gaps. By
creating a very long array (>100,000) and allowing for 20% hits, one creates the distribution
shown in Figure 4 (left). Note, the value of 15 is a cumulative value of 15 and above. This
number is just less than 3.5% but is not negligible. On the other hand, by postulating a
Poisson distribution, one finds a much tighter distribution around the average value of 4.
The value of 15 and above here is around 0.0020 %. In other words, the probability of
generating a relative large gap is low when using a schedule generated according to the
Poisson distribution. Additionally, the distribution is sufficiently “random” to fulfill the third
criterion above.

In order to create a Poisson distribution (18) for the gap lengths, an algorithm is created by a
method illustrated in Figure 5.

A data point that it going to be observed is generated. We call this point “the anchor”. As it
is good practice to always sample the first data point, this is the filled circle at the left
bottom of Figure 5. A well-known algorithm for generating a Poisson distributed random
number is then used (19). Here, λ is the average gap length the user provides as input, which
defines a value of e−λ in the interval [0,1] as a termination point. The value of p=1 is
multiplied with a random number u in [0,1]. If p × u is larger than e−λ the process is repeated
until p × u is smaller than this value, and the number of rounds the loop is repeated, k-1,
yields the number of skipped time domains points.

In our example of Figure 5, a “2” is generated. This means that the next two points are not
acquired however the fourth data point in this sequence is acquired. Marking this, we return
to the algorithm, and in this case a “0” is generated. This means that the next point is being
acquired, the fifth one, and there is no gap. The procedure is repeated until the vector is
complete. Note there is no guarantee that the last point is being acquired. Also, there is no
guarantee that the requested number of data points to be acquired is created correctly. Hence
the procedure is repeated until the requested number of points is created correctly, all with
different seed values for the pseudo-random number generator. The only parameter that is
used for this procedure is the value of lambda (λ). This parameter is defined in the equation
for the Poisson distribution:
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λ describes the average of the function. It is equal to 1.0/(sparseness) – 1.0. The values of k
are the integer values representing a particular gap size, i.e. the values of “2” and “0” above.
The functional value is the probability, and is represented in Figure 5.

With regards to the second observation (that gaps at the beginning and end of the vector are
bad), we simply vary the value of the average gap length lambda (λ) along the vector, and
we do this in a sinusoidal form. In a first option, which we call sinusoidal weight 1, or
ssw=1, we make the average gap sizes λ small both at the beginning and the end of the time
domain according to λ = (λ)0 sin(x), and letting the value of × be 0 in the beginning of the
vector and π in the end. In addition, to be able to ensure the proper number of data points to
be acquired and achieve the desired sparsity, (λ)0 is iteratively varied between trials. Here,
the initial value of (λ)0 is equal to 1.0/(sparseness) – 1.0.

The second type of refining is to vary the values of × in the formula λ = (λ)0 sin(x) between
× in the beginning of the vector and π/2 at the end. We call this: sinusoidal weight 2 or
ssw=2. The rationale of this is that the acquisition is often done on relaxing signals so that
emphasis should be in the beginning. This is very much similar to the situation with
exponentially weighted random sampling. Also, data are typically apodized before Fourier
transform. This is especially important when acquiring data with constant time evolution.
Should the data not being apodized, the very sharp, truncated signals generate so-called sinc-
wiggle artifacts. On the other hand, if data are acquired with tmax ≥ T2, and no apodization is
applied, either ssw=1 or ssw=2 could be used depending on the aim of the measurement.
ssw=2 will of course yield an intrinsically better response regarding the signal but ssw=1
may yield a better shape of the signal. However, acquiring a signal with tmax » T2 may only
be practical for highly concentrated samples. For completeness, if we do no sinusoidal
weighing, we call this sinusoidal weight 0, or ssw=0.

Is Poisson-Gap sampling superior to pure random sampling? This is certainly supported by
extensive simulations (20) but also experiments. As an example we recorded a 1H-13C
HSQC spectrum of the protein GB1 with a sampling schedule created with a standard
random number generator and with Poisson-Gap sampling (Figure 6). As can be seen the
spectrum at the left contains folding and T1 noise-like artifacts, which seem to be due to the
existence of large gaps. These artifacts are entirely absent in the spectrum recorded with the
Poisson-Gap sampling procedure.

