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Abstract
Exponential-family random graph models (ERGMs) provide a principled and flexible way to
model and simulate features common in social networks, such as propensities for homophily,
mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient
statistics). However, those ERGMs modeling the more complex features have, to date, been
limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as
those where counts, measurements, or ranks are observed, has necessitated dichotomizing them,
losing information and introducing biases.

In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we
formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving
beyond the binary case. We introduce model terms that generalize and model common social
network features for such data and apply these methods to a network dataset whose values are
counts of interactions.

Keywords and phrases
p-star model; transitivity; weighted network; count data; maximum likelihood estimation;
Conway–Maxwell–Poisson distribution

1. Introduction
Networks are used to represent and analyze phenomena ranging from sexual partnerships
(Morris and Kretzschmar, 1997), to advice giving in an office (Lazega and Pattison, 1999),
to friendship relations (Goodreau, Kitts and Morris, 2008; Newcomb, 1961), to international
relations (Ward and Hoff, 2007), to scientific collaboration, and many other domains
(Goldenberg et al., 2009). More often than not, the relations of interest are not strictly
dichotomous in the sense that all present relations are effectively equal to each other. For
example, in sexual partnership networks, some ties are short-term while others are long-term
or marital; friendships and acquaintance have degrees of strength, as do international
relations; and while a particular individual seeking advice might seek it from some
coworkers but not others, he or she will likely do it in some specific order and weight advice
of some more than others.

Network data with valued relations come in many forms. Observing messages (Freeman and
Freeman, 1980; Diesner and Carley, 2005), instances of personal interaction (Bernard,
Killworth and Sailer, 1979–1980), or counting co-occurrences or common features of social
actors (Zachary, 1977; Batagelj and Mrvar, 2006) produce relations in the form of counts.
Measurements, such as duration of interaction (Wyatt, Choudhury and Bilmes, 2009) or
volume of trade (Westveld and Hoff, 2011) produce relations in the form of (effectively)
continuous values. Observations of states of alliance and war (Read, 1954) produce signed
relationships. Sociometric surveys often produce ranks in addition to binary measures of
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affection (Sampson, 1968; Newcomb, 1961; Bernard, Killworth and Sailer, 1979–1980;
Harris et al., 2003).

Exponential-family random graph models (ERGMs) are generative models for networks
which postulate an exponential family over the space of networks of interest (Holland and
Leinhardt, 1981; Frank and Strauss, 1986), specified by their sufficient statistics (Morris,
Handcock and Hunter, 2008), or, as with Frank and Strauss (1986), by their conditional
independence structure leading to sufficient statistics (Besag, 1974). These sufficient
statistics typically embody the features of the network of interest that are believed to be
significant to the social process which had produced it, such as degree distribution (e.g.,
propensity towards monogamy in sexual partnership networks), homophily (i.e., “birds of a
feather flock together”), and triad-closure bias (i.e., “a friend of a friend is a friend”).
(Morris, Handcock and Hunter, 2008)

A major limitation of ERGMs to date has been that they have been applied almost
exclusively to binary relations: a relationship between a given actor i and a given actor j is
either present or absent. This is a serious limitation: valued network data have to be
dichotomized for ERGM analysis, an approach which loses information and may introduce
biases. (Thomas and Blitzstein, 2011)

Some extensions of ERGMs to specific forms of valued ties have been formulated: to
networks with polytomous tie values, represented as a constrained three-way binary array by
Robins, Pattison and Wasserman (1999) and more directly by Wyatt, Choudhury and Bilmes
(2009; 2010); to multiple binary networks by Pattison and Wasserman (1999); and the
authors are also aware of some preliminary work by Handcock (2006) on ERGMs for signed
network data. Rinaldo, Fienberg and Zhou (2009) discussed binary ERGMs as a special case
and a motivating application of their developments in geometry of discrete exponential
families.

A broad exception to this limitation has been a subfamily of ERGMs that have the property
that the ties and their values are stochastically independent given the model parameters.
Unlike the dependent case, the likelihoods for these models can often be expressed as
generalized linear or nonlinear models, and they tend to have tractable normalizing
constants, which allows them to more easily be embedded in a hierarchical framework.
Thus, to represent common properties of social networks, such as actor heterogeneity, triad-
closure bias, and clustering, latent class and position models have been used and extended to
valued networks. (Hoff, 2005; Krivitsky et al., 2009; Mariadassou, Robin and Vacher, 2010)

In this work, we generalize the ERGM framework to directly model valued networks,
particularly networks with count dyad values, while retaining much of the flexibility and
interpretability of binary ERGMs, including the above-described property in the case when
tie values are independent under the model. In Section 2, we review conventional ERGMs
and describe their traits that valued ERGMs should inherit. In Section 3, we describe the
framework that extends the model class to networks with counts as dyad values and discuss
additional considerations that emerge when each dyad’s sample space is no longer binary. In
Section 4, we give some details and caveats of our implementation of these models and
briefly address the issue of ERGM degeneracy as it pertains to count data. Applying ERGMs
requires one to specify and interpret sufficient statistics that embody network features of
interest, all the while avoiding undesirable phenomena such as ERGM degeneracy. Thus, in
Section 5, we introduce and discuss statistics to represent a variety of features commonly
found in social networks, as well as features specific to networks of counts. In Section 6 we
use these statistics to model social forces that affect the structure of a network of counts of
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conversations among members of a fraternity. Finally, in Section 7, we discuss generalizing
ERGMs to other types of valued data.

2. ERGMs for binary data
In this section, we define notation, review the (potentially curved) exponential-family
random graph model and identify those of its properties that we wish to retain when
generalizing.

2.1. Notation and binary ERGM definition
Let N be the set of actors in the network of interest, assumed known and fixed for the
purposes of this paper, and let n ≡ |N| be its cardinality, or the number of actors in the
network. For the purposes of this paper, let a dyad be defined as a (usually distinct) pair of
actors, ordered if the network of interest is directed, unordered if not, between whom a
relation of interest may exist, and let be the set of all dyads. More concretely, if the
network of interest is directed, ⊆ N × N, and if it is not, ⊆ {{i, j} : (i, j) ∈ N × N}. In
many problems, a relation of interest cannot exist between an actor and itself (e.g., a
friendship network), or actors are partitioned into classes with relations only existing
between classes (e.g., bipartite networks of actors attending events), in which case is a
proper subset of N × N, excluding those pairs (i, j) between which there can be no relation of
interest.

