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Subliminal perception studies have shown that one can objectively dis-

criminate a stimulus without subjectively perceiving it. We show how a

minimalist framework based on Signal Detection Theory and Bayesian infer-

ence can account for this dissociation, by describing subjective and objective

tasks with similar decision-theoretic mechanisms. Each of these tasks relies

on distinct response classes, and therefore distinct priors and decision bound-

aries. As a result, they may reach different conclusions. By formalizing, within

the same framework, forced-choice discrimination responses, subjective

visibility reports and confidence ratings, we show that this decision model

suffices to account for several classical characteristics of conscious and

unconscious perception. Furthermore, the model provides a set of original pre-

dictions on the nonlinear profiles of discrimination performance obtained at

various levels of visibility. We successfully test one such prediction in a

novel experiment: when varying continuously the degree of perceptual ambi-

guity between two visual symbols presented at perceptual threshold,

identification performance varies quasi-linearly when the stimulus is unseen

and in an ‘all-or-none’ manner when it is seen. The present model highlights

how conscious and non-conscious decisions may correspond to distinct cat-

egorizations of the same stimulus encoded by a high-dimensional neuronal

population vector.
1. Introduction
Since Helmholtz’s (1867–1910) proposal of perception as unconscious infer-

ence, several computational models have been put forward to describe the

mechanisms of this process [1,2]. The hypothesis that perception corresponds

to an inferential decision on sensory data has received support from neuro-

physiological recordings during perceptual tasks [3,4]. For instance, intracranial

[5] and scalp recordings [6,7] have revealed a neural response seemingly reflect-

ing the accumulation of sensory evidence following the presentation of a

stimulus and which may predict how subjects perceive the stimulus [8].

Nevertheless, superficially at least, conscious perception does not always seem

to obey the logic of optimal perceptual inference. For instance, one can objectively

discriminate a stimulus at above-chance level while subjectively claiming not to

have seen it [9,10]. This paradoxical dissociation, referred to as ‘subliminal percep-

tion’, has nourished a vast body of philosophical and scientific proposals on the

nature of conscious and unconscious perception. For instance, Tononi & Edelman

[11] have argued that conscious processes are quantitatively more complex, inte-

grated and differentiated than unconscious processes. Lau [12] and Rosenthal

[13] claim that conscious perception is qualitatively different from unconscious per-

ception, as it relies on higher order metacognitive representations. Recent empirical

studies challenge these accounts, however. First, subliminal stimuli can recruit
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complex semantic and integrative processes [14–16]. Second,

even second-order metacognitive inferences can apparently be

performed above chance on unseen stimuli [17,18].

Here, building upon earlier proposals [8,12], we explore a

simple theoretical idea: objective and subjective tasks rely on

the same inference principles, but they differ in the nature

and size of the decision space. Our proposal stems from

Signal Detection Theory (SDT) and outlines how a minimal

extension of the classic unidimensional depiction of SDT to

multiple dimensions provides geometrical intuitions on several

empirical findings in conscious and unconscious perception.

Specifically, we identified six major sets of empirical

findings that should be accounted for:

— Stimuli which are subjectively reported as ‘unseen’ can

nevertheless be objectively discriminated above chance in

a two-alternative forced-choice task [9,16,19–22].

— Discrimination performance is typically better on seen

than on unseen trials, even when sensory stimuli are

physically identical [23–25].

— Experimental paradigms can be designed in which

objective discrimination performance is identical, while

subjective visibility differs [12,24,26].

— Subjective reports vary nonlinearly as a function of sensory

strength. For instance, brief or faint visual stimuli are

generally reported as ‘completely unseen’, but once their

duration or contrast reaches a threshold level, subjects

tend to report items as ‘clearly seen’ [23,25,27–29].

— Prior knowledge increases the subjective visibility of

physically identical stimuli [29–32].

— Attention generally increases subjective visibility but has

also been found to decrease it [9,26].

2. Model
(a) General assumptions
Our first assumption is that incoming stimuli are encoded as

continuous vectors in a vast representational space. In the visual

domain, for instance, a hierarchy of specialized visual pro-

cessors decompose any visual scene into a broad variety of

features that range from low-level (line orientation, contrast,

colour, etc.) to higher level attributes (face/non-face, etc.).

Each of these features may be encoded by the firing rate of

a group of neurons. Mathematically, each stimulus is there-

fore encoded by a set of coordinates, one for each feature

dimension (figure 1a).

Second, stimulus strength is assumed to be directly reflected

in the length (i.e. the norm) of the input vector. This assump-

tion corresponds to the observation that the depth of sensory

encoding varies with the quality of the incoming stimulus: a

briefly flashed and masked stimulus only evokes modest

activity in higher visual cortices [25,28], and thus its internal

vector has a small projection, particularly on high-level dimen-

sions. Conversely, an unmasked high-contrasted image results

in a long internal vector (figure 1a).

Our third assumption is that each behavioural task

imposes, in a top-down manner, a categorical structure of
classes to this continuous vector space (e.g. ‘click left for

faces and right for non-faces’). Performing the task consists

in identifying, on every trial, the class in which the input

vector falls. Formally, this is a statistical inference problem:

in order to perform optimally, given a sensory input and
prior knowledge, subjects should attempt to compute the

posterior probability of each of the classes in order to select

the class with the maximum a posteriori (MAP) choice,

which is the one most likely to be correct. Each task imposes

distinct, possibly overlapping response classes, and may

therefore lead to different answers.

