
Microbiome, Sex Hormones, and Immune Responses in the
Reproductive Tract: Challenges for Vaccine Development
Against Sexually Transmitted Infections

Rebecca M. Brotman, PhD, MPH1,2, Jacques Ravel, PhD1,3, Patrik M. Bavoil, PhD4, Patti E.
Gravitt, PhD, MS5, and Khalil G. Ghanem, MD, PhD6

Rebecca M. Brotman: rbrotman@som.umaryland.edu; Jacques Ravel: jravel@som.umaryland.edu; Patrik M. Bavoil:
PBavoil@umaryland.edu; Patti E. Gravitt: pgravitt@jhsph.edu; Khalil G. Ghanem: kghanem@jhmi.edu

1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland,
USA 2Department of Epidemiology and Public Health, University of Maryland School of Medicine,
Baltimore, Maryland 3Department of Microbiology and Immunology, University of Maryland
School of Medicine, Baltimore, Maryland 4Department of Microbial Pathogenesis, University of
Maryland School of Dentistry, Baltimore, Maryland 5Department of Epidemiology, Johns Hopkins
Bloomberg School of Public Health, Baltimore, Maryland 6Division of Infectious Diseases, Johns
Hopkins University School of Medicine, Baltimore, Maryland

Keywords
Mucosal immunology; sexually transmitted infections; vaginal microbiota; sex hormones;
vaccines; review

Mucosal Immunology of the Reproductive Tract
The female and male reproductive tracts are complex compartmentalized systems where
immune cells, hormones, and microorganisms interact (Figure 1). The characteristics of the
reproductive tract mucosa are distinct from other mucosal sites.[1] Unlike the
gastrointestinal and respiratory mucosae, they lack inductive mucoepithelial sites (e.g.
Peyer’s patches). As such, a significant proportion of IgG in genital secretions is derived
from the local circulation. Sexually transmitted infections, especially chlamydia, can still
elicit a strong local IgA and cell-mediated immune response.[2–4] Unlike most other
mucosal sites (except the lower respiratory tract), the dominant immunoglobulin in genital
secretions is IgG rather than IgA.[5]
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The Female Reproductive Tract
The female reproductive tract may be divided into two parts: the lower (vagina and
ectocervix) and upper (endocervix, uterus, fallopian tubes) tracts. The lower tract epithelium
consists of multiple cell layers of stratified squamous epithelial cells that lack tight junctions
allowing the movement of small molecules between the cell lines. The upper tract
epithelium consists of a single tightly bound layer of columnar cells. The transition or
transformation zone between the two has been shown to be a major effector and inductive
site for cell mediated immune responses.[6]

Innate Immunity
The epithelial surfaces of the female reproductive tract are covered with mucus which
exhibits microbicidal activity.[7] The epithelial cells actively participate in the innate
immune response.[8, 9] In addition to their barrier function, they express pattern recognition
receptors (PRRs) that mediate secretion of cytokines, chemokines, and antimicrobial
peptides. They are also involved in antigen presentation. Neutrophils are distributed
throughout the female genital tract, with the highest numbers in the upper tract. They are
involved in phagocytosis, and the production of cytokines and antimicrobial peptides.[10]
Antimicrobial peptides, which include defensins, chemokines, antiproteases, and enzymes
play an important role in innate responses.[11] Macrophages and dendritic cells are similarly
present throughout the female reproductive tract, with higher concentrations in the upper
tract.[12] They are involved in phagocytosis and antigen presentation. In addition to their
role in antigen presentation, dendritic cells have been shown to be critical players in
inducing homing of effector and memory lymphocytes to mucosal tissues and in activation
of memory T-cells.[13, 14] These functions highlight their role as an important bridge
between the innate and adaptive immune responses. Natural killer (NK) cells are widely
distributed, but have a distinct phenotype from NK cells found in the systemic circulation.
[15] They produce pro-inflammatory cytokines, promote macrophage activation, and
cytotoxic T-cell generation. A newly described population of innate lymphoid cells (ILCs)
play a role in regulating epithelial cell responses and maintaining local homeostasis. ILCs
have been described in the skin, and in the intestinal and respiratory tracts (NK cells
comprise a sub-group of ILCs).[16] Several studies have highlighted the role of commensal
bacteria in regulating the development, maintenance, and function of ILCs.[17] Far less is
known about ILCs in the reproductive tract.