Further, let the set of possible networks of interest (the sample space of the model)  ⊆ 2 ,
the power set of the dyads in the network. Then a network y ∈ , can be considered a set of
ties (i, j). Again, in some problems, there may be additional constraints on . A common
example of such constraints are degree constraints induced by the survey format (Harris et
al., 2003; Goodreau, Kitts and Morris, 2008).

Using notation similar to that of Hunter and Handcock (2006) and Krivitsky, Handcock and
Morris (2011), an exponential-family random graph model has the form

(1)

for random network variable Y and its realization y; model parameter vector θ ∈ Θ (for
parameter space Θ ⊆ ℝq) and its mapping to canonical parameters η : Θ → ℝp; a vector of
sufficient statistics g :  → ℝp, which may also depend on data x, assumed fixed and
known; and a normalizing constant (in y) κη,g : ℝq → ℝ which ensures that (1) sum to 1 and
thus has the value

Here, we have given the most general case defined by Hunter and Handcock (2006).
Usually, q = p and η(θ) ≡ θ, so the exponential family is linear. For notational simplicity, we
will omit×for the remainder of this paper, as g incorporates it implicitly.

2.2. Properties of binary ERGM
2.2.1. Conditional distributions and change statistics—Snijders et al. (2006),
Hunter et al. (2008), Krivitsky, Handcock and Morris (2011), and others define change
statistics or change scores, which emerge when considering the probability of a single dyad
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having a tie given the rest of the network and provide a convenient local interpretation of
ERGMs. To summarize, define the p-vector of change statistics

where y + (i, j) is the network y with edge or arc (i, j) added if absent (and unchanged if
present) and y − (i, j) is the network y with edge or arc (i, j) removed if present (and
unchanged if absent). Then, through cancellations,

It is often the case that the form of Δi,jg(y) is simpler than that of g(y) both algebraically and
computationally. For example, the change statistic for edge count |y| is simply 1, indicating
that a unit increase in η|y|(θ) will increase the conditional log-odds of a tie by 1, while the
change statistic for the number of triangles in a network is |yi ∩ yj|, the number of neighbors
i and j have in common, suggesting that a positive coefficient on this statistic will increase
the odds of a tie between i and j exponentially in the number of common neighbors. Hunter
et al. (2008) and Krivitsky, Handcock and Morris (2011) offer a further discussion of
change statistics and their uses, and Snijders et al. (2006) and Schweinberger (2011) use
them to diagnose degeneracy in ERGMs. It would be desirable for a generalization of
ERGM to valued networks to facilitate similar local interpretations.

Furthermore, the conditional distribution serves as the basis for maximum pseudo-likelihood
estimation (MPLE) for these models. (Strauss and Ikeda, 1990)

2.2.2. Relationship to logistic regression—If the model has the property of dyadic
independence discussed in the Introduction, or, equivalently, the change statistic Δi,jg(y) is
constant in y (but may vary for different (i, j)), the model trivially reduces to logistic
regression. In that case, the MLE and the MPLE are equivalent. (Strauss and Ikeda, 1990)
Similarly, it may be a desirable trait for valued generalizations of ERGMs to also reduce to
GLM for dyad-independent choices of sufficient statistics.

3. ERGM for counts
We now define ERGMs for count data and discuss the issues that arise in the transition.

3.1. Model definition
Define N, n, and as above. Let ℕ0 be the set of natural numbers and 0. Here, we focus on
counts with no a priori upper bound — or counts best modeled thus. Instead of defining the

sample space  as a subset of a power set, define it as , a set of mappings that
assign to each dyad (i, j) ∈ a count. Let yi,j = y(i, j) ∈ ℕ0 be the value associated with dyad
(i, j).

A (potentially curved) ERGM for a random network of counts Y ∈  then has the pmf

(2)

where the normalizing constant
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with η, g, and θ defined as above, and

(3)

(Barndorff-Nielsen, 1978, pp. 115–116; Brown, 1986, pp. 1–2), with ΘN being the natural
parameter space if the ERGM is linear. Notably, while (3) is trivial for binary networks
because their sample space is finite, for counts it can be a fairly complex constraint.

For the remainder of this paper, we will focus on linear ERGMs, so unless otherwise noted,
p = q and η(θ) ≡ θ.

3.2. Reference measure
In addition to the specification of the sufficient statistics g and, for curved families, mapping
η of model parameters to canonical parameters, an ERGM for counts depends on the
specification of the function h :  → [0, ∞). Formally, along with the sample space, it
specifies the reference measure: the distribution relative to which the exponential form is
specified. For binary ERGMs, h is usually not specified explicitly, though in some ERGM
applications, such as models with offsets (Krivitsky, Handcock and Morris, 2011, for
example) and profile likelihood calculations of Hunter et al. (2008), the terms with fixed
parameters are implicitly absorbed into h.

For valued network data in general, and for count data in particular, specification of h gains
a great deal of importance, setting the baseline shape of the dyad distribution and
constraining the parameter space. Consider a very simple p = 1 model with g(y) = (∑ (i,j)∈
yi,j), the sum of all dyad values. If h(y) = 1 (i.e., discrete uniform), the resulting family has
the pmf

giving the dyadwise distribution , with θ < 0 by (3). On
the other hand, suppose that, instead, h(y) = ∏(i,j)∈ (yi,j!)−1. Then,

giving , with ΘN = ℝ. The shape of the resulting distributions
for a fixed mean is given in Figure 1.

The reference measure h thus determines the support and the basic shape of the ERGM
distribution. For this reason, we define a geometric-reference ERGM to have the form (2)
with h(y) = 1 and a Poisson-reference ERGM to have h(y) = ∏(i,j)∈ (yi,j!)−1.
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Note that this does not mean that any Poisson-reference ERGM will, even under dyadic
independence, be dyadwise Poisson. We discuss the sufficient conditions for this in Section
5.2.1.