Our fourth assumption is that the content of conscious percep-
tion, which can be reported verbally, is the outcome of such an

inferential decision process, but with the specific characteristic

of having a very rich set of classes. While simple binary

decisions may be performed non-consciously (e.g. press right

or press left [14]), the inference system that underlies conscious

perception must remain constantly open to myriads of possible

contents, including unexpected ones (e.g. a fire alarm). We pro-

pose that what the subject experiences as a conscious percept is

the class with the highest posterior probability, among all pos-

sible classes. As we shall see, ‘negative’ classes, for example

‘I didn’t see anything’, must also be considered.

(b) Geometrical approximation in two dimensions
The vast number of input features, classes and tasks makes the

present proposal difficult to apprehend in its full generality.

However, most of its properties can be approximately captured

by projecting the large vector space onto a plane defined by the

two main axes of interest (figure 1b,c). These axes are chosen to

be two features or feature bundles that are most relevant to the

task under consideration (e.g. the mean vectors of neuronal

activity evoked by face and by non-face stimuli, if the task is

face/non-face discrimination). Each circle represents the top

of the distribution of a particular class of stimuli (i.e. likelihood

function, given sensory and internal noise). The lines delimit

the regions of space where response decisions change.

Although one should not forget that this is just a considerable

simplification of the underlying multi-dimensional space and

stimuli distribution, this two-dimensional representation

brings the present model closer to the classic two-class pro-

blem of SDT. Indeed, although SDT is not limited to a single

dimension, it is often depicted as a binary problem with two

Gaussian distributions plotted along a single axis. We argue

that this classic diagram fails to capture the interaction between

multiple features, classes and tasks, whereas a two-dimensional

depiction fulfils these requirements (see [33–35] for similar

proposals using two-dimensional representations to dissociate

tasks such as discrimination and detection).

(c) Mathematical formulation
Bayesian theory describes the optimal way of selecting the

most likely model of the environment, referred to as ‘hypoth-

esis’ (H, here the response class), in the presence of sensory

evidence (E), here the input vector. Each class is characterized

by a likelihood function P(EjH ) and a prior probability P(H ).

P(EjH ) indicates the probability that the evidence E was

generated by the class H, and therefore captures how sensory

samples from a given class are distributed within the vector

space. The prior probability P(H ) defines the probability of

H to occur independently of any evidence. Bayes’ theorem

stipulates that the posterior probability of H is a function of

its prior probability and of its likelihood: P(HjE) ¼

P(EjH ) � P(H )/P(E). Finally, decisions result from the

selection of the class that has the MAP probability. This

MAP criterion results in the segregation of representational

space into distinct regions separated by sharp decision
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Figure 1. A multi-dimensional decision-theory framework for objective discrimination and subjective reports. (a) Stimulus information is represented in a vast vector
space, in which each dimension encodes the evidence about a particular feature. Each sensory stimulus thus corresponds to an input vector whose length and
direction change depending on the quality of the stimulus. (b) When considering binary decisions (e.g. perceiving stimuli X or Y ), the huge dimensionality of
the representational space can be approximated by a two-dimensional feature space. In this space, assuming that the true stimulus distributions are known,
the likelihood (top), the prior and the posterior probability (bottom) of belonging to a given class (‘absent’ trial in green, stimulus X in red, or stimulus Y in
blue) can be computed for each input vector (here, the posterior probabilities of the absent class have been removed for readability.) (c) Posteriors can be
used to perform different tasks. In each case, the regions of the problem space corresponding to a fixed decision are delineated by a boundary. Identification
consists in finding the MAP across all classes (absent, X or Y; black lines). Discrimination consists in determining the MAP among a restricted set of classes
(X or Y; purple line). Visibility judgement consists in determining whether the absent class is the most likely among all classes (‘absent’ or not ‘absent’;
green line). Each of these first-order decisions can be supplemented by a second-order confidence judgement task, which is modelled as the estimation of
the likelihood of a correct response in the primary task. Samples far away from the decision border are associated with higher posterior probabilities of the corre-
sponding class and can thus be classified as more ‘confident’ than samples close to the border. This geometrical representation makes it clear that each confidence
judgement is always attached to a specific task and is thus not necessarily identical to visibility judgement. Note that the present colour coding (classes, tasks, etc.)
will be used throughout the figures.
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boundaries (importantly, the placement of these boundaries

does not constitute an additional hypothesis of the model,

but derives directly from the hypothesis that decisions are

based on a MAP criterion).

In the following simulations, we use a series of compu-

tational simplifications. First, we neglect the cost function

associated with each decision—sometimes referred to as

‘loss’ or ‘utility’ function. In the presence of costs, the optimal

decision is the one which minimizes the expected loss and

may differ from the MAP. Mathematically, however, priors

and costs play a similar role and were thus merged in the pres-

ent paper for simplicity. Second, the present model assumes

that priors are fixed in a given context, rather than continuously

updated after each decision. Assuming modifiable priors

would lead to important new predictions, but would also
increase the number of ad-hoc parameters in the models

(e.g. learning rate, estimated world volatility, creation or dele-

tion of classes). Third, we assume Gaussian distributions in

order to facilitate the computations. Fourth, importantly, we

assume that subjects have an accurate estimate of stimulus dis-

tributions—although following Lau [12,35], we will discuss the

important consequences that ensue when subjects’ priors and

likelihood functions are inappropriately calibrated. Fifth, we

assume that, on a given trial, the same input vector enters

into different tasks, thus neglecting the possibility that the

internal evidence evoked by a fixed stimulus may vary with

the task, owing, for instance, to decay [15,36], noise level [25],

attention [37] or other top-down changes. Finally, we treat

stimulus evidence on a given trial as a single discrete point

in the n-dimensional space. In the discussion, we briefly
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(d) The fundamental three-class problem
Given these assumptions, binary decision experiments can be

simplified to a stereotypical three-class problem: either noth-

ing is presented (‘Absent’ trial), or one of two stimuli X or Y
is displayed (figure 1b). Absent trials are assumed to cor-

respond to a null vector whose likelihood function peaks

at the origin of vector space. X and Y trials are represented

by two base vectors, which are chosen as the axes of the

two-dimensional representation.