Adaptive Immunity
The humoral (Th2) arm of the adaptive immune response in the genital tract consists mainly
of IgG as well as secretory IgA (sIgA).[18] The ratio of these antibodies varies by site. sIgA
is characterized by enhanced neutralizing activity [19, 20] and enhanced resistance to
proteolysis [21]. Unlike IgG, sIgA does not activate complement. In addition to local
production, there appears to be significant contribution of IgG from the systemic circulation
to genital secretions.[22, 23] The uterus is an important source of immunoglobulins in
cervicovaginal secretions. T-lymphocytes are found in the stroma of the upper and lower
reproductive tract as well as within epithelial cells (intraepithelial lymphocytes).[24] CD8+
T-cells drive Th1 cell-mediated immunity that targets intracellular pathogens. CD4+ T-cells
secrete IFN-γ and drive B-cell maturation. Th17 cells play a role in host defense against
extracellular pathogens by mediating the recruitment of neutrophils and macrophages to
infected tissues.[25, 26] The female reproductive tract restricts entry of activated T-cells in
the absence of inflammation or infection.[27] Consequently, parenteral vaccines that rely on
cellular immunity to prevent STIs have not been successful. Recently, vaccines that elicit
tissue-resident memory T-cell responses have been shown to be feasible [28, 29] and may
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hold the key to a successful vaccination strategy against herpes simplex viruses and other
sexually transmitted pathogens.

The Male Reproductive Tract
In the male reproductive tract, keratinized stratified squamous epithelial cells cover the
external surface of the penis. The male urethral orifice consists of a non-keratinized
stratified squamous epithelium that transitions in the penile shaft to a pseudostratified
columnar epithelium. The urethral epithelium expresses several membrane-associated
mucins that act as a first-line of defense.[30] The male reproductive tract is an immune
privileged site. For example, tight junctions between Sertoli cells prevent entry of
complement and immunoglobulins into the seminiferous tubules. This is referred to as the
blood-testis barrier. This relative suppression of adaptive immunity is accompanied by an
enhanced innate immune response against local infections. Far less is known about the
mucosal immune system of the male reproductive tract than is known about the female tract.

Innate Immunity
Antimicrobial peptides are found in the testes, seminal vesicles, epididymis, and prostate.
[31] As with the female reproductive tract, epithelial cells lining the male urethral tract
express PRRs and are involved in antigen presentation.[32] Macrophages and dendritic cells
are abundant in the prepuce and penile urethra and are found in the epididymis and prostate.
[33] They are notably absent in the seminal vesicles. Neutrophils are present in the prepuce
and variably present in the urethra, prostate, and epididymis. NK cells have been
demonstrated in the prostate, testis, and prepuce.

Adaptive Immunity
IgG is the main immunoglobulin found in seminal plasma and it is serum-derived. IgA,
mainly IgA1, is also present and is derived from serum and in situ production. B-cells that
produce these antibodies are mainly found in the penile urethra and prostate. CD8+ T-cells
and CD4+ T-cells are abundant in the penile urethra and also found in the vas deferens,
epididymis, seminiferous tubules, and prepuce. It appears that the penile urethra, with the
abundant distribution of immune cells, may be a major site of immune induction.[32]

The human microbiota
“Microbiota” represent an assemblage of microorganisms present in a defined environment.
The overwhelming majority of microbial species (>99%) resist cultivation in the laboratory.
[34, 35] The development of methods to detect fastidious or non-cultivable organisms
through amplification and determination of the sequence of conserved genes, or culture-
independent profiling, has precipitated a revolution in microbiology. It relies on
amplification and sequencing of the marker genes (such as the 16S ribosomal RNA (rRNA)
gene) and has greatly increased appreciation for the complexity, in even seemingly simple
microbial consortia, including the genital microbiota.