4. Inference and implementation
As exponential families, valued ERGMs, and ERGMs for counts in particular, inherit the
inferential properties of discrete exponential families in general and binary ERGMs in
particular, including calculation of standard errors and analysis of deviance. They also
inherit the caveats. For example, the Wald test results based on standard errors depend on
asymptotics which are questionable for ERGMs with complex dependence structure (Hunter
and Handcock, 2006), so, in Section 6 we confirm the most important of the results using a
simple Monte Carlo test: we fit a nested model without the statistic of interest and simulate
its distribution under such a model. The quantile of the observed value of the statistic of
interest can then be used as a more robust P-value.

At the same time, generalizing ERGMs to counts raises additional inferential issues. In
particular, the infinite sample space of counts means that the constraint (3) is not always
trivially satisfied, which results in some valued ERGM specifications not fulfilling
regularity conditions. We give an example of this in Section 5.2.3 and Appendix B.
Additional computational issues also arise.

4.1. Computational issues
The greatest practical difficulty associated with likelihood inference on these models is
usually that the normalizing constant κh,η,g(θ) is intractable, its exact evaluation requiring
integration over the sample space . However, the exponential-family nature of model also
means that, provided a method exists to simulate realizations of networks from the model of
interest given a particular θ, the methods of Geyer and Thompson (1992) for fitting
exponential families with intractable normalizing constants and, more specifically, their
application to ERGMs by Hunter and Handcock (2006), may be used. These methods rely
on network sufficient statistics rather than networks themselves and can thus be used with
little modification. More concretely, the ratio of two normalizing constants evaluated at θ′
and θ can be expressed as

so given a sample Y(1),…, Y(S) from an initial guess θ, it can be estimated
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Another method for fitting ERGMs, taking advantage of the equivalence of the method of
moments to the maximum likelihood estimator for linear exponential families, was
implemented by Snijders (2002), using the algorithm by Robbins and Monro (1951) for
simulated statistics to fit the model. This approach also trivially extends to valued ERGMs.

Furthermore, because the normalizing constant (if it is finite) is thus accommodated by the
fitting algorithm, we may focus on the unnormalized density for the purposes of model
specification and interpretation. Therefore, for the remainder of this paper, we specify our
models up to proportionality, as Geyer (1999) suggests.

That (3) is not trivially satisfied for all θ ∈ ℝq presents an additional computational
challenge: even for relatively simple network models, the natural parameter space ΘN may
have a nontrivial shape. For example, even a simple geometric-reference ERGM

a geometric GLM with a covariate p-vector xi,j, has

an intersection of up to |  half-spaces (linear constraints). Models with complex dependence
structure may have less predictable parameter spaces, and, due to the nature of the algorithm
of Hunter and Handcock (2006), the only general way to detect whether a guess for θ had
strayed outside of ΘN may be by diagnostics on the simulation. Bayesian inference with
improper priors faces a similar problem, and addressing it in the context of ERGMs is a
subject for future work. For this paper, we focus on models in which parameter spaces are
provably unconstrained or have very simple constraints.

We base our implementation on the 𝖱 package ergm for fitting binary ERGMs. (Handcock
et al., 2012) The design of that package separates the specification of model sufficient
statistics from the specification of the sample space of networks (Hunter et al., 2008), so we
implement our models by substituting in a Metropolis-Hastings sampler that implements our

 and h of interest. (A simple sampling algorithm for realizations from a Poisson-reference
ERGM, optimized for zero-inflated data, is described in Appendix A.) This implementation
will be incorporated into a future public release of ergm.

4.2. Model degeneracy
Application of ERGMs has long been associated with a complex of problems collectively
referred to as “degeneracy”. (Handcock, 2003; Rinaldo, Fienberg and Zhou, 2009;
Schweinberger, 2011) Rinaldo, Fienberg and Zhou, in particular, list three specific,
interrelated, phenomena: 1) when a parameter configuration — even the MLE — induces a
distribution for which only a small number of possible networks have non-negligible
probabilities, and these networks are often very different from each other (e.g., a sparser-
than-observed graph and a complete graph) for an effectively bimodal distribution; 2) when
the MLE is hard to find by the available MCMC methods; and 3) when the probability of the
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observed network under the MLE is relatively low — the observed network is, effectively,
between the modes. This bimodality and concentration is often a consequence of the model
inducing overly strong positive dependence among dyad values. For example, Snijders et al.
(2006) use change statistics to show that under models with positive coefficients on triangle
and k-star (k ≥ 2) counts — the classic “degenerate” ERGM terms — every tie added to the
network increases the conditional odds of several other ties and does not decrease the odds
of any, creating what Snijders et al. call an “avalanche” toward the complete graph, which
emerges as by far the highest-probability realization. (More concretely, under a model with a
triangle count with coefficient θΔ, adding a tie (i, j) increases the conditional odds of as
many ties as i and j have neighbors by exp (θΔ).) Adjusting other parameters, such as
density, down to obtain the expected level of sparsity close to that of the observed graph
merely induces the bimodal distribution of Phenomenon 1.

An infinite sample space makes Phenomenon 1, as such, unlikely, because the “avalanche”
does not have a maximal graph in which to concentrate. However, it does not preclude
excessive dependence inducing a bimodal distribution at the MLE, even if neither mode is
remotely degenerate in the probabilistic sense. The observed network being between these
modes, this may lead to Phenomenon 3, and, due to the nature of the estimation algorithms,
such a situation may, indeed, lead to failing estimation — Phenomenon 2.

In this work, we seek to avoid this problem by constructing statistics that prevent the
“avalanche” by limiting dependence or employing counterweights to reduce it. (An example
of the former approach is the modeling of transitivity in Section 5.2.6, and an example of the
latter is the centering in the within-actor covariance statistic developed in Section 5.2.5.)
Formal diagnostics developed to date, such as those of Schweinberger (2011) do not appear
to be directly applicable to models with infinite sample spaces, so we rely on MCMC
diagnostics (Goodreau et al., 2008) instead.