In this typical set-up, three different tasks can be performed

(figure 1c):

(i) Identification consists in determining which hypoth-

esis has the highest posterior probability (absent, X
or Y?).

(ii) Forced-choice discrimination consists in restricting the

responses to a subset of classes (e.g. X or Y, excluding

the absent class).

(iii) Visibility judgement consists in reporting whether

the stimulus is seen or unseen. We assume that this

instruction is interpreted as a decision, whether

the stimulus is most likely to be absent or present

(i.e. absent or not absent?).

Formally, these are all first-order tasks, because they all ask

a simple question: which class (or set of classes) could have led

to the observed input vector? For each of them, the second-

order ‘confidence’ judgement can also be performed by setting

additional response classes, corresponding to whether the first-

order decision has a high or low probability of being correct. As

shown graphically in figure 1c, there is a distinct confidence

judgement associated with each primary task. At the expense

of Persaud et al. [38] and Lau et al. [12], we note that the

second-order tasks need not coincide with visibility judge-

ment. Also, note that, for both the first- and second-order

decisions, the decision boundaries can be derived directly

from the definition of the task, the priors and the likelihood

functions for each class, and therefore do not constitute

additional assumptions of the model.
3. Empirical consequences of the decision
framework

We shall now see how this framework accounts for the six

fundamental empirical properties listed earlier.
(a) Above-chance discrimination of stimuli reported as
‘unseen’

Empirical finding 1 is that perceptual decisions can be per-

formed at above-chance level even when subjects report not

seeing any stimulus [21,22,38–40]. For example, blindsight

patients can perform simple discriminations on visual stimuli

they report not seeing [19]. This paradoxical ability also exists

in healthy subjects whose discrimination performances have

been repeatedly shown to be dissociated from subjective

reports (see reviews in [16,41]).
For simplicity, we only consider here the case in which

two stimuli (X and Y ) become undetectable when they are

visually degraded (X’ and Y’). We assume that the degraded

stimuli are generated from the same class as X and Y, yet

with lower evidence (i.e. shorter vector length). As shown

in figure 2a, it is quite possible for degraded stimuli X’ and

Y’ to fall in the region reported as unseen during visibility

judgement (i.e. the most likely class is absent), and yet to

yield above-chance performance in a forced-choice task

when discrimination is restricted to classes X and Y. This

finding could be trivial if the visibility judgement was sys-

tematically biased towards the unseen response (and

indeed such response bias has often been proposed as an

interpretation of subliminal perception experiments [42]).

However, our simulations assume a Bayes-optimal inference

process. Thus, we show that there are conditions under which

the absent or unseen response is the most probable one, and

yet X versus Y can still be discriminated.

The geometry of the two-dimensional model reveals why

discrimination performance (i.e. d’ of X/Y discrimination)

can be higher than detection sensitivity (i.e. d’ of absent/

not-absent judgement): the distance separating the X and Y
vectors is larger than that separating them from the absent

class. In the two-dimensional case, discrimination perform-

ance is
p

2 higher than detection performance (figure 2a).

Consequently, given adequate statistical power, discrimin-

ation may be significantly above chance when detection

sensitivity is not.

The above account can also be extended to the second-

order judgements, such as confidence rating and post-decision

wagering on the first-order forced-choice X/Y discrimination

task. Because such second-order judgements rely on similar

decisional principles as the first-order tasks (figure 1c), confi-

dence in discrimination can be above chance on unseen trials

and confidence in visibility can be lower than that in discrimin-

ation. This conclusion fits with two recent experiments in

which subjects performed above chance in their confidence

judgements, even on trials reported as unseen [17,18].

(b) Discrimination performance generally improves with
subjective visibility

Empirical finding 2 is that, although objective discrimination

can be above chance with subjectively invisible stimuli,

such unconscious performance is generally mediocre. In

many studies, objective discrimination performance improves

dramatically when the stimuli are reported as ‘seen’ com-

pared with unseen, even when sensory stimulation is

identical [23,25,27].

How does the model account for these findings? In experi-

ments that compare highly contrasted and visible stimuli with

degraded and invisible stimuli, the improvement in discrimi-

nation performance with subjective visibility is trivial (figure

2a): stimulus degradation diminishes the evidence for X and Y
and thus worsens both visibility judgement and X/Y discrimi-

nation. The two tasks are thus necessarily correlated [12,24].

Less trivially, however, the model predicts the same effect for

fixed stimuli presented at perceptual threshold. Even when the

stimuli are physically identical, internal variability can explain

why approximately 50% of them are reported as unseen (those

which are most similar to the absent class). As a consequence

of this variability, sensory inputs reported as unseen are associ-

ated with a shorter input vector and are therefore closer to the
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X/Y discrimination border than samples reported as seen

(figure 2b). The simple hypothesis of a noisy input vector,

together with non-orthogonal discrimination and detection

tasks, suffices to explain why unseen trials generally exhibit a

lower discrimination performance than seen trials.
(c) Discrimination performance can be equated on
‘seen’ and ‘unseen’ trials

Empirical finding 3 is that it is possible to find experimental

conditions in which discrimination performance is equated

while visibility varies. For instance, blindsight patients do

not always show different discrimination performance in

their blind and healthy visual fields [20,35,43]. In healthy sub-

jects, using meta-contrast masking and inattention, stimuli

have been created that differ in visibility but are equated for

objective discrimination performance [24,26,44].