Extending the Poisson-Gap procedure from one to multiple NUS dimensions is non-trivial
as the algorithm intrinsically works in an ordered way along a single vector or dimension.
The concept of ‘order’ is something that is mathematically lost when going from one to
multiple dimensions. That is, the natural numbers have order; coordinates do not. Instead, to
construct sampling schedules of higher dimensionality than one, different “strands” of
Poisson-Gap sampling vectors are woven into sections of larger dimensional order. This is
to say; first one vector is constructed and placed on one of the axis. Next, a second vector is
constructed orthogonal to the first one, using the already set value of the first vector as an
anchor. To eliminate as much preference between the dimensions, the third vector is
constructed parallel to the second but moved one step along the first dimension. This is then
followed by a forth and a fifth vector in the first dimension, parallel to the first vector. This
is continued until all points in the matrix are marked as either to be sampled or not to be
sampled.
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There are a couple of caveats to be considered. First, just about all 2D matrixes, from an
NMR vantage, are rectangular and hardly ever square. The number of vectors can be
adjusted such that for every vector created in one dimension, the number in the other is
adjusted so that a rectangular shape is produced. Second, when looking for an anchor point,
which is required to be set for the Poisson-Gap sampling, one needs to create a parallel
vector to the axis on the negative side that shadows the vectors already in place. This is
important because not all points are being sampled. From the perspective of the Poisson-Gap
vector, the first data point in its direction, which already has been managed, will be the
anchor point. If there is none set, the “shadow” vector is used. Third and most importantly,
one has to decide with what value the weighting has to be done. Is it (i) a multiplication of
individual weighting functions in the two dimensions, or (ii) an addition of the coordinates?
Both approaches have their merit. Multiplication could be considered, as relaxation may be
different in the two dimensions. On the other hand, addition may be more appropriate as the
relaxation is occurring as the sum of the coordinates. The former approach is implemented
as “mult”, the second as “add”. “mult” results in predominate sampling along the axis; “add”
yields a more triangular distribution. This issue of course applies to other types of sample
generators, and is not limited to that of multi-dimensional Poisson-Gap sampling.

Examples of 2D Poisson-Gap sampling produced with the “add” and “mult” strategy and
ssw=2 are presented in Figure 7:

When extending the algorithm to three NUS sampled dimensions first a “sheet” is created in
two dimensions as described above. Subsequently, another “sheet” is created orthogonally.
As it sits on the first sheet it starts at the Nyquist index 2 in the second dimension and is one
row too long. Thus, the last row of the second sheet has to be deleted. This is followed by
the third “sheet” orthogonal to the two priors, which starts at the Nyquist indices 2 of the
first and second dimension and the final vectors not touching the first two sheets have to be
eliminated to maintain the dimensions. The order of placing the following “sheets” is
oscillating back and forth between the orientations in order not to create preferences. The
time it takes doing this is not negligible, which means that it may take uncomfortably long to
create a cube with the desired number of selected points for acquisition. This process has to
be repeated several times in order to obtain the desired sparsity (λ)0. To reduce the time of
creating a schedule with a defined sparsity, the request of sampled data points is relaxed to a
given range. After a sampling schedule with three indirect dimensions is created there are
options in which order to actually record the data. We prefer to visit the sampling points in a
randomized order but the sampling point without increments is always acquired first. The
random order of visiting sampling points has the advantage that the complete Nyquist cube
is represented in case the experiment has to be terminated due to time constraints or
environmental problems, such as power failure or incorrect estimate of total measuring time.
An example of a 3D Poisson-Gap sampling schedule with 2% sparsity is presented in Figure
8:

4. Reconstruction methods
4.1. Brief background

Processing of NUS and US data is closely related. In principle, processing of NUS with
straight DFT is the simplest “reconstruction”. Whereas this leaves a large amount of
sampling artifacts, it is the fastest method to get a quick insight into the performance of a
running experiment. However, better reconstruction methods are needed to fully exploit the
information content of NUS data.

Initial reconstruction methods mostly used various forms of a Maximum Entropy procedures
(15) which were most successfully implemented as MaxEnt and used extensively (21, 22).
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Additionally, the traditional CLEAN method, which predatates the use of Maximum
Entropy methods for image reconstruction within astrophysics (23), has been implemented
for reconstruction of NMR spectra in various forms (24, 25). Applications of reduced
dimensionality acquisition and transformation with methods other than FT have also been
investigated (26, 27).

Drawbacks with the above methods except recent implementations of CLEAN, are either
residual artifacts due to the sparse sampling, unfavorable dynamic range response of the
signals and/or issues with the linearity of the reconstructed signal heights. In an effort to
reduce or eliminate these drabacks, we approached the problem of MaxEnt in a different
way, resulting in “Forward Maximum Entropy” reconstruction (5). This approach eliminated
the drawbacks mentioned above. As it is also a minimization procedure, however, the
computational power required makes this algorithm slow. A fast version of FM exists
however, FFM (28), that promises sufficient speed for reconstruction of NMR spectra.

It occurred to us that the target function in our minimizer could be altered from maximizing
the entropy, to allow for alternative implementations of entropy such as that proposed by
Skilling (15, 29, 30) as well as that of Hoch and Stern (31, 32). In addition we implemented
an iterative process closely related to iterative soft thresholding that we called the ‘Destill’
process (5). However, we found that FM reconstruction was not able to process 3D and 4D
data sufficiently fast even though we made use of high end workstations equipped with GPU
processors.