5. Statistics and interpretation for count data
In this section, we develop sufficient statistics for count data to represent network features
that may be of interest and discuss their interpretation. In particular, unless otherwise noted,

we focus on the Poisson-reference ERGM without complex constraints:  and h(y) =
∏(i,j)∈ (yi,j !)−1.

5.1. Interpretation of model parameters
The sufficient statistics of the binary ERGMs and valued ERGMs alike embody the
structural properties of the network that are of interest. The tools available for interpreting
them are similar as well.

5.1.1. Expectations of sufficient statistics—In a linear ERGM, if ΘN is an open set,
then, for every k ∈ 1..p, and holding θk′, k′ ≠ k, fixed, it is a general exponential family
property that the expectation Eθ;h,η,g(gk(Y)) is strictly increasing in θk. (Barndorff-Nielsen,
1978, pp. 120–121) Thus, if the statistic gk is a measurement of some feature of interest of
the network (e.g., magnitude of counts, interactions between or within a group, isolates,
triadic structures), a greater value of θk results in a distribution of networks with more of the
feature measured by gk present.

5.1.2. Discrete change statistic and conditional distribution—Binary ERGM
statistics have a “local” interpretation in the form of change statistics summarized in Section
2.2.1, and we describe similar tools for “local” interpretation of ERGMs for counts here.

Krivitsky Page 8

Electron J Stat. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Define the set of networks

That is, i,j(y) is the set of networks such that all dyads but the focus dyad (i, j) are fixed to
their values in y while (i, j) itself may vary over its possible values; and define

 to be the network with non-focus dyads fixed and focus
dyad set to k. Then, let the discrete change statistic

This statistic emerges when taking the ratio of probabilities of two networks that are
identical except for a single dyad value:

where hi,j : ℕ0 → ℝ is the component of h associated with dyad (i, j), such that h(y) ≡
∏(i,j)∈  hi,j(yi,j), if it can be thus factored. For a Poisson-reference ERGM, hi,j(k) = (k!)−1.
This may be used to assess the effect of a particular ERGM term on the decay rate of the
ratios of probabilities of successive values of dyads (Shmueli et al., 2005) and on the shape
of the dyadwise conditional distribution: the conditional distribution of a dyad (i, j) ∈ 
given all other dyads (i′, j′) ∈ {(i, j)},

for an arbitrary baseline k0.

5.2. Model specification statistics
We now propose some specific model statistics to represent common network structural
properties and distributions of counts.

5.2.1. Poisson modeling—We begin with statistics that produce Poisson-distributed
dyads and model network phenomena that can be represented in a dyad-independent
manner. As a binary ERGM reduces to a logistic regression model under dyadic
independence, a Poisson-reference ERGM may reduce to a Poisson regression model.

In a Poisson-reference ERGM, the normalizing constant has a simple closed form if g(y′) is

linear in  and does not depend on any other dyads :

(4)

for  for any k ∈ ℕ0. Then,
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giving a Poisson log-linear model, and  effectively becomes the covariate vector for

Yi,j. (If g(y′) is linear in  but does depend on other dyads — xi,j in (4) depends on 

but not on  itself — the dyad distribution is conditionally Poisson but not marginally so.
An example of this arises in Section 5.2.4.)

Morris, Handcock and Hunter (2008) describe many dyad-independent sufficient statistics
for binary ERGMs. All of them have the general form

where xi,j,k ≡ Δi,jgk and xi,j,k may be viewed as exogenous (to the model) covariates in a
logistic regression for each tie. They could then be used to model a variety of patterns for
degree heterogeneity and mixing among actors over (assumed) exogenous attributes. For
example, for a uniform homophily model, xi,j,k may be an indicator of whether i and j belong
to the same group. If yi,j are counts, these statistics induce a Poisson regression type model
(for a Poisson-reference ERGM), where the effect of a unit increase in some θk on dyad (i, j)
is to increase its expectation by a factor of exp (xi,j,k). Krivitsky et al. (2009) use this type
of model to model Slovenian periodical “co-readerships” (Batagelj and Mrvar, 2006) —
numbers of readers who report reading each pair of periodicals of interest — using as
exogenous covariates the class of periodical (daily, weekly, regional, etc.) and the overall
readership levels of each periodical.

Curved (i.e., η(θ) ≠ θ, p > q, and η not a linear mapping) ERGMs, in which the g satisfy (4)
and dyadic independence, may induce nonlinear Poisson regression. An example of this is
the likelihood component of some latent space network models, with latent space positions
being treated as free parameters: the likelihoods of the hierarchical models of Hoff (2005)
and Krivitsky et al. (2009) are special cases of such an ERGM, with η(θ) = (ηi,j(θ))(i,j)∈
and g(y) = (yi,j)(i,j)∈  (i.e., the sufficient statistic is the network), and ηi,j(θ) mapping latent
space positions and other parameters contained in θ to the logarithms of dyad means (i.e.,
the dyadwise canonical parameters).

5.2.2. Zero modification—We now turn to model terms that may reshape the distribution
of the counts away from Poisson. Social networks tend to be sparse, and larger networks of
similar nature tend to be more sparse (Krivitsky, Handcock and Morris, 2011). If the
interactions among the actors are counted, it is often the case that if two actors interact at all,
they interact multiple times. This leads to dyadwise distributions that are zero-inflated
relative to Poisson.

These features of sparsity can be modeled using statistics developed for binary ERGMs,
applied to a network produced by thresholding the counts (at 1, for zero-modification). For
example, a Poisson-reference ERGM with p = 2 and
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has dyadwise distribution

This is a parametrization of a zero-modified Poisson distribution (Lambert, 1992), though
not a commonly used one, with the probability of 0 being (1 + exp (θ2) (exp (exp (θ1)) −
1))−1 and nonzero values being distributed (conditionally on not being 0) Poisson(μ = exp
(θ1)), both reducing to Poisson’s when θ2 = 0. Notably, the probability of 0 decreases as θ1
increases, rather than being solely controlled by θ2.