In the model, three major circumstances (and mixtures of

them) may lead to identical discrimination performance for

seen and unseen stimuli:

— first, for fixed stimuli X and Y, an increase in the prior prob-

ability (or cost) of the absent class may lead to an increase

in unseen responses while leaving X/Y discrimination

unaffected (figure 3a). This account formalizes the hypoth-

esis that blindsight patients have an inappropriate

‘criterion’ for visibility judgement (e.g. [12,35,43]). Note,

however, that the concept of criterion can be misleading
because it incorrectly suggests a single scalar value. In

the present framework, the ‘criterion’ emerges as a set of

decisional boundaries that delimit the categorical regions

in the representational space, and that are specific to the

selected task. A change in the task or in the priors may

thus impose a different division of space, and hence a

shift in decision boundaries;

— second, consider experiments in which, within each class,

the experimenter presents two visible targets X and Y and

two invisible targets X’ and Y’. If both the length and the

variance of the input vectors X’ and Y’ are reduced com-

pared with X and Y, their visibility can drop without

affecting discrimination performance (figure 3b). This

case could correspond to a simultaneous manipulation

of stimulus strength (length of input vector) and of atten-

tion (variance of the input vector) as proposed by Rahnev

et al. [26]; and

— third, if both the amplitude and the angle of the input vec-

tors X’ and Y’ are decreased compared with X and Y, then

X/Y discrimination performance could be manipulated

independently of visibility (figure 3c). This case could corres-

pond to a simultaneous change in contrast and in stimulus

ambiguity, for instance using morphing or blending to

reduce the difference between X and Y stimuli.

The present account provides no less than three mechanisms

by which blindsight, meta-contrast and inattention could pro-

duce their effects. Each mechanism could be explicitly tested

by experimentally manipulating the contrast, the variance
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and/or the blending of sensory stimuli as well as the prior

probability associated with each class.

(d) Subjective reports are often nonlinearly related to
sensory strength

Empirical finding 4 is that a nonlinear curve often relates

the strength of sensory stimulation and visibility ratings

[25,27,29]. For example, when the stimulus onset asynchrony

(SOA) separating a briefly flashed digit and its subsequent

mask is varied linearly, a sharp transition in visibility occurs

around an SOA of 50 ms: below this duration, subjects tend

to report the stimulus as completely unseen, whereas above

it, stimuli are reported as clearly visible [25,27]. However,

this all-or-none visibility pattern does not characterize all

types of subjective reports [27,41,45,46]. For example, Sergent

& Dehaene [27] showed that the attentional blink leads to a

much sharper nonlinear pattern than backward masking.

We consider two classes X and Y,within which the stimuli can

vary parametrically in strength from trial to trial (figure 4a).

This parametric variation is assumed to have a linear effect on

the amount of sensory evidence in favour of the corresponding

stimulus (i.e. the length of the input vector). In such cases, the
model predicts that visibility responses are nonlinearly related

to stimulus evidence, as the MAP criterion imposes a decision

boundary that sharply delineates the regions of space respect-

ively responded with the seen and unseen labels. Interestingly,

although the fraction of seen responses is always a sigmoid, its

slope may vary from a stepwise ‘all-or-none’ pattern to a shallow

and near-linear function. The parameter driving this change in

sigmoid slope is the variance in representational space. With

higher variance, visibility becomes more linearly related to sen-

sory evidence (figure 4a(ii)). This is because when variance

increases, a greater number of absent samples fall outside the

region responded classified as absent, and, analogously, a

greater number of present trials (X or Y ) fall outside their

respective regions—ultimately leading to a flat relationship

between stimulus evidence and discrimination performance.

This change is also accompanied by an increased proportion

of unseen responses. Contrarily, the sigmoid becomes sharper

and the number of seen responses increases when the variance

of the stimulus diminishes (figure 4a(i)).

The present model thus shows how both near-linear and

nonlinear visibility patterns can be produced by a single type

of decision. The model also predicts that unseen trials should

tend to be characterized by linear patterns and seen trials



evidence

evidence

se
en

0%

100%

evidence evidence
P

(p
re

se
nt

)

%
 o

f 
tr

ia
ls

0

1

(a) (i) (ii)low variance

Y

X

evidence for X

evidence for X

se
en

0%

100%

evidence for Y

se
en

0%

100%

(b) high P(absent)

Y

X

(c) low variance high variance

low
P(absent)

Y

seen

unseen
X

high
P(absent)

Yseen

unseen
X

evidence for X

evidence for X

se
en

0%

100%

evidence for Y

se
en

0%

100%

low high

X/Y
AUC

seen

0.5 0%

100%

variance

1.0

low high

X/Y
AUC

seen

0.5 0%

100%

variance

1.0

high P(X)

Y

X

evidence

se
en

0%

100%

evidence

P
(p

re
se

nt
)

%
 o

f 
tr

ia
ls

0

1

high variance

Y

X

Figure 4. Input variance and prior knowledge can affect the nonlinearity and the threshold of subjective visibility reports. (a) Parametrically varying stimulus
strength directly changes the amplitude of the input vector and leads to a nonlinear pattern of subjective visibility reports. The slope and intercept of the resulting
sigmoid depend on stimulus variance: low variance leads to an all-or-none relationship between the evidence and the visibility reports (i), whereas high variance
leads to a more linear relationship as well as an increase in the visibility threshold (ii). (b) Prior knowledge can also affect the visibility threshold. Increasing the prior
probability of the absent class increases the visibility threshold for all stimuli, thus lowering subjective visibility reports. When only the prior probability of X is
increased (capturing ‘hysteresis’ experiments where subjects come to expect the next stimulus), then the visibility threshold is lowered for X alone, while the
visibility threshold for Y barely changes. (c) Visibility and discrimination interact when both priors and stimuli variance are varied. If the probability of the
absent class is relatively low (or similarly if the evidence is relatively high), increasing the variance reduces both visibility ratings and discrimination performance.
However, when P(absent) is high (or similarly, if the evidence is low), increasing the variance can diminish discrimination performance while increasing visibility
ratings. This diagram captures the paradoxical finding that increased attention can lead to reduced visibility [26].
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with all-or-none patterns—an empirically verified phenom-

enon [7,25,27,29,47]. Because there is no unequivocal way of

determining the internal variance of sensory inputs in existing
experiments, the present account remains speculative. Never-

theless, stimulus variance could be explicitly manipulated in

future experiments.