Microbiota and Immune Responses
Researchers have begun to assert that the human microbiome should be considered in
vaccine research.[36] Data is mounting that the gut microbiota plays a role in modulating
immune response both locally and systemically.[37–39] Among participants in clinical trials
testing the efficacy of oral vaccines against polio, rotavirus and cholera, there were
disparities in host immune response outcomes based on geography (developing vs.
developed countries). [36] It is hypothesized that the gut microbiota may have contributed to
the diverse vaccine efficacy. Ferreira et al. [36] reviewed several studies of probiotic strains
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which were used for a short time frame, on the order of 1–5 weeks, and concluded that
probiotics boosted antibody responses to oral vaccines against rotavirus,[40, 41] Salmonella,
[42] poliovirus [43] and Vibrio cholera [44–46]. Among infants who were parenterally
administered vaccines against diphtheria, tetanus, Haemophilus influenzae type B, and
hepatitis B, probiotics proved beneficial in improving immune responses.[47–49] While
these findings are exciting, the mechanism of interaction between the gut microbiota and
host responses remains largely unknown. An even more unfamiliar territory is the role of the
penile or vaginal microbiota in the context of STI vaccinations.

Vaginal Microbiota
Vaginal bacterial communities are thought to play an important role in preventing
colonization by pathogenic organisms, including those responsible for sexually transmitted
infections (STIs), vulvovaginal candidiasis, and urinary tract infections.[50, 51]
Fundamental differences exist in the microbial diversity of vaginal communities present
among reproductive-age women.[52, 53]

Molecular studies based on the 16S rRNA gene have identified over 265 microbial species
in the vagina.[52, 54] Composition and relative abundance of these species varies
dramatically between women and rapid fluctuations between Lactobacillus-dominated and
non-dominated states are common.[52, 54] Lactobacillus spp. play a critical role in
maintaining a healthy vagina. It is postulated that lactobacilli restrict the growth of non-
indigenous organisms by acidifying the milieu and producing bacteriocins and lactic acid.
[55]

There are five consistent groupings, referred to by Ravel et al. as community state types
(CSTs), into which the vaginal microbiota can be categorized (Figure 2).[52] These five
CSTs are described as dominated by Lactobacillus crispatus (CST I), Lactobacillus gasseri
(CST II), Lactobacillus iners (CST III), or Lactobacillus jensenii (CST V), whereas the fifth
(CST IV) has lower proportions of Lactobacillus spp. and higher proportions of anaerobic
organisms including BV-associated bacteria [53] such as Prevotella, Megasphaera,
Sneathia, and Atopobium. The latter CST was recently split into two states termed CST IV-
A and IV-B.[54] CST IV-A is characterized by various species of anaerobic bacteria
belonging to the genera Anaerococcus, Peptoniphilus, Prevotella and Streptococcus, while
CST IV-B is characterized with higher proportions of the genera Atopobium and
Megasphaera among others. (Table 1)

The human vagina and the bacterial communities that reside therein represent a finely
balanced mutualistic association. Dysbiosis of the vaginal microbiology, such as observed in
bacterial vaginosis (BV), have been linked to an approximate 2-fold increased risk for
acquisition of STIs, including HIV, gonorrhea, chlamydia, trichomoniasis, herpes simplex
virus (HSV) and human papillomaviruses (HPV).[56–61] Likewise, BV-associated bacteria
have been shown to increase viral replication and vaginal shedding of HIV-1 and HSV-2.
[62–67] Although the etiology of BV remains unknown, it is characterized by a relatively
low abundance of Lactobacillus spp. and increased abundance of anaerobic bacteria,
including G. vaginalis, Prevotella spp., Mobiluncus spp., and A. vaginae as well as other
taxa of the order Clostridiales (BVAB1, BVAB2, BVAB3).[53] Enzymes and
decarboxylases produced by anaerobic bacteria are thought to degrade proteins to odorific
amines, which is characteristic of BV.[68]

The Nugent Gram stain scoring system has a relatively high sensitivity to the diagnosis of
BV among symptomatic women.[69] There is also a strong association between CST and
Nugent scoring. In Ravel et al.’s study of 394 women, among those who had high Nugent
scores, 86.3% were in CST IV, although 13% were classified to L. iners- and 1% to L.
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gasseri-dominated communities.[52] None of the 105 women classified to L. crispatus-
dominated communities had a high Nugent score. That 13% of L. iners dominated
communities rank in the high Nugent scores may reflect difficulties in differentiating L.
iners from G. vaginalis by Gram stain because of similarities in morphology between the
two species.

