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Abstract
Several gene expression profiles have been reported to predict breast cancer response to
neoadjuvant chemotherapy. These studies often consider breast cancer as a homogeneous entity,
although higher rates of pathologic complete response (pCR) are known to occur within the basal-
like subclass. We postulated that profiles with higher predictive accuracy could be derived from a
subset analysis of basal-like tumors in isolation. Using a previously described “intrinsic” signature
to differentiate breast tumor subclasses, we identified 50 basal-like tumors from two independent
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clinical trials associated with gene expression profile data. 24 tumor data sets were derived from a
119-patient neoadjuvant trial at our institution and an additional 26 tumor data sets were identified
from a published data set (Hess et al. J Clin Oncol 24:4236–4244, 2006). The combined 50 basal-
like tumors were partitioned to form a 37 sample training set with 13 sequestered for validation.
Clinical surveillance occurred for a mean of 26 months. We identified a 23-gene profile which
predicted pCR in basal-like breast cancers with 92% predictive accuracy in the sequestered
validation data set. Furthermore, distinct cluster of patients with high rates of cancer recurrence
was observed based on cluster analysis with the 23-gene signature. Disease-free survival analysis
of these three clusters revealed significantly reduced survival in the patients of this high
recurrence cluster. We identified a 23-gene signature which predicts response of basal-like breast
cancer to neoadjuvant chemotherapy as well as disease-free survival. This signature is independent
of tissue collection method and chemotherapeutic regimen.
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Introduction
Multiple studies have identified gene expression signatures to predict the response of breast
cancer to neoadjuvant chemotherapy [1–9]. An ideal signature would identify, at the
presentation of disease, those patients who would benefit from specific chemotherapy
regimens and allow the remainder to be spared of its side-effects. Most studies aimed at
identifying such a signature have considered breast cancer as a single homogeneous entity.
The molecular heterogeneity of breast cancer, however, has been demonstrated with the
“intrinsic” gene signature [10]. At least three major molecular subclasses—basal-like (BL),
luminal, and erbB2-positive—have subsequently been found to have distinct clinical
outcomes [11–13]. Studies are emerging which suggest differing complete pathological
response (pCR) rates of breast cancer to neoadjuvant cytotoxic chemotherapy among the
molecular subclasses; notably, significantly higher rates of pCR are achieved with BL-like
tumors [11, 12, 14]. Given these observations, one would expect a gene signature predictive
of response to chemotherapy derived from unclassified breast cancer data to contain
redundant information with that of the intrinsic gene signature. The distinct biological make-
up of these tumor subclasses—as evidenced by their differential clinical course, expression
of hormonal receptors, and response to treatment—warrants distinct analysis for each class
to arrive at optimal and customized predictors of response to therapy.

Prospective trials have demonstrated that those patients with a pCR of the primary tumor
have significantly improved disease-free survival and overall survival when compared with
patients who do not have a pCR [15–17]. Based on these data, pCR is frequently used as a
surrogate for overall survival in the design of clinical trials. In this study, we have identified
a gene expression signature which predicts pCR response to neoadjuvant chemotherapy
within the BL subclass of breast tumors. Analysis of samples from patients with pCR versus
those with residual disease (RD) following neoadjuvant chemotherapy yielded a gene
expression signature which is independent of chemotherapeutic regimen or method of tissue
collection. Clinical surveillance showed that this signature may differentiate between
disease-free survival as well.
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Patients and methods
Patient population

119 patients with clinical stage II or III breast cancer, between March 2003 and 2006 at
Washington University, were enrolled into a prospective clinical trial of four cycles of
epirubicin (75 mg/m2) and docetaxel (75 mg/m2) every 3 weeks prior to surgery and two
cycles after surgery. Half of the patients received zoledronic acid every 3 weeks beginning
at the time of chemotherapy. Tumor size was measured from mammograms and ultrasound
studies prior to treatment. pCR was defined as no residual invasive disease in the breast or
lymph nodes. Residual in situ carcinoma was also considered a pCR [18]. Estrogen receptor
(ER) and Her-2 status was determined on a diagnostic core obtained before treatment. The
mean follow-up was 2 years with annual restaging. This study protocol was approved by the
Institutional Review Board at Washington University. Written informed consent was
obtained from each patient.