target
(83 ms)

+ + +

l
mask

(67 ms)

> > >

discrimination
(5, 6, 8 or 9?)

visibility?
(1–10)

Figure 5. Experimental design. To test whether linear and nonlinear subjective reports could be accounted by a single type of decision, we parametrically varied the
evidence (l) favouring four different stimuli (5, 6, 8, 9) by creating morphs between pairs of these digits (left). For each morph, on each trial, subjects performed a
forced-choice identification task and provided a subjective visibility report (right).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130204

8

(e) Prior knowledge can lower the visibility threshold
Empirical finding 5 is that the subjective visibility threshold is

affected by prior knowledge [29,30,32,48–50]. Prior exposure

to a given word increases its objective identification and sub-

jective visibility when the same word is later presented under

stronger masking [30]. Similarly, Melloni et al. [29] recently

used a hysteresis paradigm in which letters were embedded

in white noise. Across a series of trials, the identity of the

letter was fixed while its signal-to-noise ratio gradually

increased and then gradually decreased. Subjects reported

seeing the letter better in the descending than in the ascend-

ing condition (i.e. once they knew the identity of the letter),

even for identical physical stimulation.

In the present model, these effects arise from changes in

the priors for classes X and Y. At the beginning of the ascend-

ing condition, stimulus evidence is low, and the X and Y
classes are equally likely. Once the stimulus has been iden-

tified, at the beginning of the descending condition, its prior

probability P(X ) is increased, and consequently P(absent)

and P(Y ) are decreased. Because the decision boundary for

the seen response is partly determined by P(X ), the seen

response is more likely in the descending sequence than in

the ascending one (figure 4b).

Although this account captures the influence of prior

knowledge on visibility reports [30], it oversimplifies the hys-

teresis paradigm [29]. Indeed, subjects are also likely to learn

the structure of the ascending and descending sequences and

expect a higher frequency of absent trials towards the begin-

ning of the ascending sequence and towards the end of the

descending sequence. This expectation, if present, would

again increase the prior probability of the unseen response,

thus leading to increased reports of invisibility for these

stimuli compared with physically identical stimuli presented

in a random sequence. The model further predicts that X/Y
discrimination should remain identical in ascending and des-

cending sequences. During the descending sequence, subjects

should exhibit a bias towards X reports, owing to the

increased prior for X, but no change in d’. These predictions

offer a way to test the validity of the present model.

( f ) Attention can either increase or decrease visibility
Empirical finding 6 is that attention and visibility can be para-

doxically decorrelated. In many studies, attention increases

detection sensitivity and subjective visibility (e.g. [26,37,51]).

However, attention can also lead to decreased subjective visi-

bility [26]. In Rahnev et al.’s study [26], subjects performed a

basic detection task on a target whose location was validly

cued on 70% of trials. Crucially, the contrast of the unattended

target was adjusted to yield the same level of objective per-

formance as the attended target. Remarkably, subjects
reported that unattended trials were more visible than the

attended ones.

If we assume that attention affects the variance of the input

vector, the present model predicts that attention can lead to

opposite visibility effects depending on the proportion of

trials reported as seen or unseen (figure 4c). If P(absent) is

low, so that most trials are reported as seen, then increasing

the variance diminishes both discrimination performance

and visibility, because it increases the proportion of input vec-

tors that fall close to the absent class. This captures the classical

effect that inattention increases noise and thus reduces both

objective performance and subjective visibility. Importantly,

however, if P(absent) is high, so that most trials are reported

as unseen, then increasing the stimulus variance still

diminishes discrimination performance, but may paradox-

ically increase visibility ratings. This is because with higher

variance, a greater number of samples fall outside the region

responded as unseen and thus become subjectively visible

(figure 4c).

The model therefore predicts that attention can induce

opposite effects on visibility and discrimination performance

even when the mean evidence is unchanged. Contrary to

Rahnev et al. [26], who argue that attention induces a conser-

vative visibility bias by changing the inter-trial variance of

the stimulus, we predict that visibility ratings are influenced

by an interaction between the variance and initial visibility

threshold (determined by prior knowledge or stimulus

evidence). Once again, this prediction could be tested in

an experiment explicitly manipulating stimulus variance,

contrast and priors.
4. Experimental test of the model
Most the above arguments account for empirical observations

only in retrospect. We thus opted to confront the present

model to a novel experimental set-up. The model critically

predicts that linear and nonlinear profiles of behavioural

responses arise from the same decision mechanism. In particu-

lar, it predicts that the discrimination profile of physically
identical stimuli will increasingly become nonlinear as visi-

bility increases (figures 2b and 4a).