In parallel and somewhat predating FM reconstruction, Orekhov and co-workes developed
the multi-dimensional decomposition (MDD) approach (33, 34). MDD assumes that a
multidimensional spectrum can be written as a sum of components written as a direct
product of 1D line shapes. MDD then approximates the spectrum as a sum of components of
not yet known line shapes. It defines a target function written as the square of the difference
between the spectrum S and a sum of components but only evaluated at the sampled points.
The target function is then minimized using principle component analysis which needs line
shapes and amplitudes of the multidimensional peaks. This approach has been further
developed since.

Alternatively, the Filter Diagonalization Method (FDM) has been developed, which fits time
domain data to sums of decaying sinusoidals and has been used for reconstruction of 1D and
2D data (35, 36). FDM has been further developed and can handle phase sensitive spectra
robustly (37).

Finally, one may circumvent the reconstruction completely, and simply depend on the fact
the the Fourier Transform is using an orthogonal set of test fuctions. One is at liberty to
reduce this set either in the time domain (38) or in the frequency domain (39) for very fast
conversion of the time domain to the frequency domain. As long as the spectra in question
have little or no dynamic variation of the expected signals, this use is straight forward. It
may even be applied to 4D NUS C,C-NOESY spectra under specific circumstances (40).
The former use (the time domain) can alternatively be implementd by setting zeros in the
place of non-acquired data points when using FFT. In its more recent application (the
frequency domain) it enables the use of high dimensional spectra interpretation without
reconstructing the whole spectrum. Also, the groups of Kazimerczuk and Kozminski have
written several reviews on NUS and reconstruction methods, such as in (41).

4.2. Algorithms related to Compressed Sensing
In the field of Compressed Sensing, the minimization of choice is that of ‘norm’. In
principle, this choice is arbritary. The use of minimum ℓ 1-norm existed prior to the the field
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of CS, however, this type of minimization is closely associated with CS. Minimization of
other norms are being actively explored, especially that of ℓ→0 -norm in the form of
Iteratively Re-weighted Least Squares minimization (42). MaxEnt is also effectively a
minimization of norm, although MaxEnt is not commonly connected with CS.

As one may see from the above, minimization of the ℓ1-norm can be done explicilty.
However, Stern et al. have shown that the Iterative Soft Threshold (IST) algorithm is
equivalent to minimization of the ℓ1-norm (21). This is very important, as IST can be
implemented in n· log(n) time, which is faster than an n2 algorithm.

4.3 Implementation of a fast version of IST (hmsIST, (9))
While there were several methods for reconstructing NUS available they contained several
shortcomings which motivated us to search for better reconstruction procedures.

The main reason for developing hmsIST was enhanced reconstruction speed. None of the
previous reconstruction methods available to us could reconstruct high-resolution NUS 3D
and 4D spectra in a reasonable amount of time. The slow reconstruction speed of earlier
methods is probably a major reason why NUS hadn’t been widely accepted in the NMR
community even in our own research environment. After becoming aware of the IST
principle (43) this approach seemed to offer the potential of faster reconstruction. Indeed,
our implementation of this approach (hmsIST) results in an acceptable reconstruction time
for high-resolution 3D and 4D spectra (9).

Another reason for developing hmsIST was to have software that has only a limited or no
need for setting parameters. Here one only has to select the threshold and the number of
iterations before termination. Benefits are the high fidelity of reconstruction and the virtual
absence of artifacts (9).

Our implementation of IST (hmsIST) starts with FFT of the sparse time domain data set.
This yields a spectrum with a large amount of artifacts, which are proportional to the largest
signals. To reduce these artifacts and initiate reconstruction, a top percentage of the
frequency-domain signals is cut off and stored at a different location of the computer
memory. The truncated spectrum is converted back to the time domain by inverse Fourier
transformation, and the skipped time domain data points are again set to zero. This sparse
time domain signal is again transformed with the FFT algorithm. Since the strongest signals
are reduced the artifacts are slightly smaller. This proces is iterated until the time domain
signal is completely depleted, or until temination criteri are reached. While we could
terminate the process before the noise level is hit and obtain noiseless reconstructions we
generally prefer to also reconstruct the noise. A detailed description is found in (9).

The variables of the IST algorithm are i) the choice of the level of thresholding and ii) the
number of iterations. Too aggressive thresholding typically leads to the loss of reconstructed
signals; too few iterations in assocation with the particular setting of the thresholding leads
to incomplete reconstruction whereas too many iterations may lead to numerical problems. It
is possible to provide stop critera to the algorithm, although we so far consider this not
necessary and the implementation of termination criteria is still pending. Visualization of the
reconstructed spectrum and reconstruction with different settings is a fast process and does
not rely on a particular algorthimg for terminaton.

In short, we find following combinations of thresholding and iterations useful:

1. 12 iterations of 0.50 threshold.

2. 25 iterations of 0.70 threshold.
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3. 80 iterations of 0.90 threshold.

4. 400 iterations of 0.98 threshold.

5. 2000 iterations of 0.995 threshold.