Tissue collection and gene expression profiling
RNA was extracted from snap frozen 14-gauge core samples obtained from pre-treatment
tumors. Specimens containing more than 40% of tumor on histological examination were
analyzed. Trizol reagent (InVitrogen) was used to isolate total RNA. RNA was assessed by
Agilent Bioanalyzer (Agilent, Palo Alto, CA). Affymetrix target preparation, array
hybridization, and array scanning were performed using standard protocols. 15 μg of
biotinylated cRNAs were hybridized to Affymetrix U133Plus2 GeneChip™ oligonucleotide
arrays. Array images were processed using the Affymetrix Microarray Analysis Suite
(MAS5) algorithm. The arrays were scaled to a target intensity of 1,500 and exported to the
Bioinformatics Core Facility (http://bioinformatics.wustl.edu).

Microarray gene expression analysis
Array analysis was from 70 specimens. In order to identify 24 BL samples, WU-BLAST
(http://blast.wustl.edu/) was used to identify the corresponding Affymetrix oligonucleotide
probe sets to that of the intrinsic gene signature [10]. Hierarchical clustering was performed
using Cluster 3.0 (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/
software.htm#ctv). The intrinsic signature from each of the 70 arrays was scored against the
signature of the five tumor subclasses from Sorlie et al. using Pearson’s correlation
coefficient [10]. Signatures with highest correlation to the Sorlie et al. BL cluster as
compared to the other tumor types were identified as BL tumors. A similar procedure was
used to identify the 26 BL tumors within the microarray data set published by Hess et al. [4].

Analysis to identify probes which exhibited differential expression between pCR and RD
samples proceeded as follows: In order to reduce the baseline noise within the data, probe
sets with fewer than 50% ‘P’ calls, as determined by the MAS5 algorithm, across all 70
samples accrued at this institution were retained for further analysis. In order to account for
potential block effects between the data of the two studies, expression values of each probe
set were mean-centered and variance-normalized independently within each study. The
processed expression values from probe sets common to both studies were then combined to
form a data set consisting of 50 arrays with 13,181 probe sets within each array. In order to
partition the samples from the two studies into training and validation sets, approximately
four-fifths of the arrays of each study were chronologically partitioned within each study,
then combined to form a 37 array training set. The remainder were combined and
sequestered to form a 13 array validation set.

Differential expression between pCR and RD samples was evaluated with a moderated t-
statistic using lmFit and eBayes of the LIMMA package within the R statistics package [19,
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20]. Discrimination profiles were constructed by incremental inclusion of the most
informative probe sets. Each of these profiles was then evaluated for its ability to predict
pCR using linear discriminant analysis (LDA) with leave-one-out (LOO) cross validation.
The nominally optimal model was identified among the profiles with minimal error rates in
LOO cross validation. In order to assess the statistical significance of the result, this search
algorithm in its entirety was repeated on 500 data sets in which the data within each probe
set were randomized. Each randomized data set was analyzed for probes which showed
differential expression between pCR and RD outcomes, and the most informative probes
arising from the randomized data were evaluated for their ability to predict pCR using LDA
with LOO.

Disease-free survival curves were computed using the Kaplan–Meier method as
implemented in the R survival library. Tests for statistical differences between these survival
curves were performed using survdiff of the R survival package.