We tested this prediction by linearly varying a parameter

l to create a continuum between two perceptual classes X
and Y (figure 5). For l ¼ 0, the stimulus is X, for l ¼ 1, the

stimulus is Y, but we can create an arbitrary series of inter-

mediate stimuli S(l) ¼ lX þ (1 – l)Y. Whereas de Gardelle

et al. [47] used a linear morph between two faces, here we

varied the contrast of a single line to create a continuum

between two different digits (e.g. ). Geometrically,

such a continuum can be represented as a line joining the
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Figure 6. Empirical test of the predicted variation in nonlinear categorization as a function of visibility. (a) The present framework predicts that the steepness of the
sigmoid characterizing discrimination performance as a function of l should increase with visibility reports. In particular, the discrimination performance of unseen
stimuli should follow a quasi-linear trend. (b) The results (n ¼ 17) confirm that (i) stimuli could be identified above chance even at the lowest visibility ratings
(ii) discrimination performance correlated with visibility ratings and (iii) increasingly steeper sigmoids indicated that, unlike unseen stimuli, visible stimuli were
associated with a nearly all-or-none identification performance.
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prototypical vectors of each class (figure 6a). We presented

the stimuli at perceptual threshold, such that for a fixed

stimulus, there were a large number of both seen and

unseen subjective reports.

The model predicts that the steepness of discrimination per-

formance should increase as subjective visibility increases.

Stimuli rated as unseen could be categorized better than

chance (figure 2b), but with a shallow slope because such

stimuli are necessarily close to the ‘absent’ class (figure 6a).

Conversely, highly visible stimuli should yield a steeper

sigmoidal function. Thus, we expected significantly better

identification performance on seen compared with unseen

trials (figure 2b), and an increasingly ‘all-or-none’ response

pattern as a function of stimulus ambiguity l (figure 6a).
(a) Method
Nineteen healthy volunteers, with normal or corrected-to-

normal vision, participated after giving informed consent

(29% males, age: 25+5 years old, 88% right handed). Each

trial began with the presentation of an ambiguous digit

(target) presented for 83 ms and subsequently masked by

pseudo-random black surrounding letters displayed for 67 ms

(figure 5). Subjects were asked to identify in less than 2 s

which of four digits was presented (5, 6, 8 or 9), using their

left and right index and middle fingers. Visual feedback

was given for non-ambiguous trials (morphs at 0 or 100%): mis-

identifications were followed by a 100 ms red fixation-cross,

whereas correct identifications were followed by 100 ms green

fixation-cross. Subjects subsequently reported subjective
visibility using a 10-point vertical rating scale (bottom: not

seen, top: clearly visible). Subjects used the two middle fingers

to change the location of the randomly placed visibility cursor

and pressed the space bar with their thumb to validate the

visibility rating. The inter-trial interval was fixed at 300 ms.

Subjects performed a total of 1000 trials divided into

25 blocks, at the end of which their median reaction times

and their accuracy were displayed. The experiment lasted

approximately one hour.

Prior to the main experiment, subject performed a staircase

procedure similar to the main task (100 trials with unambigu-

ous targets, no visibility ratings and no time limit). The contrast

was lowered to reach an accuracy of approximately 70% [52].

Target contrast then remained fixed throughout the main

experiment. The staircase procedure was repeated up to five

times in case of an unstable perceptual threshold. Two subjects

who failed to converge to a stable threshold were excluded.

All stimuli were generated on a computer using

INKSCAPE, MATLAB 2009b and the Psychophysics Toolbox

and were displayed on a 17’ computer cathode ray tube

screen (1600 � 900 refreshed at 60 Hz). The screen background

colour was 50% grey throughout the whole experiment and a

black fixation-cross was constantly presented in the middle of

the screen. Targets were morphs between two digits (5–6, 5–9,

6–8, 9–8), each made of 5–7 black bars (figure 5). In each pair,

a single bar varied between grey (background colour) to maxi-

mal contrast in eight linear steps (parameter l varying from 0

to 1 in steps of 0.143). Masks were composed of four pseudo-

random capital letters constructed from the same basic visual

features as the digits and were located at the top (E, O, U, Z), at
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the bottom (A, F, P Z), to the left (A, H, O, U) and to the right

(E, F, P H) of the target digit. Symbols subtended 0.458 � 0.858
and were presented to the left or right side of the fixation

(2.128). Masks were centred on the previously presented

target (1.238 � 2.278). Targets, masks and their respective

location were randomly selected at each trial. On 15% of

trials, the target was absent and replaced by a grey

background.

(b) Results
Unambiguous targets were accurately identified on 67.7% of

trials (s.d. ¼ 14.1%, t16 ¼ 5.00, p , 0.001) confirming that the

staircase procedure was efficient (targeted accuracy: 70%).

Subjects used the visibility scale appropriately, as indicated

by their more frequent use of the 0% visibility response on

target-absent trials than on target-present trials (36.7 versus

16.9% of trials, t16 ¼ 4.867, p � 0.001). Subjects used the

entire visibility scale on target-present trials, from 0%

(16.9% of trials) up to 100% visibility (18.7% of trials).

We sorted trials as a function of reported visibility (10

levels), and within each level examined how identification

responses varied as a function of bar contrast (parameter l).

We only focused on the two adequate responses to a given

morph (e.g. response 5 or 9 for the 5–9 morph) and computed

the fraction of these responses that corresponded to reporting

the presence of a bar. We used R software to fit a binomial dis-

tribution as a function of bar intensity, separately for each

subject and each visibility level. As seen in figure 6b, subjects’

choices varied significantly as a function of bar contrast at all

visibility ratings (all p , 0.001). Thus, subjects discriminated

digits at above-chance level even on trials when they reported

no subjective perception. Furthermore, as predicted, the slope

of the sigmoid function increased significantly with visi-

bility ratings (r2(15) ¼ 0.79, p ¼ 0.004). Thus, discrimination

performance improved with subjective visibility ratings.

Trials rated as invisible had such a shallow slope that the

response proportion was nearly linearly related to the intensity

of the bar, while trials rated as highly visible resulted in a

nearly stepwise, ‘all-or-none’ response function.