The time for reconstruction is proportional by the number of iterations, wheareas the
resultant dynamic range is specified by (threshold)(number of iterations). In other words, the
above setting provides a dynamic range approximately of 1 to 3,000 at increasing time
consumption but also accuracy. If greater dynamic range is required, additional iterations are
necessary. We have set point #4 as our default. This means that it is probably possible to do
the reconstruction faster than this default; we however recommend that this is done with a
degree of scepticism and especially recommend point #1 only as a general check or
diagnostics about the progress of data acquisition at the spectrometer. Point #5 has been
used mainly for control purposes during simulations. Anyone may of course find different
levels that suit their purpose for appropriate reconstruction.

4.4. Considerations associated with IST reconstruction
The choice of a reconstruction method is of course a subjective one. A user may have
specific requirements regarding time, accuracy and even computational restraints. Using a
threshold of 0.98 and 400 iterations, and running the algorithm on a workstation or laptop
with a modern hyperthreading CPU, we find that reconstruction of a 2D NUS-HSQC takes
seconds (a significant amount of time is taken simply writing data back to disk). A typical
3D triple resonance NUS acquired spectrum takes less than 30 minutes (usually around 10
minutes) to process. Memory requirements are low as reconstruction involves only a single
2D plane at any particular time, i.e. the entire 3D spectrum is never held in memory at one
time. We have successfully used and typically use MacBook Pros with quad core Intel i7
CPUs at 2.3 GHz and 8 or more Gbyte of RAM, but any equivalent hardware running linux
or Mac OSX will give similar results. We also exploit the ability to run 8 parallel threads by
using a perl script called “parallel”.

Reconstruction of highly resolved 4D NUS acquired spectra require a somewhat more
advanced computational environment in order to finish in hours or a few days. A higher end
workstaion or a cluster with multiple nodes and a queuing system is essentially required.
Frustratingly, we have found that computational power on a cluster is not the limiting factor.
Instead, access time of the cluster file system is a larger technical challenge. For this we are
investigating non-NFS setups as well as faster solid state drives.

Recently, a pulication by Orekhov et al. investigates the speed and requirement of several
reconstruction methods (44). All in all, we find our implementation of hmsIST to be “fast-
enough” as well as “good-enough” for routine reconstruction of NUS spectra up to four
dimensions. In fact, we find the routine suprisingly robust. Table 1 provides an overview of
reconstruction times with typical computers and lists measured reconstruction times for well
defined computing environments.

5. Experiments that benefit most from NUS
NUS has been sucessfully implemented by a number of labs for collection and processing of
traditional backbone triple resonance experiments. As mentioned above, one should use
NUS to sample far out into the indirect dimensions to fully harness the resolution and
sensitivity that the high field spectrometers can provide, however, there are pratical
limitations. In typical backbone triple resonance experiments the Nitrogen dimension is
constant-time which limits the number of points that could be aquired. This problem could
be overcome by replacing the constant-time evolution with a semi-constant time evolution.
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In a typical experiment that encodes CA (HNCA/HNCOCA) the number of points that can
be aquired in the indirect carbon dimension is limited by the CA-CB coupling (~35Hz). One
could alleviate this problem by using band selective CB decoupling (47) to refocuse the CB
coupling. Alternatively one could appy virtual decoupling during processing to remove this
coupling (48). In experiments with CO evolution homonuclear coupling should not be a
problem, whereas CSA relaxation could be the limiting factor especially at higher field.
Experiments involving CB evolution are a bit more complex due to CG couplings and
labeling strategies where only the CA and CB carbon are labeled should be explored. It
should be noted that NUS can be easily combined with fast techniques like BEST- or
SOFAST methods (49, 50) to additionally speed up acquisition times.

In addition to backbone triple resonance experiments NUS has been used in standard side
chain experiments such as HCCH-TOCSY, HCCONH, CCONH and HCCH-COSY. These
experiments have low sensitivity but are in high demand for large proteins. Since they are
often performed on partially or fully deuterated proteins the heteronuclei relax more slowly,
and experiments can greatly benefit from NUS by collecting fewer points and more scans
per increment.

NUS methods provide a real boon when looking for resolution in NOESY type experiments.
NUS has been sucessfully employed in a variety of 3D and 4D NOESY expeiments such as
3D-15N, 13C, 15N-13C time-shared NOESY, 4D-13C-HMQC-NOESY-HMQC and
4D-15N-13C time-shared HMQC-NOESY-HMQC. An important consideration in a NOESY
type experiement is the fidelity of peak intensity in the reconstructed spectrum as these
intensities will be used to derive distance restrains. We have previously shown that IST
resconstruction is able to faithfully reconstruct the spectrum without any intensity bias (17).

NUS methods become a necessity with ILV labeled samples of large proteins. One can
utilize the favorable relaxation properties of the methyl groups along with the sharp TROSY
lines of the amide Nitrogen in a deuterated background to collect high resolution 4D spectra.
With the ability to stereoselectively label only one of the methyl groups in Leucine and
Valine residues these resonances relax even slower yielding a large time domain space to
sample for achieving high resolution (51, 52).