BV is likely multifactorial in etiology.[70] Numerous epidemiologic investigations have
identified factors that increase a woman’s risk to BV. Menstrual blood, a new sexual partner,
the number of sex partners, vaginal douching, lack of condom use, and African American
ethnicity appear to be among the strongest risk factors for BV.[71–75] The racial disparities
may reflect specific host-microbe interactions. The distribution of CSTs also is different
among various races/ethnicities (Figure 3), with a higher percentage of African-American
and Hispanic women categorized as CST III (L. iners-dominated) or CST IV (low relative
abundance of Lactobacillus spp.).[52] Other suspected causative factors for BV include
smoking, vaginal lubricants, and the presence of bacteriophages that destroy Lactobacillus
spp.[76, 77]

Evaluations of the longitudinal dynamics of bacterial communities has revealed that some
communities change markedly over short time periods, whereas others are relatively stable.
[54, 78] (Figure 4 and 5) The menstrual cycle is associated with a significant (negative)
effect on the stability of the microbiota, but these effects are influenced by bacterial
communities.[54] Sexual activity is also associated with lack of stability. Profiles of CSTs
can be derived from time series of community samples and clustered into five cohorts,
which Gajer and Brotman et al. referred to as community classes.[54] These classes reflect
similarities in changes in community composition over time. Some classes were highly
dynamic and reflected frequent switches between different CSTs. Classes dominated by L.
crispatus and L. gasseri experienced the fewest fluctuations at the level of community
composition, however, some communities that lacked significant number of Lactobacillus
spp. also demonstrated stability (Figure 5). These communities were stable over time and
were observed to have consistently high or intermediate Nugent scores. Vaginal
communities dominated by L. iners demonstrated either a lack of constancy or notable
stability. L. iners-dominated communities were often seen transitioning to CST IV, a low-
Lactobacillus state. These findings are critical, as they highlight a novel concept- there may
be intervals of susceptibility to STIs and risk could be established by the frequency and
duration of these increased susceptibility events.

The microbiome is thought to impact the cervicovaginal mucosal immune responses. Certain
bacterial products, particularly from anaerobes, have been shown to result in induction of
proinflammatory cytokine production through TLR stimulation [79], dendritic cell activation
and maturation,[80] and immune cell migration, apoptosis, and phagocytosis through the
production of specific short-chain fatty acids.[81] G. vaginalis, a facultative anaerobe, has
been shown to produce sialidases, which are capable of inactivating local IgA.[82]

The vaginal microbiome plays a major role in women’s reproductive health. We are just
beginning to understand the temporal dynamics of vaginal bacterial communities, how they
shift from a healthy state to a BV-like state, and how the bacterial communities differ in
terms of resistance and resilience to internally or externally imposed disturbances.
Surprisingly little is known about the composition of vaginal bacteria across the lifespan,
how the interactions of the microbiota with vaccines may vary by age, how they differ
between individuals, or how we can harness the vaginal microbiome to protect against STIs.
Finally, it is worth mentioning that chronic viral infections, our virome, are a stable part of
our metagenome.[83] The virome may significantly influence the host’s physiological and
immunological responses, adding an additional layer of complexity to these interactions.
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Penile Microbiota
The penile microbiome has been less studied than the vaginal microbiota. The coronal
sulcus (CS) and distal urethra have distinct bacterial communities.[84] The microbiota in the
urine appears to reflect distal urethral microbiota.[85] The CS microbiota appears more
stable than the urine microbiota and the composition of the CS microbiota is strongly
influenced by circumcision.[84, 86] BV-associated taxa, including Atopobium,
Megasphaera, Mobiluncus, Prevotella and Gemella, are detected in CS specimens from both
sexually experienced and inexperienced participants.[84] Lactobacilli and streptococci are
found in high relative abundance in urine but their abundance is inversely correlated. The
penis and the urethra can be colonized by a variety of BV-associated bacteria that may be a
result of sexual contact.[84]

Price et al. demonstrated a decrease in anaerobic bacteria of the penile coronoal sulci after
medical male circumcision (MMC).[86] It is hypothesized that circumcision may reduce
genital mucosal inflammation by altering microbial burden. Randomized controlled trials
have shown MMC reduces the risk of HIV and STI acquisition, including HSV and HPV in
men and HPV, BV and T. vaginalis in women.[87–89]

Sex Hormones and the Reproductive Tract
Sex Hormones and Immune Responses

The interaction between sex hormones and the immune system is complex. Most of the
published data have focused on the female reproductive tract. Limited data exist for the male
reproductive tract.