Results
Identification of BL tumors

At this institution, 119 patients were enrolled prospectively in a neoadjuvant chemotherapy
trial (Table 1). Adequate core biopsies were obtained prior to neoadjuvant therapy from 86
patients, 70 of which fulfilled quality requirements to undergo expression profile analysis.
Oligonucleotide probe sets within the Affymetrix U133Plus2 array which corresponded to
genes of the intrinsic signature were identified. Hierarchical clustering using the intrinsic
signature identified 24 BL tumors (Fig. 1a). As further support of correct BL tumor
identification, the tumors of this branch were predominantly ER, progesterone receptor
(PR), and HER2 negative by immunohistochemistry compared to the tumor constituents of
the other cluster branches (Fig. 1a).

In order to obtain additional sample numbers for analysis, four studies were evaluated to
determine the compatibility of merging the published data sets with ours [5, 21, 22]. Data
from three of these studies were unable to be incorporated in this analysis for reasons
including incompatibility of the platforms and the presence of too few BL tumors within the
data set [5, 21, 22]. Data from Hess et al. were derived from a microarray platform
compatible with that of this study and contained sufficient probe sets to identify the basal
subtype using the intrinsic signature [4]. In Hess et al., 133 patients underwent fine needle
aspiration (FNA) tissue collection prior to any treatment and subsequently received 12
weekly treatments with paclitaxel followed by four treatments with fluorouracil,
doxorubicin, and cyclophosphamide. Application of the intrinsic signature on the 100
profiles in the published data set yielded data from 26 additional BL tumors (Fig. 1b).

Fifty BL tumor expression profiles were thus assembled from two independent studies
(Table 1). The patient and tumor characteristics in each data set were similar in age,
histology, and grade. In our data set, there were a greater percentage of African-American
patients (42 vs. 8%), larger tumors (83 vs. 42% T2 tumors) and greater percentage of N0
disease (63 vs. 23%) (Table 1). 62% of the patients with basal tumors had pCR at the time of
surgery in the study by Hess et al., compared with 21% in the patients at our institution
(Table 2).

Gene expression signature of pathologic complete response
The expression data were normalized independently within each study and then combined
for further analysis. The BL tumor profiles were partitioned chronologically into training
and validation groups in a balanced manner to ensure equal representation from each study.
Data from both studies were included in the training set with the expectation that this would
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facilitate the selection of probe sets exhibiting differential expression across treatment
response without influence of the specific chemotherapy used or method of sample
collection. Within the 37 sample training group, a moderated t-statistic ranked the probe sets
by their degree of differential expression as related to treatment response. A search using
LDA analysis with LOO cross validation found that inclusion of the top 25 probe sets in the
discrimination model yielded the most parsimonious model with optimal predictive results
(Fig. 2). These 25 probes correspond to 23-genes which encompass a diverse array of
cellular functions (Table 3). None of these 23-genes exhibited differential expression in a
previous comparison of tumor expression profiles derived from core biopsies versus fine
needle aspirates from the same tumor suggesting that the profile is independent of the
tumor-sampling method [23].

Using the independent 13 sample validation set, the 23-gene signature achieved an overall
accuracy of 0.92 (95% CI 0.64–1) with a positive predictive value of one (95% CI 0.4–1)
(Table 4; Fig. 3). In order to assess the chance occurrence of this result, the search procedure
was repeated on 500 data sets generated by the randomization of data within each probe set.
No instance of predictive accuracy was observed which matched or exceeded that which
resulted from analysis of the actual data. The observed average predictive accuracy with the
randomized data was 0.47 (95% CI 0.46–0.49).

Expression signature and disease-free survival
In order to examine the internal consistency of the expression signature, the expression
profiles of all 50 BL tumors were subjected to hierarchical clustering using the 23-gene
expression signature. Expected clusters enriched for pCR and RD samples were observed
(Fig. 4). Notably, a small but distinct cluster of eight patients exhibited a high rate of disease
recurrence during post-therapy surveillance. Although chemotherapy achieved pCR in half
of these eight patients, six nevertheless developed recurrent disease (Table 5). Kaplan–Meier
survival analysis demonstrated a statistically significant difference in survival among the
pCR and RD groups as compared to the high recurrence groups (P<0.01), while a similar
analysis between the pCR and RD groups alone did not achieve statistical significance (Fig.
5).