(c) Discussion of the experiment
Although subjects were presented with identical stimuli, sub-

jective reports varied considerably from trial to trial, from

total invisibility to maximal visibility. Furthermore, three pre-

dictions were verified: (i) identification scores were always

higher than the chance level; (ii) they increased with visibility

and (iii) when varying the degree of ambiguity l, objective

identification became increasingly nonlinear, as subjective

visibility increased. These results confirm that, for physically

identical stimuli, visibility is associated with a greater degree

of ‘all-or-none’ perception, a finding that the framework can

explain without any additional assumption (i.e. no need to

postulate a qualitative difference between conscious and

unconscious processing).

Our results extend a previous study by de Gardelle et al.
[47], which examined the amount of masked repetition priming

elicited by a morphed face when the prime was unmasked

(SOA ¼ 300 ms) or heavily masked stimuli (SOA ¼ 43 ms).

As in the present experiment, they observed linearly increasing

priming for invisible morphs and categorical priming for visible

morphs. Although the authors proposed that this dissoci-

ation reflected two distinct processes (unconscious analogue
versus conscious discrete), the present model suggests that

this interpretation is unnecessary: even within a single decision

process, response patterns may vary in their degree of non-

linearity depending on the mean and variance of the stimulus

evidence.

The model further predicts that, when conscious perception

occurs, subjects perceive the stimuli strictly categorically (digit 5

or 9, but no intermediate percept). According to Harnad’s defi-

nition [53], categorical perception is defined by ‘within-category

compression and between-category separation’. In a companion

paper in preparation, we will present additional evidence that

the conscious experience of our morphs follows Harnad’s

definition of categorical perception [53]. First, discriminability

is indeed enhanced for pairs of digits presented near the

perceptual boundary. Second, when presented with two identi-

cal ambiguous morphs, subjects frequently judge that the

stimuli differ, as predicted if each has an approximately 50%

chance of falling in either of two discrete perceptual categories.

Third, when the present identification task is replicated using a

continuous response scale, subjects respond bimodally and

barely use the intermediate levels to report perceiving a mixture

of two digits. Thus, at least for this type of stimuli, and as postu-

lated in our theoretical premises, what we consciously perceive

seems to result from a categorical decision among a limited

number of classes (see also [54,55]).
5. General discussion
We have shown how a simple geometrical framework for

subjective report and objective discrimination tasks, based on

signal detection and Bayesian theories, can account for six fun-

damental findings in behavioural studies of conscious and

unconscious perception. The present model subsumes a

series of frameworks describing both conscious and uncon-

scious perception as statistical inferences [1,2,8,12,56–58]. The

core of our hypothesis is that, during perception, the brain is

faced with a massive classification problem. Each task, includ-

ing conscious identification and subjective report, imposes, in a

top-down manner, a set of classes along which the stimuli can

be classified. Contrary to most laboratory tasks, open-ended

subjective reports are typically based on numerous features

and classes. A picture-naming task, for instance, typically

involves tens of thousands of classes. Like others before us

[33–35], we thus insist on the necessity to conceptualize

decisions within a multi-dimensional framework. This concep-

tualization leads to several important methodological and

theoretical consequences.

Firstly, the present model goes against the idea that

subjective reports of ‘not seeing’ are necessarily unreliable

because they can be affected by conservative response biases

[33,42,59,60] and that objective measures, for example detec-

tion sensitivity (d’), should be favoured (see review in [16]).

On the contrary, we show that subjective reports cannot be

reduced to objective measures [42,59,60] nor to the second-

order measures such as confidence rating and post-decision

wagering [12,24,26,38]. In particular, the present model pre-

dicts that visibility and confidence should be partially

correlated (figure 1c) but experimentally dissociable. This pre-

diction is well supported by recent empirical findings showing

that second-order judgements can be performed above chance

on unseen stimuli [17,18,41,45]. In the present model, subject-

ive visibility reports reflect a legitimate decision process
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whose details (including response bias) can and should be

accounted for. As recently demonstrated [29,30,61], a shift in

visibility criterion reflects the underlying prior probabilities

and cost functions of the subjects’ internal model of the

world, and, consequently, should not be disregarded as an

experimental confound. What we call a ‘subjective’ report

may simply be the brain’s best attempt at solving a difficult per-

ceptual decision problem with myriads of potential classes,

each with different costs and prior probabilities that depend

on the subject’s prior experience.

Secondly, the model shows, in a principled manner,

how experimental conditions can be designed to equate

discrimination performance between seen and unseen trials

(figure 3). In a series of behavioural experiments, Lau and col-

laborators have equated objective discrimination performance

between seen and unseen responses, in an attempt to isolate

conscious processing independently of other pre- or post-

perceptual increases in information processing [12,24,26]. The

present geometrical analysis suggests that Lau’s experiments

have adopted only a subset of the possible solutions: both

masking the stimuli at different levels [24] and changing the

amount of attention they receive [26] may change the signal-

to-noise ratio of the incoming evidence. However, under

such conditions, discrimination performance is equated at the

expense of introducing physical differences between the visible

and invisible stimuli. It is therefore unclear whether contrasting

the two reflects an effect of visibility or of the stimulus’ physical

properties. Consequently, it may be preferable to use phys-

ically identical stimuli and alter subjective visibility by

changing the priors (figure 3a)—a solution indeed adopted in

several recent studies [29,30,61].

The empirical finding of a nonlinear sigmoidal relationship

between subjective visibility reports and the physical properties

of a stimulus [7,9,16,47,62–64] has led to the notion that con-

scious perception is an all-or-none phenomenon [25,27,29].

The present model readily reproduces this nonlinear pattern

(figure 4a) but it also predicts exceptions in cases of high stimu-

lus variance or low signal-to-noise ratio. These predictions

remain untested, but may offer potential explanations to studies

revealing a continuous relationship between stimulus evidence

and subjective reports [27,41,45,46]. In the future, directly

manipulating the mean and the variance of stimulus evidence

could clarify the role of each of these factors in linear and

nonlinear response patterns to sensory manipulations.