Immune responses in the female genital tract are regulated by sex hormones: Antigen
presentation, cytokine production, immunoglobulin production and transport, and induction
of tolerance have all been shown to be influenced by variations in the levels of sex
hormones.[9, 90] In addition, the impact of sex hormones appears to differ between the
lower and upper genital tract in women. Most cells in the reproductive tract express estradiol
receptors (epithelial cells, macrophages, stromal cells, and lymphocytes). There appears to
be some consistency in hormonal effects on lower genital tract immunity- namely, a
dampening of cervicovaginal immune responses around the time- and for a short period of
time following ovulation.[91] This is consistent with the body’s attempt to optimize the
environment to promote successful fertilization and subsequent embryo development. Some
investigators have defined the term “window of vulnerability” that begins shortly before
ovulation (around day 12 of a normal menstrual cycle- the pre-ovulatory follicular phase at
the time of the β-estradiol peak) and persists until around day 21 (mid luteal phase around
the time of the progestational peak).[92] During this period, mucus of low viscosity is
produced rather than the protective viscous mucus produced at other times (this helps to
promote sperm motility, but also enhances access to pathogens). Interestingly, that is the
period when the microbiota exhibit its highest level of stability.[54] Immunoglobulin and
antimicrobial peptide levels in the lower tract are low (but antimicrobial peptide levels
increase in the upper tract).[18, 93–95] Cell-mediated immunity is also affected by sex
hormone levels.[90] In the upper tract, cellular immunity is high during the follicular phase,
but declines during the luteal phase-most likely to optimize implantation. In the lower tract,
cellular responses, particularly cytotoxic T-cell responses appear to be elevated throughout
the menstrual cycle independent of hormonal stimulation.

The use of exogenous sex hormones, i.e. hormonal contraception (HC), by hundreds of
millions of women worldwide, further complicates the picture. There has been a great deal
of interest in studying the impact of sex hormones (both endogenous and exogenous) on
susceptibility to STIs. Animal and cell-culture models have long suggested that sex
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hormones modify the risk of some lower genital infections, including HIV. Epidemiological
studies in humans have yielded conflicting results.[96] Part of the inconsistency has been
attributed to significant behavioral confounding factors in these studies. However, other
biological explanations are possible- even probable. Most of the studies did not correlate
systemic hormone levels to the measured outcome, and many did not take into account
duration of exogenous hormone exposure.[96, 97] For example, duration of HC use has been
shown to have a direct impact on susceptibility to infection and to be a critical factor in the
development of immune responses to infection (see ‘Vaccines and Sex Hormones’, below).

Sex Hormones and the Microbiota
An intriguing study was conducted in 29 healthy women initiating oral contraception.[98]
Gingival sulcus specimens were obtained prior to HC initiation (HC has been associated
with increased risk of gingivitis in some studies), 10 days post initiation, and 3 weeks later.
There was little change in the microbial communities between pre-HC and 10 days post HC
but at 3 weeks post-HC, a striking increase in the number of Prevotella species was noted.
This small study suggests that mucosal microbial communities are affected by sex hormones
and that duration of exposure may be a critical variable. The impact of sex hormones on the
vaginal microbiome has not yet been determined, but the estrogen stimulated accumulation
of glycogen in the vaginal epithelium is thought to play a major role in maintaining a
protective Lactobacillus-dominated microbiota.

Data from our group and others suggest that the use of certain types of hormonal
contraceptives may decrease the risk of disruptions in the vaginal microbiota as defined by
the clinical syndrome of BV.[99–103] HC may exert their effects on the vaginal microbiota
in at least two different ways. As mentioned above, estrogen stimulates glycogen
accumulation in vaginal epithelial cells, in turn, glycogen could serve as a carbohydrate
source for Lactobacillus spp. [104] The end product, lactic acid, helps vaginal fluid maintain
low pH and prevents the overgrowth of bacteria associated with BV.[55] Studies have also
suggested an association between higher estrogen serum levels and reduced BV prevalence.
[105] The other mechanism by which HC, especially progestin, may affect the vaginal
microbiota is through its inhibitory effect on uterine bleeding. Menstruation has been
positively correlated with low Lactobacillus vaginal microbiota.[54, 75] Data from cohorts
of pregnant women also suggest stability of the microbiota during pregnancy.[106]

Vaccines and the Reproductive Tract
Parenteral vaccines against mucosal pathogens of the genital tract have been successful,
particularly when they induce strong serum IgG levels that cross mucosal epithelia to
provide local protection. The HPV vaccine is the most obvious example.[107].