5.2.3. Dispersion modeling—Consider the social network of face-to-face conversations
among people living in a region. A typical individual will likely not interact at all with vast
majority of others, have one-time or infrequent interaction with a large number of others
(e.g., with clerks or tellers), and a lot of interaction with a relatively small number of others
(e.g., family, coworkers). Some of this may be accounted for by information about social
roles and preexisting relationships, but if such information is not available, this leads to a
highly overdispersed distribution relative to Poisson, or even zero-inflated Poisson.
Overdispersed counts are often modeled using the negative binomial distribution.
(McCullagh and Nelder, 1989, p. 199) However, the negative binomial distribution with an
unknown dispersion parameter is not an exponential family, making it difficult to fit using
our inference techniques. We thus discuss two purely exponential-family approaches for
dealing with non-Poisson-dispersed interaction counts in general and overdispersed counts
in particular.

Conway–Maxwell–Poisson Distribution: Conway–Maxwell–Poisson (CMP) distribution
(Shmueli et al., 2005) is an exponential family for counts, able to represent both under- and
overdispersion: adding a sufficient statistic of the form

(5)

to a Poisson-reference ERGM otherwise fulfilling conditions for Poisson regression
described in Section 5.2.1 turns a Poisson regression model for dyads into a CMP regression
model.

Its coefficient, θCMP, constrained by (3) to θCMP ≤ 1, controls the degree of dispersion:
θCMP = 0 retains the Poisson distribution; θCMP < 0 induces underdispersion relative to
Poisson, approaching the Bernoulli distribution as θCMP → −∞; and θCMP > 0 induces
overdispersion, attaining the geometric distribution at θCMP = 1, its most overdispersed
point.

Normally, the greatest hurdle associated with using CMP is that its normalizing constant
does not, in general, have a known closed form. In our case, because intractable normalizing
constants are already accommodated by the methods of Section 4, using CMP requires no
additional effort.

At the same time, CMP is neither regular nor steep (per Appendix B), so the properties of its
estimators are not guaranteed, particularly for highly overdispersed data. We have found
experimentally that counts as dispersed as geometric distribution or more so often cause the
fitting methods of Section 4 to fail.
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Variance-like parameters: Some control over the variance can be attained by adding a

statistic of the form , a ≠ 1. Statistics with a > 1, such as

, suffer the same problem as a Strauss point process (Kelly and Ripley,
1976): for any θ, ε > 0, limy→∞ exp(θy1+ε)/y! = ∞, leading to (3) constraining θ ≤ 0, able to
represent only underdispersion.

Thus, we propose to model dispersion by adding a statistic of the form

(6)

To the extent that the counts are Poisson-like, the square root is a variance-stabilizing
transformation (McCullagh and Nelder, 1989, p. 196). Then, a model with p = 2 and
dyadwise sufficient statistic

(7)

may be viewed as a modeling the first and second moments of . That the highest-order
term is still on the order of yi,j guarantees that ΘN = ℝp — a practical advantage over CMP.

As with CMP, the normalizing constant is intractable. To explore the shape of this
distribution, we fixed θ1 at each of a range of values and found θ2s such that the induced
distribution had the expected value of 1. We then simulated from the fit. The estimated pmf
for each configuration and the comparison with the geometric distribution with the same
expectation is given in Figure 2. Smaller coefficients on (6) (θ1) correspond to greater
dispersion, with coefficients on dyad sum (θ2) increasing to compensate, and vice versa,
with θ1 = 0 corresponding to a Poisson distribution. As the dispersion increases, the mean is
preserved in part by increasing Pr(Yi,j = 0) and, for sufficiently high values of yi,j, the
geometric distribution still dominates. Thus, there is a trade-off between the convenience of
a model without complex constraints on the parameter space and the ability to model greater
dispersion. In practice, if the substantive reasons for overdispersion are due to unaccounted-
for heterogeneity, the latter might not be a serious disadvantage, and excess zeros can be
compensated for by a term from Section 5.2.2.

5.2.4. Mutuality—Many directed networks, such as friendship nominations, exhibit
mutuality — that, other things being equal, if a tie (i, j) exists, a tie (j, i) is more likely to
exist as well — and binary ERGMs can model this phenomenon using a sufficient statistic
g↔(y) = ∑ (i,j)∈ i<j yi,jyj,i = ∑ (i,j)∈ i<j min(yi,j, yj,i), counting the number of reciprocated ties.
(Holland and Leinhardt, 1981) Other sufficient statistics that can model it include g↔(y) =
∑(i,j)∈ i<j 1yi,j ≠yj,i and g↔(y) = ∑(i,j)∈ i<j 1yi,j=yj,i, the counts of asymmetric and symmetric
dyads, respectively. (Morris, Handcock and Hunter, 2008)

In the presence of an edge count term, these three are simply different parametrizations of
the same distribution family:
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Nevertheless, these three different statistics suggest two major ways to generalize the terms
to count data: by evaluating a product or a minimum of the values, or by evaluating their
similarity or difference. We discuss them in turn.

Product: It is tempting to model mutuality for count data in the same manner as for binary
data, with yi,j and yj,i being values rather than indicators. For example, a simple model with
overall dyad mean and reciprocity terms, with p = 2 and

would have a conditional Poisson distribution:

a desirable property. However, because for any c > 0, limy→∞ exp(cy2)/(y!)2 = ∞, for θ2 >
0, representing positive mutuality, (3) is not fulfilled. (Note that the expected value of Yi,j is
exponential in the value of Yj,i and vice versa. Again, a Strauss point process exhibits a
similar problem. (Kelly and Ripley, 1976))

Geometric mean: As with dispersion, the problem can be alleviated by using the geometric
mean of yi,j and yj,i instead of their product. As in Section 5.2.3, this choice may be justified
as an analog of covariance on variance-stabilized counts. This changes the shape of the
distribution in ways that are difficult to interpret: if

then

and, with nonzero yj,i, the probabilities of greater values of Yi,j are inflated by more. The
analogy to covariance further suggests centering the statistic:

for

(8)

Minimum: An alternative generalization is to take the minimum of the two values. For
example, if
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then

(9)

Thus, a possible interpretation for this term is that the conditional probability for a particular
value of Yi,j, yi,j is deflated by exp (θ2) for every unit by which yi,j is less than yj,i. In a sense,
yj,i “pulls up” yi,j to its level and vice versa.