According to the present model, the reason why uncon-

scious responses tend to be linearly related to stimulus

evidence is simple: when perceptual evidence is low enough

to be categorized as unseen, the evidence necessarily lies

close to the origin of the multi-dimensional space and therefore

leads to shallow (though above-chance) forced-choice curves.

We tested this idea in an original experiment, and the results

confirmed that fixed stimuli presented at threshold lead to

quasi-linear discrimination when reported as unseen, but to a

sharp sigmoidal discrimination curve when reported as seen.

Contrary to previous proposals [17,25,47], the present model

accounts for these findings without having to postulate that

distinct processes operate below and above the threshold for

conscious perception.
(a) Limits of the model and possible extensions
For simplicity, we postulated that the very same represen-

tational vector is used for different tasks. The idea is that
the same input vector is ‘resampled’ several times with differ-

ent response classes (e.g. a discrimination task followed by a

visibility task on the same trial). This resampling assumption

is supported by a recent experiment [65] in which, within a

rapid stream of letters, subjects were asked to identify the

one that was circled by a visual cue. On each trial, subjects

provided as many as four mutually exclusive guesses about

the target letter. The results showed that all guesses were

sampled from an identical distribution centred on the pos-

ition and/or the time of the cue. This experiment suggests

that the posterior probability of each letter was computed

once and for all and that successive guesses corresponded

to the MAP after excluding the previous answers, exactly as

expected from the present model.

Nevertheless, in other contexts, the hypothesis that the

input vector remains unchanged and identically available

for a series of successive judgements may turn out to be sim-

plistic. Temporal decay may affect the quality of decisions

made after a delay [66], particularly for unconscious stimuli

[15,36]. A recent study suggests that an attentional cue pre-

sented after a sensory stimulus can retroactively improve its

visibility [37]. The task set imposed by the first task may

also change the quality of the evidence available for the

second task [67]. Similarly, the order in which two questions

are presented may influence the subject’s answers [68].

Busemeyer et al. [69] have proposed accounting for the

latter phenomenon with a computational principle inspired

from quantum mechanics, according to which each succes-

sive judgement alters the input vector by projecting it onto

a subspace defined by the task. As projections are not com-

mutative, the order of successive questions can change the

successive decisions. It remains to be seen whether such

non-commutativity is a fundamental principle that should

be added to the present model.

Another limit of the present model lies in its assumption,

shared with SDT, that decisions are based on a single input

vector. A natural extension of the model would represent

a sensory input as a series of samples, i.e. a trajectory in

multi-dimensional space. Indeed, SDT has been superseded

by sequential sampling models [70–72], according to which

each decision is based on an accumulation of noisy samples

arising from the stimulus. Whichever accumulator first

reaches a fixed threshold is selected as the winner of the per-

ceptual decision. Models of this kind are supported by a large

set of empirical findings, [1,8,73–75] and account, not only

for response proportions, but also for response times and

their distributions [70,73,76]. Extending the present model

in this direction, as attempted by Del Cul et al. [25], would

lead to precise predictions about subjects’ reaction times in

objective and subjective tasks.

In the tradition of ‘ideal observer’ analyses, we also

assumed that the decision system is fully informed of the

stimulus distributions and uses optimal priors and likelihood

functions to compute the posterior probability of each response

class. This is undoubtedly an idealization. A dynamic model in

which the likelihood functions, priors and costs would be

learned by updating them after each trial, and may therefore

be ill estimated, may go a long way towards explaining a var-

iety of human deviations from optimality. For instance, using a

model similar to the present one, Ko & Lau [35] proposed an

account of blindsight as an inadequate revision of priors fol-

lowing the radical decrease in visual input strength caused

by a lesion to area V1 (similar to figure 3a). Confidence
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judgements and visibility ratings would be particularly

affected by inadequate priors and likelihoods, because the

present model assumes that these tasks require a quantitative

estimation of the posterior probabilities (figure 1). In agree-

ment with this idea, Rahnev et al. [26,44] performed a series

of experiments in which human observers deviated radically

from optimality in their confidence judgements. Their findings

could be explained by assuming that subjects used a single esti-

mate of input variance for distinct experimental conditions

(e.g. for attended versus unattended trials). This interpretation

is compatible with the present model and with the general idea

that there are sharp limits to the number of decision criteria that

subjects may deploy on a given trial [77,78].

(b) Neural mechanisms
The present model was framed at an abstract mathemati-

cal level of description. While this approach provides useful

geometrical intuitions and a simple testable framework, an

important future endeavour will be to flesh it out at the

neural level. The vast representational space may correspond

to the function of posterior unimodal and multimodal sensory

areas, where many neurons render explicit dimensions of the

stimuli that are only encoded implicitly and in a distributed

form in the sensory periphery. Their role may be to augment

the dimensionality of sensory inputs and therefore facilitate

decision-making by turning decisions into linearly separable
problems [79]. The categorical decision system, in turn, could

be subserved by areas of the dorsolateral and inferior prefron-

tal cortices as well as anterior temporal and superior parietal

cortices. These areas have been proposed to form a ‘global

workspace’ where conscious information is maintained and

broadcast to additional processes [10]. They receive the

necessary convergence of multimodal inputs and are known

to contribute to both decision-making and to all-or-none con-

scious perception [10,80,81]. Explicit simulations of such

recurrent networks with winner-take-all dynamics show how

they tend to quickly converge to a discrete stable attractor

[82] which approximates the maximum-likelihood estimate

[83,84]. The dynamics of such networks may therefore account

for perceptual categorizations, which the present model

considers as inherent to conscious perception.
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