Discussion
BL breast cancers are associated with a poor clinical outcome [24, 25]. Response of the
primary tumor to neoadjuvant chemotherapy has been related to subsequent disease-free and
overall survival, making this a valuable intermediate end-point for treatment evaluation.
Using array data from 50 BL tumors combined from two independent studies, we have
identified a 23-gene expression signature which predicts pCR of BL breast tumors to
neoadjuvant chemotherapy regimens containing an anthracycline and a taxane. More
importantly, this signature identifies a group of patients who are at high risk of disease
recurrence. Our data suggest that within the BL breast cancer molecular subclassification
there are further subtypes which have differing biological behavior, and that pCR itself
within the BL subtype may not always portend a favorable prognosis.

Several recent studies suggest that gene expression profiles can achieve greater accuracy in
predicting breast tumor response to neoadjuvant chemotherapies than clinical predictors
alone [7, 9]. There are several approaches for the development of multigene predictor of
response to chemotherapy. One approach is to group all breast cancers into either responders
or non-responders and define the gene expression difference between these groups. This
approach has been successfully applied to develop prognostic signatures for breast cancer [5,
21]. In these studies, data are usually analyzed from all breast tumors regardless of
underlying molecular subclassification. However, recent data indicate that substantive
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inferences concerning the response of a tumor to neoadjuvant chemotherapy may be made
from the subtype of the tumor alone [26, 27]. Since distinct molecular classes of breast
cancer exist, stratification of patients by molecular class should yield more accurate class-
specific predictors. Therefore, inclusion of specific breast tumor subclasses into a prediction
scheme for neoadjuvant chemotherapy should increase its accuracy. In this study, our goal
was to develop the best possible classifier for prediction of pCR in the BL breast cancer
subtype.

Considerable barriers exist for molecular analysis using specific breast tumor subtypes. As
each subclass exists as a fraction of all breast tumors, several-fold increases in patient
accrual rates would be required to achieve adequate sample numbers for analyses. As an
alternative approach, we combined the data sets from two neoadjuvant chemotherapy
studies. Multiple published array sets were examined [5, 21]. Due to compatibility in
platforms and number of data sets available, we chose to work with the set published by
Hess et al. [4]. This allowed us to develop a 23-gene predictor of pCR in BL tumors with
high accuracy. The genes identified are involved in a wide variety of cell functions including
chromatin remodeling, gene expression cell proliferation, ubiquitin regulation, cell motility,
and signal transduction. Interestingly, two of the genes NNMT and ABCB1 are involved in
drug metabolism. However, not all of these genes may play a causative role in determining
sensitivity to chemotherapy; some may represent distant downstream transcription effects of
biological events that influence drug sensitivity. In a smaller study, Rouzier et al. found 61
genes which differed significantly between BL tumors which achieved a pCR and those that
did not [11]. None of these 61 genes overlap with the 23-genes found to predict pCR in our
data.

Although pCR is a powerful prognostic factor for prolonged survival in patients receiving
neoadjuvant chemotherapy [15, 28–30], a significant proportion of patients with pCR
develop recurrent disease [31]. Reported series have shown a 5-year recurrence rate in
patients with pCR ranging from 13–25% [15, 29, 30, 32]. Of the 50 BL tumors used in this
analysis, 28% (n = 14) of the patients developed recurrences within 5 years of diagnosis and
half (n = 7) of these patients had a pCR. This paradoxical feature is consistent with other
studies conducted in BL breast cancer which were identified using gene expression profiling
[11, 14].