Measuring relaxation and RDCs will strongly benefit from NUS methods. Traditional
relaxation experiments (T1, T2 and heteronuclear NOE) are usually recorded as 2D HSQC
spectra. However, for large proteins and intrinsically unstructured proteins which have
substantial overlap in their 15N HSQC spectra, the accurate quantitation of peak intensities is
difficult. In the same time it takes to record a 2D spectrum uniformly one can record a series
of 3D CO dispersed relaxation experiments using NUS. This will allow for accurate
quantitation of cross peaks that would be overlapped in 2D (Robson et al, in prepration). A
similar approach can be applied for measuring RDCs where the CO dimension is used to
resolve the NH resonanes. Similarly, metabolic flux studies, which require rapid acquisition
of data at successive time points would benefit largely from NUS (53).

6. Practical aspects of NUS and Remaining Challenges
Non-uniform sampling, coupled with good reconstruction methods, has been established as a
theorectically valid method of data acquisition. However, the practicalities of bringing this
technology into the hands of the typical NMR spectroscopist has proven difficult. These
difficulties have primarily resulted from the improvised way in which NUS experiments
were intially acquired on spectrometers, a problem that in a few respects continues today. It
should be noted that commerical providers of spectrometer hardware and software have
made the acquisition of NUS experiments significantly easier with modern software
implementations that contain simple ‘turn on’ buttons for NUS. However there is much
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legacy hardware still in use today that can not be run with the modern software, so specially
written pulse sequences and schedule ‘tricks’ are still in use. Even with the modern
implementation of NUS, the deviation from the normal protocol of data collection is enough
to confuse many who are new to NUS. Below is a discussion of some of the practical issues
that arise when collecting data in a non-uniform manner and some advice and guidance is
offered.

6.1 Practical problems with the correct implementation of schedules
The Nyquist theorem gurantees that all frequencies within a given bandwidth can be
measured so long as a certain number of points are collected with a consistent dwell time
between each point. NUS violates this criterion by sampling a subset of these points.
Practically, this means that data collection skips some of these points. This is accomplished
by using a schedule file that describes either the evolution delay times and the associated
phases for each point desired or more commonly a list of integer points where the integers
represent at how many dwell times should be used for frequency labeling. Making a pulse
program understand a schedule file was traditionally done in a number of improvised way
by different labs. However this aspect in now automatic and hidden from the user with new
versions of the software. Nonetheless, a schedule file is still required for executing the
experiment and it is also needed for reconstruction purposes after data acquisition.

6.1.1 What is a schedule file?—Apart from instances where evolution delay times are
explicitly listed, a schedule file consists of a list of integer values that describe which
complex or hypercomplex points should be recorded. For instance, in the case of a 2D
spectrum one dimension is indirectly and nonuniformly acquired. The schedule file consists
of a single column and is simply a series of lines where each line is a single integer between
(usually) 0 and N – 1, where N is the final point. Because NUS allows skipping of points,
not all numbers between 0 and N-1 are needed. Each line will result in 2 FIDs being
recorded (the real and imaginery signals, or echo and antiecho signals, for that point). When
collecting a 3D spectrum, two indirectly acquired dimensions are acquired non-uniformly
(Figure 9 panel A). The schedule file consists of two columns of integers separated by white
spaces (the nature of the white space is usually ignored and only used to separate columns).
While there is no convention established, usually the first column refers to the F2 dimension
and the second column to the F1 dimension. Each line refers to a hypercomplex point within
the 2D matrix of the indirectly acquired dimensions. Thus, each hypercomplex point results
in 4 FIDs being recorded (Figure 9 panel B). By extension, a 4D spectrum with 3 indirectly
acquired dimensions consists of points composed of 3 integers per line. In this case, 8 FIDs
are recorded per hypercomplex point.

6.1.2 Order of points and offset values—In principle there is no reason the points in
the schedule file need to be in any particular order. In practice, most schedulers (including
the Poisson Gap scheduler) internally create schedules for 2 or more indirect dimensions ‘in
order’ with the right-most column (F1) being the fastest acquired dimension. When
implemented in this manner, reconstruction of a plane consisting of the F1 dimension and
the direct dimension can be done very early on during an experiment. This can be used to
verify that a pulse sequence is working, much like checking a US spectrum by collecting 2D
planes. On the other hand, a randomized schedule, in which the points are shuffled, allows
for complete reconstruction of the entire spectrum, at the final resolution, at virtually any
stage of data collection. It should be noted that the earlier reconstruction takes place, more
artifacts may populate the spectrum as large gaps will be present in the schedule.

Collection of the “traditional first point”, (where there is zero evolution in all indirect
dimensions) as the first point in the NUS schedule is recommended as viewing the data in
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this point helps establish whether the experiment is running correctly or not. The first FID is
used to determine the phase correction for the direct dimension before reconstruction. The
FIDs of this first point also have an expected pattern, based on the acquisition method
(Complex/States/States-TPPI/Echo-AntiEcho) of the indirect dimensions. More details on
checking the progress of experiments is given in Section 6.2.