Negative difference: Generalizing the concept of similarity between yi,j and yj,i leads to a
statistic of difference between their values. We negate it so that a positive coefficient value
leads to greater mutuality. Then,

(10)

and

so the conditional probability of a particular yi,j is deflated by exp (θ2) for every unit
difference from yj,i, in either direction. Thus, yj,i “pulls in” yi,j and vice versa. Of course,
other differences (e.g., squared difference) are also possible.

We use the discrete change statistic to visualize the differences among these variants in

Figure 3, plotting the  summand of

for each variant. Lastly, while the conditional distributions, and hence the parameter
interpretations for the minimum and the negative difference statistic, are different, models
induced by (9) and (10) are also reparametrizations of each other:

.

5.2.5. Actor heterogeneity—It is often the case that different actors in a network have
different overall propensities to have ties: they are heterogeneous in their gregariousness,
popularity, and/or (undirected) sociality. Some of this heterogeneity may be accounted for
by exogenous covariates. For the unaccounted-for heterogeneity, two major approaches have
been used: conditional, in which actor-specific parameters are added to the model to absorb
its effects, and marginal, in which statistics are added that represent the effects of
heterogeneity on the overall network features. Examples of the conditional approach include
the very first exponential-family model for networks, the p1, which used a fixed effect for
every actor (Holland and Leinhardt, 1981); and the p2 model and latent space models, which
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used random effects instead (van Duijn, Snijders and Zijlstra, 2004; Hoff, 2005; Krivitsky et
al., 2009; Mariadassou, Robin and Vacher, 2010). The marginal approach includes the count
of k-stars for k ≥ 2 (Frank and Strauss, 1986), which, for a fixed network density, become
more prevalent as heterogeneity increases, at the cost of often inducing ERGM degeneracy;
alternating k-stars and geometrically weighted degree statistics (Snijders et al., 2006; Hunter
and Handcock, 2006), which attempt to remedy the degeneracy of k-stars; and statistics such
as the square root degree activity/popularity, which sum each actor’s degree taken to 3/2
power, which also increases with greater heterogeneity, but not as rapidly as 2-stars do
(Snijders, van de Bunt and Steglich, 2010), avoiding degeneracy. In the conditional
approach, using fixed effects lacks parsimony and using random effects creates a problem
with a doubly-intractable normalizing constant, beyond the scope of this paper, so we
develop a marginal approach here.

Actor heterogeneity may be viewed marginally as positive within-actor correlation among
the dyad values. Following the discussion in the previous sections, we propose a form of
pooled within-actor covariance of variance-stabilized dyad values, scaled to the same
magnitude as the dyad sum:

(11)

for i→ being the set of actors to who whom i may have ties (≡ {j′ : (i, j′) ∈ }) and 
defined in (8). This statistic would increase with greater out-tie heterogeneity, an analogous
statistic can be specified for in-tie heterogeneity, and dropping the directionality produces an
undirected version of this statistic.

We have considered other variants, including the uncentered version, in which each
summand in (11) is simply . We found that in undirected networks in particular,
such a model term can induce a degeneracy-like bimodal distribution of networks. (This is
likely because in undirected networks, the positive dependence is not contained within each

actor, so subtracting  serves as a counterweight to avert the “avalanche”.)

5.2.6. Triad-closure bias—We now turn to the question of how to represent triad-closure
bias — friend-of-a-friend effects — in count data. As with mutuality, merely multiplying
values of the dyads in a triad leads to a model that cannot have positive triad closure bias. In
addition, ERGM sufficient statistics that take counts over triads often exhibit degeneracy.
(Schweinberger, 2011) For these reasons, we describe a family of statistics that sum over
dyads instead. Wyatt, Choudhury and Blimes (2010) use a generalization of the curved
geometrically-weighted edgewise shared partners (GWESP) statistic (Hunter and Handcock,
2006), though it is not clear whether it is suitable for data with an infinite sample space. We
thus describe a more conservative family of statistics.

One term used to model triad closure in binary dynamic networks by Snijders, van de Bunt
and Steglich (2010) is the transitive ties effect, the most conservative special case of the
GWESP (Hunter and Handcock, 2006) statistic. This statistic counts the number of ties (i, j)
such that there exists at least one path of length 2 (two-path) between them — a third actor k
such that yi,k = yk,j = 1. (Unlike the triangle count, each tie may contribute at most +1 to the
statistic, no matter how many such ks exist.)

One generalization of this statistic to counts is
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(12)

Intuitively, define the strength of a two-path from i to j to be the minimum of the values
along the path. The statistic is then the sum over the dyads (i, j) of the minimum of the value
of (i, j) and the value of the strongest two-path between them. The interpretation is thus
somewhat analogous to that of the minimum mutuality statistic, with yj,i replaced by
maxk∈N(min(yi,k, yk,j)). The motivation for using minimum, as opposed to negative absolute
difference, to combine the two-path value with the focus dyad value is that the intuitive
notion of friend-of-a-friend effect that this statistic embodies suggests that while the
presence of a mutual friend may increase the probability or expected value of a particular
friendship (i.e., “pull it up”), it should not limit it (i.e., “pull it in”) as an absolute difference
would. These interpretations are somewhat oversimplified: it is just as true that a positive
coefficient on this statistic results in yi,j “pulling up” the potential two-paths between i and j.

In a directed network, (12) would model transitive (hierarchical) triads, while

would model cyclical (antihierarchical) triads.

The statistic (12) is a fairly conservative one, less likely to induce excessive dependence and
bimodality, at the cost of sensitivity. More generally, one may specify a triadic statistic

using three functions: first, , how the “value” of a two-path i → j → k is
computed from its constituent segments; second, υcombine : ℝn − 2 → ℝ, how the values of
the possible two-paths from i to j are combined with each other to compute the strength of
the pressure on i and j to close the triad or increase their interaction; and third, υaffect : ℕ0 ×
ℝ → ℝ how this pressure affects Yi,j. Given these,

(13)

Thus, for example, one could set υcombine to sum its arguments rather than take their
maximum, or one can replace taking the minimum with taking a geometric mean. We
illustrate the difference it makes in Section 6.

