
elifesciences.org

Gao and Davison. eLife 2014;3:e02590. DOI: 10.7554/eLife.02590 1 of 3

Our days are full of mental countdowns: 
how long until the coffee is done brewing? 
Until the light turns green? Until this gel 

has finished running? Predicting the future state 
of the world from the present is critical for flexible 
behaviour, allowing us to move beyond reflexive 
reactions and instead towards charting a course 
that minimises punishment or improves our chances 
of reward. We routinely link cues (e.g., coffee starts 
to brew) and outcomes (coffee is ready) that are 
separated by seconds, minutes, or longer. At the 
cellular level, learning involves making changes 
to the strength of the connections between neu-
rons, but these changes are only triggered when 
two neurons are active within about 100 millisec-
onds of each other (Levy and Steward, 1983; 
Feldman, 2012). Thus, there is an apparent mis-
match between the timescales for behavioural 
learning and neural plasticity.

How, then, does the brain link together related 
events that are separated in time? One possibility 

is that it prolongs neuron firing in some way, 
maintaining the neural signal from the initial cue. 
Several regions of the brain, most notably the 
frontal cortex, show persistently elevated neural 
activity while animals hold information in their 
short-term memory (Funahashi, 2006). However, 
simply sustaining neural activity does not carry 
information about how much time has passed.

Recently, recordings from a region of the brain 
called the hippocampus in rats have revealed 
‘time cells’ that fire in repetitive sequences during 
the interval between an initial cue and a delayed 
action (MacDonald et al., 2011). By providing 
time information, these cells complement the 
well-known role of hippocampal ‘place cells’ that 
fire when an animal is in a specific location. It has 
been proposed that these neural signals for place 
and time help to form episodic memories that link 
together a series of events occurring at different 
locations, supplying our remembered experience 
(Eichenbaum, 2013).

Now, in eLife, Mehrab Modi, Ashesh Dhawale 
and Upinder Bhalla of the National Centre for 
Biological Sciences in India show that sequences 
of neural activity in the hippocampus also contrib-
ute to another form of time-based learning. Using 
a classic eyeblink experiment, they trained animals 
to blink at a certain length of time after they heard 
a specific tone in order to avoid a puff of air 
directed at their eyes (Figure 1B). Two-photon 
Ca2+ imaging during the training period revealed 
how neurons in the hippocampus responded as 
mice learnt to blink at the right time.

Distinct groups of cells in an area of the hippo-
campus known as CA1 were selectively active at 
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each successive time point after the tone, so that 
their firing collectively bridged the entire delay 
period. CA1 therefore explicitly encodes elapsed 
time, with each ‘tick’ of the hippocampal clock 
represented by a specific set of activated neurons 
(Figure 1C). Importantly, reliable neural sequences 
emerged as the animals mastered the timing of 
the blink response.

While neural sequences provide an appealing 
explanation behind the mental stopwatch, it is 
unclear how they are generated in the brain. 
Computational work suggests that training can 
produce ordered sequences in appropriately con-
nected neural networks (Goldman, 2009). The area 
of the hippocampus known as CA3, which provides 
much of the input into CA1, constitutes such a cir-
cuit. Furthermore, time cell firing in CA1 resembles 
the output of this model (MacDonald et al., 2011).

By looking at the activity of large numbers of 
neurons, Modi and colleagues provide experi-
mental evidence that CA1 sequences are likely to 
result from changes in the input received from CA3. 

This involved assessing the noise correlations—the 
similarities in the random fluctuations in neural 
activity at rest—which arise when two neurons are 
either directly connected, or are both driven by the 
same source. Noise correlations between CA1 cells 
increased early in training, suggesting that their 
inputs from CA3 were the site of the neural changes 
driven by learning (Modi et al., 2014). While corre-
lations mostly decreased again later in training, they 
remained high among the CA1 cells responding at 
the same time point, further suggesting that their 
final time-selectivity depends on a common source 
in CA3.

Similar correlation effects have been described 
in pairs of CA1 place cells in rats exploring a 
novel spatial environment (Cheng and Frank, 
2008), suggesting that modifying the input from 
CA3 to CA1 may contribute to learning about 
both time and place. Interestingly, sequential 
activity also occurs as animals navigate through 
successive locations in space, driving firing in 
different place cells (Figure 1D).

Ordered sequences of firing are widespread  
in neural processing, appearing not only in other 
delay-based tasks (Funahashi, 2006) but also in 
spatial navigation (O’Keefe and Recce, 1993), 
complex motor actions (Hahnloser et al., 2002), 
and sensory perception (Shusterman et al., 
2011). It will be important to understand whether 
these diverse contexts share common principles 
for generating sequences of neural firing. Since 
sequences are generated internally in the brain, 
independently of external input, identifying the 
region where they arise is a major goal. The findings 
of Modi, Dhawale and Bhalla further this effort by 
implicating area CA3 as this source in a task that 
depends solely on time.

In the future, direct measurements from CA3 
itself should help to clarify its role in generating new 
neuron firing sequences. In spatial learning tasks, 
suppressing the CA3 output demonstrates that  
it contributes to the initial formation of new 
place fields, and so determines the location where 
CA1 place cells fire (Nakashiba et al., 2008). Similar 
approaches could help further define CA3’s role in 
learning about time intervals as well. Finally, while 
the delay period used here was less than a second, 
we often face time contingencies spanning much 
more extended intervals. A major remaining chal-
lenge will also be to understand how the brain 
tracks delays on very long timescales—such as 
those needed for publishing scientific papers.
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Figure 1. Neural representations of elapsed time in the 
hippocampus. (A and B) When a cue (such as a specific 
sound; green) and an outcome (such as a puff of air 
directed at the eyes; blue) overlap in time (left) and drive 
overlapping neural activity in different groups of neurons 
(vertical green and blue lines), standard plasticity 
processes can account for learning. However, when the 
cue and the outcome are separated by more than  
∼100 milliseconds (right), the mechanisms for linking these 
events in the brain are less well understood. (C) Modi et al. 
show that the time interval between the initial cue and the 
predicted arrival of the puff of air is bridged by temporally 
ordered sequences of activated neurons in hippocampal 
area CA1. (D) Ordered sequences are a common feature 
of activity in CA1, and can represent the animal’s trajectory 
in both time (left) and space (right).
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