Should the first point in a 2D schedule be labeled “0 0” or “1 1”? This depends on the
system and pulse program being used. Our schedule generating programs use the “0” offset
internally when generating a schedule. It is trivial to add a “1” to all points to create a
schedule offset of “1” for use in pulse sequences that require a “1” offset.

6.1.3 Selecting the sparsity of a schedule—The number of points required for
successful reconstruction is covered in section 2.3. In practice, these guidelines work well.
However, spectra that are crowded or poorly dispersed can benefit from a more conservative
approach, at least in the case of hmsIST reconstructions. For a standard triple resonance
experiment reconstruction of a 13C/15N plane takes place for every direct point along the 1H
amide dimension. Consider a 200 amino acid unfolded protein compared to a 200 amino
acid structured protein. The number of expected peaks in the 13C/15N plane at a 1H amide
point at 7.5 ppm is much higher for the unfolded protein than for a folded, well dispersed
protein. Even for a typical well folded protein, the middle of the amide region is usually the
densest (see Figure 9 panel C). Significant peak density in these 13C/15N planes may warrant
the use of higher sampling densities above and beyond the 20% per axis suggestion. This
recommendation for higher sampling densities should also be considered in the case of
dense NOE data where many signals are expected.

6.1.4 Generating schedule files—The initial methods of acquiring NUS data required
generating a schedule outside the acquisition software. Modern acquisition software usually
provides an automatic way to generate schedules, however no commerical software for
NMR data acquisition creates Poisson Gap sampling schedules by default. Given the
superior performance of this procedure (see section 3.2) we expect the the Poisson-Gap
schedule will be part of commerical NMR software soon. Fortunately, it is possible to
introduce Poisson Gap sampling schedules into the modern versions of acquisition software
as well as legacy pulse sequences. There are a few ways in which a Poisson Gap sampling
schedule can be generated. 1) A java applet with instructions can be download from http://
gwagner.med.harvard.edu/intranet/hmsIST/gensched_old.html. This java applet can be run
locally by a user. 2) A web based schedule generator is available at http://
gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html. The page allows for
schedules to be generated anywhere with access to a modern web browser. There is a
‘simple’ option where the number of points required in each dimension and sparseness is all
that is required for a schedule to be generated. An advanced option is under development
where the relaxation of evolving nuclei are taken into consideration to maximize signal-to-
noise and/or resolution. In addition, constant time evolution can be checked to see if the
number of points in a dimension exceeds the permissible amount. 3) A Bruker Topspin
macro that will generate a Poisson Gap schedule for the currently opened experiment at the
console is also available from us. This requires the NUS capabilities of Topspin 3.0+.

6.1.5. Implementing sampling schedules on commercial instruments—The
latest versions of both Agilent and Bruker softwares readily support NUS sampling. In
Agilent instruments using software VNMRJ 4.0 and above, with the latest patch, setting up
and NUS experiments involves the following steps.

A. Using automatically generated schedule.
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Step 1: Setup Parameters including spectral width, pulselength etc as one do
for a linear expriment.

Step 2: Choose the option for NUS/Sparse sampling and specify the sampling
density preferred.

Step 3: The experiment is ready to be excecuted with NUS.

B. Using user provided schedule

Step 1: Setup Parameters including spectral width, pulselength etc as one do
for a linear expriment.

Step 2: Copy a sampling schedule into current experiment directory (curexp/
sampling.sch)

Step 3: Choose or type sampling='sparse' and CStype='i'

Step 4: The experiment is ready to be excecuted with NUS.

The experiment is ready for NUS sampling as dictated by the sampling schedule
sampling.sch

In Bruker instruments using Topspin version 3.0 and above, setting up and NUS
experiments involves the following steps.

A. Using auomatically generated schedule.

Step 1: Setup Parameters including spectral width, pulselength etc as one do
for a linear expriment.

Step 2: Choose “non-uniform_sampling” option for FnTYPE in eda

Step 3: Click on the NUS tab on the left frame and fill in the details about
sampling density, J modulation, esitmated T2 etc.

Step 4: The experiment is ready to be excecuted with NUS.

B. Using user provided schedule

In the above setting replace the schedule which is located in the vc directory with the
namenuslist_”expno” with the user provided schedule. NUS can also be easily carried out on
olderversions of both Agilent and Bruker softwares but the implementation is more involved
and might require recoding pulse sequences in older Bruker software. Both Agilent and
Bruker also provide softwares to process spectra that were acquired in NUS manner.