6. Application to interactions within a fraternity
In a series of studies in the 1970s, Bernard, Killworth and Sailer (1979–1980) assessed
accuracy of retrospective sociometric surveys in a number of settings, including a college
fraternity whose 58 occupants had all lived there for at least three months. To record the true
amounts of interaction, for several days, unobtrusive observers were sent to periodically
walk through the fraternity to note students engaged in conversation. Obtaining these
network data from Batagelj and Mrvar (2006), we model these observed pairwise interaction
counts.

The raw distribution of counts, given in Figure 4(a), appears to be strongly overdispersed
relative to Poisson, and, indeed, relative to the geometric distribution: the mean of counts is
1.9, while their standard deviation (not variance) is 3.4. At least some of this is due to actor
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heterogeneity: the square root of the within-actor variance of the counts is 3.1. Excluding
extreme observations (all values over 20) does not make a qualitative difference. (The
statistics become 1.8, 2.8, and 2.5, respectively.) Nor does there appear to be a natural place
to threshold the counts to produce a binary network. (See Figure 4(b).) We thus model the
baseline shape of the distribution of counts using the following terms: baseline propensity
to have ties: number of dyads with nonzero value; baseline intensity of interactions: sum
of dyad values; and underdispersion: the statistic (6).

(We have also attempted to use CMP (via (5)) but found the process to be unstable due to
the greater-than-geometric level of dispersion.)

Little was recorded about the social roles of the fraternity members, so we consider the
effects of endogenous social forces: actor heterogeneity: the undirected version of (11);
transitivity of intensities: the statistic (12).

Faust (2007), in particular, found that in many empirical networks, much of the apparent
triadic effects are accounted for by variations in degree distribution and other lower-order
effects. Thus, we consider four models: baseline shape only (B), baseline with heterogeneity
(BH), baseline with transitivity (BT), and all terms (BHT), to explore this concept in a
valued setting.

We report the model fits in Table 1. MCMC diagnostics, described by Goodreau et al.
(2008), show adequate mixing and unimodal distributions of sufficient statistics, and
networks simulated from these fits have, on average, statistics equal to the observed
sufficient statistics. The baseline dyadwise distribution terms are difficult to interpret, but
the highly negative coefficient on under-dispersion suggests a a strong degree of
overdispersion, as expected. Some of this overdispersion appears to be absorbed by
modeling actor heterogeneity, however. There are indications of a high degree of
heterogeneity in individuals’ propensity to interact, over and above that expected for even
the overdispersed baseline distribution. (Monte Carlo P-val. < 0.001 based on 10,000
draws.)

Without accounting for actor heterogeneity (i.e., Model BT), there appears to be a strong
transitivity effect — a friend of a friend is a friend — and the Monte Carlo test confirms this
with a similar P-value. However, if actor heterogeneity is accounted for, the transitivity
effects vanish (simulated one-sided P-val. = 0.43), suggesting that the underlying social
process is better explained by a relatively small number of highly social individuals whose
ties to each other and to (less social) third parties create excess transitive ties for the overall
amount of interaction observed. At the same time, if, instead of using (12) as the test
statistic, we use a less conservative statistic of the form (13) with

, and
, the effect’s significance seems to increase (one-sided P-val. = 0.07).

However, when we attempted to fit the model with this effect, the process exhibited the
degeneracy-like bimodality. This suggests that there is a trade-off between stability and
power to detect subtle effects.

7. Discussion
We have generalized the exponential-family random graph models to networks whose
relationships are unbounded counts, explored the issues that arise when generalizing, and
proposed ways to model several common network features for count data. We demonstrated
our development by a study of the interaction of individual heterogeneity and friend-of-a-
friend effects in a network with a hard-to-model dyadwise count distribution.
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This paper focused on modeling counts. More generally, one can define a valued ERGM by
replacing the set of possible dyad values ℕ0 by a more general set and replacing h(y) with a
more general σ-finite measure space ( , 𝖸, Ph) with reference measure Ph, then postulating
a probability measure Pθ;Ph,η,g with Radon-Nikodym derivative of Pθ;Ph,η,g with respect to
Ph,

(Barndorff-Nielsen, 1978, pp. 115–116; Brown, 1986, pp. 1–2) with the normalizing
constant

For binary and count data, and discrete data in general, Ph could be specified as a function
relative to the counting measure, while for continuous data, it could be defined with respect
to the Lebesgue measure. Still, as with count data, the shape of this function would need to
be specified.

Other scenarios might call for more complex specifications of the reference measure. Some
network data, such as measurements of duration of conversation (Wyatt, Choudhury and
Blimes, 2010) and international trade volumes (Westveld and Hoff, 2011) are continuous
measurements except for having a positive probability of two actors not conversing at all or
two countries having no measured trade. Westveld and Hoff use a normal distribution to
model the log-transformed trade volume, imputing 0 = log(1) for 0 observed trade volumes
(all nonzero trade volumes being greater than 1 unit), and they note this issue and address it
by pointing out that in their (latent-variable) model, an impact of such an outlier would be
contained. Valued ERGMs may provide a more principled approach by specifying a
semicontinuous Ph, such as one that puts a mass of 1/2 on 0 and 1/2 on Lebesgue measure
on (0, ∞).

We have also focused on data that do not impose any constraints on the sample space:  ≡
. But, some types of network data, such as those where each actor (ego) ranks the others

(alters) (Newcomb, 1961, for example) can be viewed in this framework as having a
constrained sample space: setting = {1..n − 1} and constraining  to ensure that each ego
assigns a unique rank to each alter gives a sample space of permutations that could, with a
counting measure, serve as the reference measure for an ERGM on rank data. These, and
other applications are a subject for ongoing and future work.