Although the 23-gene signature was not constructed to predict disease-free survival, it is
interesting to note that this signature also identified a minor subclass of patients who
developed recurrent disease, independent of whether they exhibited pCR. The number of
patients in this group was small but the effect reached statistical significance when
compared to the remaining tumors. In contrast, survival analysis of the pCR versus the RD
groups did not substantiate prior associations of pCR with increased disease-free survival
[15, 29]. This is consistent with the findings of Keam et al. who report that although a higher
rate of pCR is achieved in patients with triple negative tumors, these patients had higher
relapse free survival and shorter overall survival [27]. It has been reported that recurrence
rates with pCR progressively increased depending on the initial stage at diagnosis [33].
Patients in this study had almost uniformly clinical stage II/III tumors, and therefore stage at
diagnosis is unlikely to account for the clustering of these patients. Our observation is more
likely due to the biology of the tumor and resistance to systemic therapy [10, 12]. Although
this study may not have been powered adequately to fully evaluate disease-free survival,
future studies may be warranted to examine whether pCR is an accurate predictor of disease-
free survival within the BL subtype of breast cancer.

In order to obtain a sufficient number of BL breast tumors for our analysis, we combined
data from two different studies. Notable differences existed between the experimental

Lin et al. Page 6

Breast Cancer Res Treat. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



designs of our study and that of Hess et al. which provided the second set of tumor
expression data used in this meta-analysis. Core biopsies were collected from our study,
whereas Hess et al. acquired fine needle aspirates [4]. Although these methods result in
different ratios of tumor versus stromal cells in the collected sample, expression profiles
derived from these sample collection methods have been found to be largely concordant
with only a small set of genes exhibiting differential expression [23]. Another difference in
methodology was the number of chemotherapy treatments administered before pathological
analysis and the chemotherapeutic regimens used. However, both regimens contained an
anthracycline and a taxane. Although this would not affect the tumor expression profiles
given that the samples were collected prior to therapy administration, it may have affected
the percentage of pCR observed between the two studies. Various neoadjuvant
chemotherapy regimens have previously been observed to achieve different pCR rates and
would presumably affect the composition of the derived prediction model [34]. Despite
these and other technical differences, we found an expression signature with sufficient signal
to overcome these potential sources of bias between the two data sets. A prediction model
derived from patients treated with heterogeneous regimens of chemotherapy may not result
in optimal predictive accuracy for a specific regimen. However, a practically useful
predictive model would be generally applicable to the reality of diverse clinical practice.
With these constraints, a model could reasonably be expected to have high specificity for
identifying pCR to neoadjuvant chemotherapy. Arguably, type II errors in detecting pCR are
more acceptable from the vantage of oncologic treatment.

Gene expression analyses have identified molecular subtypes that are refining our
understanding of breast cancer biology. We have identified a 23-gene signature which
predicts pCR in BL breast cancers. Moreover, this signature identifies a subgroup of tumors
associated with a decreased disease-free survival. Our data support the concept that there
exists biological heterogeneity within the BL breast cancer subtype. It is important to
identify patients with BL cancers who may develop systemic failure after achieving a pCR;
these patients may benefit from additional therapy.
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Fig. 1.
Identification of basal-like tumors. Unsupervised hierarchical clustering of samples from
WU using the “intrinsic” signature (a) and Hess et al. (b) [4]. The red branch demarcates BL
tumors. Blue marks denote positive expression of ER, PR,and HER2. Black marks denote
pCR. Probe set numbers differ between the two plots as the result of oligonucleotide
platforms. For the analyses, probe sets common to both chips were used. In the right-most
branch of (b) (blue), samples had low values and were therefore excluded from the analysis
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Fig. 2.
Determination of the optimal number of probe sets. The 50 basal-like tumor samples were
partitioned in a balanced manner into a 37-sample training group and a 13-sample validation
group. A moderated t-statistic ranked the probe sets by their degree of differential
expression as related to treatment response. A search using linear discrimination analysis
with leave-one-out cross validation found that inclusion of the top 25 probe sets in the
discrimination model yielded the optimal and most parsimonious predictive results
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Fig. 3.
Training and validation heat plots of the 25 probe model. Using linear discrimination
analysis, each of the 13 validation samples were compared to the training data and predicted
to have had pCR or RD to neoadjuvant therapy. All RD samples were correctly categorized
as such, as were five of six pCR samples. Overall accuracy was 92% (95% CI 64–100), with
sensitivity of 80% (95% CI 28–99) and specificity of 100% (95% CI 63–100). Hash marks
above heat plots mark samples which had pCR to neoadjuvant therapy
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Fig. 4.
Internal consistency of the expression signature. The expression profiles of the 50 basal-like
tumors were clustered using the 23-gene expression signature. The data from Hess et al. are
indicated in the recurrence hashes by open boxes; the data from this institution are indicated
by closed boxes
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Fig. 5.
Kaplan–Meier survival analysis. Disease-free survival estimates for the three groups—pCR,
RD, and high recurrence—resulting from hierarchical clustering of the 50 basal-like tumors
with the 23-gene prediction profile demonstrated a statistically significant difference in
survival between the pCR, RD and high recurrence groups (P<0.01). Survival analysis of the
pCR and RD groups alone did not achieve statistical significance
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Table 3