6.2 Checking the progress of experiments
New users are often skeptical of conducting NUS experiments because it is not possible to
do conventional processing of data at early stages, meaning a few days can be spent
collecting data non-uniformly, only to later find out an error was made during setup of the
experiment. There are two ways in which NUS data can be checked before completion of
the experiment. Firstly, the initial complex or hypercomplex point should be looked at to see
if correct signals are present. Secondly, the entire spectrum can be processed before
completion of data collection if acquired in random order.

6.2.1 Understanding the first complex/hypercomplex point—As stressed above,
schedule files should always begin with the zero point. This means the first point acquired
will be equivalent to the first point collected during conventional acquisition. Because this
point has no frequency evolution a 1D transform of the FIDs for this point should result in
spectra with signals without any frequency evolution in the indirect dimensions. For a
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complex point, the real FID should, in most cases, contain a high signal level while the
imaginery part may contain zero signal (no phase correction). For an echoantiecho point,
both FIDs will contain data. When two indirect dimensions are used, the first 4 FIDs will
represent the first point. It should be noted that for dimensions in which frequency evolution
is sine modulated (instead of cosine modulated), no signal will be present for the first point.

6.2.2 ‘In progress’ reconstructions—Experiments that are partially acquired can be
processed, while still being acquired, to gauge the relative success or failure of an
experiment. This is a natural consequence of collecting data non-uniformly as processing
can be done using a truncated schedule file that encompasses the data that has been collected
to that point. A schedule file that is randomly ordered will quickly span the resolution range
of the final spectrum however the large gaps that result will initially lead to many artifacts.
On the other hand, an in-order schedule file will slowly acquire one of the dimensions
leading to reconstructions that poorly resolve that dimension. However, early data collection
with either random or in-order schedules can be reconstructed and spectrum details can be
seen very early on.

6.3 Remaining challenges
The application of non-uniform sampling is less widespread in the NMR community
compared to traditional linear acquisition. The change over to non-uniform sampling still
requires overcoming some difficulties and challenges.

6.3.1 More extensive use of semi-constant time—Constant time based aquisition
methods is not sufficient to fully exploit NUS protocols. For example, at a 1H frequency of
800 MHz and a sweep width of 36 ppm in a 15N dimension, only about 64 complex points
can be acquired within the constant time period. With a deuterated protein and exploiting
TROSY transfers, sensitivity is still increasing when 64 complex points in the 15N
dimension have been acquired. To fully exploit NUS, semi-constant and/or constant time/
real time experiments should be more widely available.

6.3.2 Full exploitation of signal to noise maximum at 1.26*T2 may not be
feasible—The power of non-uniform sampling is the ability to sample out to very long
evolution times within a tractable amount of collection time. This is particularly useful in
dimensions where T2 relaxation is low, for example exploiting TROSY transfers for
backbone 15N and the 13Cα evolution of deuterated proteins. It has been established that
maximal signal-to-noise is achieved when 1.26 times the T2 decay time has been acquired
(6). Calculations of expected T2 relaxation times for a 30 kDa deuterated protein at 800
MHz with sweep widths of 36 ppm for 15N and 40 ppm for 13Cα shows that maximal signal
would be acquired at 384 15N points and 1233 13Cα points in an HNCA experiment.
Assuming a schedule that acquired 4% of these points, the number of scans set to 8 and a
recycle delay time of 1.5 seconds, this experiment would take approximately 10.5 days to
complete. Clearly this defeats the purpose of rapid data collection. Therefore, compromises
may need to be made when attempting to collect signal maximally. In practice the selection
of the number of points in each dimension will depend on sample conditions, the isotope
labelling scheme employed and availability of pulse programs that can fully exploit long
frequency evolution times. The best practice is to balance how much resolution (points) a
user wants in each dimension while making sure that collection time does not become too
long. For example, during 3D or 4D NOESY acquisition, a user will probably want to
balance collecting many points in an indirect 1H dimension while shortening any indirect
heteronuclear dimensions to fit the available time to collect data.
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6.3.3 The limits of spectrum file size—NUS permits collection of a large number of
points per dimension. This leads to very large file sizes for spectra when the entire spectrum
is composed into a single file. A 3D spectrum with 512 × 512 × 512 points can exceed the 2
GB file size limit present on some 32 bit operating systems and some spectrum analysis
software. Also, software that attempts to hold all 2+ GB of spectrum data in RAM may run
slow as system memory runs low. This problem is compounded for 4D spectra. Future
implements of analysis software may need to consider addressing the problem of dealing
with very large spectra that can result from ultra high resolution that is possible with non-
uniform sampling.