This paper focuses on models for cross-sectional networks, where a single snapshot of
relationship states or relationships aggregated over a time period are observed. For
longitudinal data, comprising multiple snapshots of networks over the same actors over
time, binary ERGMs have been used as a basis for discrete-time models for network tie
evolution by Robins and Pattison (2001), Wyatt, Choudhury and Bilmes (2009; 2010),
Hanneke, Fu and Xing (2010), Krivitsky and Handcock (2010), and others. Valued ERGMs
can be directly applied to the temporal ERGMs of Hanneke, Fu and Xing (2010) although
their adaptation to the work of Krivitsky and Handcock (2010) may be less straight-forward,
especially if the benefits to interpretability of the separable models are to be retained.
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In practice, networks are not always observed completely. Handcock and Gile (2010)
develop an approach to ERGM inference for partially observed or sampled binary networks.
It would be natural to extend this approach to valued networks and valued ERGMs.

Some methods for assessing a network model’s fit, particularly MCMC diagnostics
(Goodreau et al., 2008) can be used with little or no modification. Others, like the goodness-
of-fit methods of Hunter, Goodreau and Handcock (2008) may require development of
characteristics meaningful for valued networks. It may also be possible to extend the
stability criteria of Schweinberger (2011) to models with infinite sample spaces.
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Appendix A: A sampling algorithm for a Poisson-reference ERGM
We use a Metropolis-Hastings sampling algorithm (Algorithm 1) to sample from a Poisson-
reference ERGM, using a Poisson kernel with its mode at the present value of a dyad and,
occasionally (with a specified probability π0), proposing a jump directly to 0. Because, as
we discuss in Section 5.2.2, counts of interactions are often zero-inflated relative to Poisson,
setting π0 > 0 can be used to speed-up mixing. For highly overdispersed distributions, a
Poisson kernel may be trivially replaced by a geometric or even negative-binomial kernel.

This algorithm selects the dyad on which the jump is to be proposed at random. A possible
improvement to this algorithm would be to adapt to it the tie-no-tie (TNT) proposal (Morris,
Handcock and Hunter, 2008), which optimizes sampling in sparse (zero-inflated) networks
by focusing on dyads which have nonzero values.

Algorithm 1

Sampling from a Poisson-reference ERGM with no constraints, optimized for zero-inflated
distributions

Let:

  RandomChoose(A) return a random element of a set A

  Uniform(a, b) return a random draw from the Uniform(a, b) distribution

  Poisson≠y(λ) return a random draw from the Poisson(λ) distribution, conditional on not drawing y

  , the pmf of a  draw

Input: y(0) ∈ , T sufficiently large,  g, η, π0 ∈ [0, 1)

Output: a draw from the specified Poisson-reference ERGM

  1: for t ← 1‥T do

  2:   (i, j) ← RandomChoose(  {Select a dyad at random.}

  3:   if yi,j ≠ 0 ∧ Uniform(0, 1) < π0 then

  4:     y* ← 0 {Propose a jump to 0 with probability π0.}
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  5:   else

  6:

     {Propose a jump to a new value.}

  7:

  

  8:

  

  9:   if Uniform(0, 1) < r then

10:

     {Accept the proposal.}

11:   else

12:     y(t)←y(t−1) {Reject the proposal.}

13: return y(T)

Appendix B: Non-steepness of the Conway–Maxwell–Poisson family
Expressed in its exponential-family canonical form, a random variable X with the Conway–
Maxwell–Poisson distribution has the pmf

with the normalizing constant

Theorem B.1. The Conway–Maxwell–Poisson family is not regular.

Proof. The natural parameter space of CMP is

(Shmueli et al., 2005). Due to the boundary at θ2 = 0, ΘN is not an open set, and hence the
family is not regular (Brown, 1986, p. 2).

Theorem B.2. The Conway–Maxwell–Poisson family is not steep.

Proof. A necessary and sufficient condition for a non-regular exponential family to be steep
is that
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where  is the open interior of ΘN, and their set difference is thus the non-open boundary
of the natural parameter space that is contained within it. (Brown, 1986, Proposition 3.3, p.
72) For CMP, this boundary

There, X ~ Geometric(p = 1−exp (θ1)). Noting that X ≥ 0 a.s., log(X!) ≥ 0 a.s., and

,

since the first and second moments of the geometric distribution are finite. Therefore, CMP
is not steep.

Because the non-steep boundary corresponds to the most dispersed distribution that CMP
can represent, maximum likelihood estimator properties for data which are highly
overdispersed are not guaranteed.
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Fig 1.
Effect of h on the shape of the distribution. (The mean is fixed at 2.)
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Fig 2.
Dyadwise distributions attainable by the model (7). Because Pr(Y = 0) varies greatly for
different θ1 yet can be adjusted separately by an appropriate model term, we plot the
probabilities conditional on Y > 0.
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Fig 3.
Effect of proposed mutuality statistics (g↔) with parameter θ↔ > 0 on the distribution of
Yi,j, given that Yj,i = yj,i. Whereas the min(yi,j, yj,i) statistic deflates the probabilities of
those values of yi,j that are less than yj,i, thus inflating all of those of yi,j above or equal to it,
thus “pulling Yi,j up”, the −|yi,j − yj,i| statistic deflates the probabilities in both directions
away from yj,i, thus inflating those that are the closest, “pulling Yi,j in”.  inflates
greater values of yi,j in general, inflating by more for greater .
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Fig 4.
Conversation count summaries for Bernard, Killworth and Sailer fraternity network
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Table 1

Results from fitting the models to Bernard, Killworth and Sailer fraternity network

Estimates (Std. Errors)

Term B BH BT BHT

Ties 5.60 (0.21) 4.96 (0.17) 6.24 (0.21) 4.98 (0.17)

Intensity 3.65 (0.05) 3.13 (0.06) 3.40 (0.07) 3.12 (0.06)

Underdispersion −9.71 (0.22) −8.23 (0.20) −10.52 (0.22) −8.26 (0.19)

Heterogeneity 1.48 (0.06) 1.46 (0.07)

Transitivity 0.46 (0.05) 0.03 (0.04)

Coefficients statistically significant at α = 0.05 are bolded.
Standard errors incorporate the uncertainty introduced by approximating the likelihood using MCMC (Hunter and Handcock, 2006).
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