Functional classification of the 23-genes corresponding to the predictive 25 probe sets

Class Gene symbol Gene name Probe sets

Chromatin remodeling SMARCA2 SWI/SNF related regulator of chromatin 206542_s_at, 206544_x_at

SMARCD3 SWI/SNF related regulator of chromatin 204099_at

Expression regulation ITGB4BP Similar to eIF-6, B4 integrin interacter 210213_s_at

ERF Ets2 repressor factor 203643_at

ACO1 Aconitase 1 207071_s_at

PRPF38B PRP38 pre-mRNA processing factor 38 218040_at

Ubiquitin regulation USP25 Ubiquitin specific peptidase 25 220419_s_at

USP12 Ubiquitin specific peptidase 12 213327_s_at

SENP6 SUMO1/sentrin specific peptidase 6 212319_at

Cell motility, adhesion ELMO1 Engulfment and cell motility 1 204513_s_at

ENTPD1 Engulfment and cell motility 1 209473_at

GNE Glucosamine (UDP-N-acetyl)-2-epimerase 205042_at

Drug metabolism NNMT Nicotinamide N-methyltransferase 202237_at

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP) 209994_s_at

Signal transduction SHC1 Src homology 2 domain containing transforming protein 1 214853_s_at

TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A 207643_s_at

PIP5K1B Phosphatidylinositol-4-phosphate 5-kinase, type I, beta 205632_at

Cell proliferation TIMP1 Metallopeptidase inhibitor 1 201666_at

Miscellaneous FLJ32679 Golgin-like hypothetical protein 22149_x_at

CG018 NEDD4 binding protein 2-like 1 213375_s_at

TRIM68 Tripartite motif-containing 68 219405_at

UTRN Utrophin 213022_s_at
213023_at

GNGT2 G protein, gamma transducing activity
Polypeptide 2

217629_at
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Table 4

Performance of the 23-gene prediction profile on the validation set

Predicted

pCR RD Total

Observed

 pCR 4 1 5

 RD 0 8 8

 Total 4 9 13

Percentage Numbers 95% CI

Sensitivity 80 4/5 28–99

Specificity 100 8/8 63–100

Accuracy 92 12/13 64–100

PPV 100 4/4 40–100

NPV 89 8/9 52–100

PPV positive predictive value; NPV negative predictive value
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Table 5

Tabulation of pCR and recurrence events within the three groups resulting from hierarchical clustering of the
50 basal-like tumors with the 23-gene prediction profile

Cluster group pCR Recurrence

No. % No. %

pCR 18 62 7 24

RD 0 0 1 7

High recurrence 3 14 6 86
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