7. Conclusions
After the initial proposal to use non-linear sampling acquisition of 2D NMR data (15) this
approach has been used and further developed by only a small minority of NMR
spectroscopists. However, recent developments of optimal sampling schedules and efficient
reconstruction methods have created more awareness of the potential of this approach. Thus,
commercial spectrometer providers have started to implement early versions in their
spectrometer and processing software. Correctly acquired NUS data can now be
reconstructed essentially free of artifacts and very fast so that 3D and 4D spectra can be
obtained at unprecedented resolution and high precision of peak positions. This will
facilitate correct assignment of peaks in 3D and 4D NOESY spectra and speed up structural
studies. Besides providing higher resolution, carefully applied NUS can also significantly
enhance the ability to detect weak peaks, which indeed will enable detection of more NOE
peaks for structural studies. Obviously, the speed-up obtainable with NUS can readily be
combined with other methods of fast acquisition. Thus, we expect that NUS and advanced
reconstruction methods will become mainstream and enhance the impact of NMR in
structural biology and molecular biology in general.
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Highlights

NUS is needed to exploit the power on modern instruments in 3D and 4D protein NMR

Random sampling schedules with Poisson-distributed gap lengths minimize artifacts

Enhanced reconstruction speed of hmsIST makes NUS suitable for routine protein NMR
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Figure 1.
Comparison of linearly and non-linearly recorded 3D HNCO spectra for the 50 kDa C-
domain of the enterobactin synthase EntF. Both spectra were recorded within six hours and
processed with the FM reconstruction method as described previously (5).
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Figure 2.
Dependence of the signal-to-noise ratio on the maximum evolution time and the relaxation
rate. The signal height is obtained from the integral over the envelope of the FID while the
noise is proportional to the square root of the number of sampling points. Up to ~ 1.26 T2
each scan adds more signal than noise, beyond that point each increment adds more noise
than signal (adapted from Rovnyak et al. (6)).
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Figure 3.
Simulation of the effect of NUS on the signal to noise ratio (SNR) in time-equivalent spectra
(adapted from (14)). A. Spectrum simulated with an array of four Lorentzian signals of
different height without simulated noise. The time-domain signal is sampled to 1.2 T2. The
FID contains 2k complex points. B. The same as A, but noise was added and time domain
data were transformed with FFT. C. NUS (25% density, SSW=2, 4 × NS) D. NUS (10%
density, SSW=2, 10 × NS). The NUS time domains were reconstructed with hmsIST. In all
cases the final time domain signals were zero filled and Fourier transformed without
apodization. The generated peak heights are marked in the figure. In addition three measures
of the noise are annotated, mean, rms and max noise. Bottom: The three measures of the
SNR are plotted for the strongest peak vs the number of scans per increment.
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Figure 4.
Distribution of gap lengths when using non-weighted dart-throwing algorithms (left) and
Poisson-gap sampling (right). The bar at 15 represents the sum of gaps that are 15 or more.
Obviously, the Poisson-Gap sampling avoids large gaps very efficiently.
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Figure 5.
Illustration of the procedure for creating a Poisson-Gap schedule (19).
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Figure 6.
Comparison of regular random sampling (left) and Poisson-Gap random sampling (right) of
the aliphatic region of a 1H-13C HSQC of the B1 domain of protein G (GB1). Both spectra
were collected on the same sample with the same conditions and for equal time (field: 600
MHz, GB1 concentration: 0.5 mM, number of scans: 40, sampling density: ~20% or 52 out
of 256 points). Reconstruction was performed using hmsIST with identical parameters (apart
from the schedule) and spectra plotted to the same contour level. Significant T1 noise
artifacts are present on the regular random sampling spectrum compared to Poisson-Gap
random sampling.
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Figure 7.
Example of a 4% 2D Poisson sampling schedule produced with the “add” (left) and the
“mult” approach (right). We use the “add” approach as default.
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Figure 8.
NUS Poisson-Gap schedule (2% sparsity) for the three indirect dimensions of a 4D 13C
dispersed methyl-methyl TROSY NOESY.
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Figure 9.
A) Schematic of the production of a Poisson-Gap sampling matrix. To the left, a 3D
spectrum is represented. The indirect dimensions constitute a 2D plane (shaded). In the case
of uniform sampling (center), a full Nyquist grid 2D sampling matrix is created and every
point on this grid is acquired (filled circles). Either dimension can be acquired faster than the
other, in this case, the F1 dimension is acquired fast (see arrow). Poisson-Gap sampling
samples a subset of the full matrix (right). B) The Poisson-Gap sampling matrix is converted
into a list of points. Each line contains an integer for each dimension in the sampling matrix
(in this case 2 integers). The order of the columns is arbitary, however we show the F1 (fast)
dimension as the last column. Each row of the list will result in 2n FIDs being collected
(where n is the dimensionality of the sampling matrix). Here, each line results in 4 FIDs. For
a typical triple resonance spectrum, these 4 FIDs will represent the 15N Echo, 15N
Antiecho, 13C Real and 13C Imaginary components of the hypercomplex point. C)
Illustration of sparse and dense planes during reconstruction. Indirect planes are
reconstructed individually from as many data points as there are sampled points in the
schedule. At top, a sparse plane results from a less dense 1H frequency (usually in a
dispersed area or from a sample with a low number of signals). At bottom is a plane from a
dense 1H frequency. Such a plane might result from an unfolded protein or a sample with
many signals. The number of points sampled should take into consideration the possibility
of densely populated planes like these.
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