There are only a few examples of mucosal vaccines (oral polio, cholera, and influenza).
Several factors have hindered the development of effective mucosal vaccines. Mucosal
immune responses are, to a certain extent, compartmentalized. While vaginal, intranasal, and
sublingual immunizations have been found to elicit adequate genital mucosal immune
responses- the intranasal route, oral and rectal routes of immunization have been less
successful.[108] In rodent models, the combination of parenteral and intranasal routes of
immunization yielded the best outcome when comparing combination approaches. Very few
studies have been performed in humans. In one of the few studies conducted in women,
vaginal immunization with the B subunit of cholera toxin resulted in higher cervicovaginal
antibody responses compared to the oral and rectal immunization routes.[109] In men,
parenteral and systemic immunizations resulted in the detection of IgG and IgA antibodies
in semen. Intranasal and rectal routes of immunization have not been well explored in men.
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Another challenge of mucosal vaccination is immunological tolerance.[110] Most mucosal
sites tend to exhibit mucosal tolerance via induction of regulatory T-cells (Treg) that
dampen immune responses following antigen exposure. To overcome this tendency for
tolerance, mucosal vaccines must be potent. Potency may be enhanced by the use of live
vaccines, whole cell vaccines that express one or more pathogen-associated molecular
pattern (PAMP), and/or the use of adjuvants.

Vaccines and Sex Hormones
The impact of endogenous and exogenous sex hormones on mucosal immune responses
must be considered when trying to optimize vaccine responses in the genital tract. The
importance of this concept has been clearly demonstrated in animal models. Using a mouse
model, the use of depot medroxyprogesterone acetate (DMPA) increased susceptibility to
HSV-2 infection >100 fold.[111] A significant lowering of antibody responses to HSV-2 in
DMPA-treated mice following immunization with a HSV-2 vaccine was also reported. Most
intriguing was the incidental observation that the duration of DMPA use prior to HSV-2
challenge affected the immune response to future re-challenge. In an elegant study, mice
immunized intravaginally with an attenuated strain of HSV-2 following longer (15 days)
exposure to DMPA (DMPA-15 group) failed to show protection when challenged with wild-
type HSV-2.[112] In contrast, mice that were immunized shortly after DMPA treatment
(DMPA-5 group), were fully protected and showed no genital pathology after HSV-2
challenge. High viral replication titers, low levels of gamma interferon, dampening of TH1
responses, and poor specific antibody responses characterized the DMPA-15 group in
contrast to the DMPA-5 group. These experiments demonstrate that duration of HC use may
impact innate and acquired immune responses, thereby influencing the susceptibility to and
course of the infection.

Far less is known about the impact of sex hormones on responses to vaccines in humans. A
study by Johansson et al. highlights the potentially critical role of sex hormones: In 21
volunteers who received a mucosal vaccine containing cholera toxin B antigen, the
investigators administered the vaccine either independently of the menstrual stage or on
days 10 and 24 in the cycle in different groups of participants.[113] Vaginal and nasal
vaccinations both resulted in significant IgA and IgG anti-cholera toxin B subunit responses
in serum in the majority of the volunteers in the various vaccination groups. Only vaginal
vaccination given on days 10 and 24 in the cycle induced strong specific antibody responses
in the cervix. In another study, women who received the parenteral HPV vaccine had the
highest levels of cervical IgG and IgA detected during the follicular phase of the cycle, and
these levels decreased significantly around the time of ovulation.[114]

In an era where much of the hope of future STI control lies in vaccine development, the
effects of endogenous and exogenous sex hormones on mucosal and systemic immune
responses must be critically evaluated.

Vaccines and the Microbiome
There are no studies that evaluate the association between the vaginal microbiota and
successful vaccination. These studies are critical and could lead to a novel dual approach to
STI prevention which integrates (1) vaccines and (2) control of the microbiota. To achieve
these goals, continued efforts to better understand bacterial community dynamics over time
(inter-bacterial and bacterial-host) are necessary. Such studies would lead to the
development of interventions to maintain a healthy microbiota. For example, the
development of personalized pre-biotics that would maintain a healthy vaginal microbiota,
preventing adverse ecological shifts, or of probiotic mixtures that could seed a microbial
community to restore and/or maintain a healthy environment, may be envisionned.
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Numerous studies have already demonstrated the positive effect of probiotics (primarily
through boosting Lactobacillus) on prevention of infections in the female reproductive tract.
Unfortunately, there is little rationale for the selection of probiotic strains; none consider the
differences in vaginal microbiota observed among women and there are few well-designed
randomized placebo-controlled studies. The application of genomic technologies represent a
major step towards achieving this goal. Personalized treatments could be geared toward a
better appreciation of species-specific and temporal changes in microbiota.

Conclusions
The success of the HPV vaccine (reviewed by Schiller et al. [115]) has re-energized the field
of STI vaccine research after earlier disappointing results with HSV [116, 117] and
gonorrhea [118, 119] vaccines. There are currently several new candidate HSV and
chlamydia vaccines in various stages of development and recent advances in the fields of
immunology and vaccine design offer hope for the development of vaccines targeting
gonorrhea and syphilis.[120] To optimize vaccine responses against STIs, in addition to
optimizing antigen types, formulations, adjuvants, and delivery methods,[121–123] we need
a clear understanding of the interactions taking place at the mucosal surfaces. Vaccine
development must take into account the differences between the systemic and mucosal
immune responses, the compartmentalization of the mucosal immune responses, the unique
characteristics of the reproductive tract mucosae, the role of the microbiome, the impact of
sex hormones, and the interactions among all of these factors. We are just beginning to
decipher these complex relationships.
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Highlights

• The reproductive tract is a unique mucosa that lacks inductive mucoepithelial
sites

• Reproductive tract mucosal immune responses are compartmentalized

• Dampening of immune responses around the time of ovulation has been
observed

• Immune responses are affected by resident bacterial communities and sex
hormones

• Successful vaccines against STIs must take into account its unique environment
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Figure 1.
There are multiple potential interactions between the immune system, sex hormones, the
microbiome and vaccine efficacy. Some of these interactions may be bidirectional. Vaccines
against sexually transmitted pathogens should take into account all of these factors.
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Figure 2.
Heatmap showing the distribution of microbial taxa found in the vaginal microbial
communities of 394 reproductive-age women. Adapted with permission from Proceedings
of the National Academy of Sciences of the United States of America [52].
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Figure 3.
Percentage of vaginal bacterial community state types within each ethnic group of women.
The number of women from each ethnic group is in parantheses. Reproduced with
permission from Proceedings of the National Academy of Sciences of the United States of
America [52].
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Figure 4.
Daily temporal dynamics of vaginal bacterial communities in six women over a 10-week
period. The relative abudance of each phylotype is depicted as interpolated bar graphs.
Phylotypes color codes are indicated on the right of each bar graph. Daily Nugent scores
(range 0–10) and pH (range 4–7) are indicated below the graph. Red solid circles represent
menstruation. Missing pH values are indicated by red box, otherwise pH is in line with a
value of 4. Missing Nugent scores are also indicated by the red box, otherwise the score is in
line with a score of 0. The figures show that the top four participants (A, B, C, D) carry
highly stable communities dominated by L. crispatus (A), L. iners (B) and non-
Lactobacillus dominated communities (C and D). Women E and F experienced very low
stability communities with both high Nugent scores and pH. Unpublished data, personal
communication from Ravel and Brotman.
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Figure 5.
Profiles of community state types, Nugent scores and menses for 32 women over a 16 week
period. (A) Dendogram of distances between proportions of the five communities state types
identified and measured within a woman over time. (B) Color bar indicates community class
designation and is defined by clusters of proportions of community state types within a
woman over time. (C) Profiles of community state types in which Nugent scores have been
superimposed. Menses for each woman are indicated by boxes. Each time point is
represented by a color-coded community state type (color key on top). Reproduced with
permission from Science Translational Medicine.[54]
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Table I

Community State Types (CST) in the Vaginal Microbiota†

CST Dominant bacterial species

I L. crispatus

II L. gasseri

III L. iners

IV-A* Low-Lactobacillus

IV-B* Low-Lactobacillus

V L. jensenii

†
 CSTs reflect the clustering of samples based on bacterial composition and abundance. Gajer and Brotman et al. previously reported on these 6

CSTs among women in Baltimore, MD.54

*
CST IV-A is characterized by various species of anaerobic bacteria including Anaerococcus, Peptoniphilus and Prevotella spp., whereas CST IV-

B had higher proportions of bacteria from the genera Atopobium and Megasphaera among others.
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