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Linking microbial community structure to
b-glucosidic function in soil aggregates
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To link microbial community 16S structure to a measured function in a natural soil, we have
scaled both DNA and b-glucosidase assays down to a volume of soil that may approach a unique
microbial community. b-Glucosidase activity was assayed in 450 individual aggregates, which were
then sorted into classes of high or low activities, from which groups of 10 or 11 aggregates
were identified and grouped for DNA extraction and pyrosequencing. Tandem assays of ATP were
conducted for each aggregate in order to normalize these small groups of aggregates for biomass
size. In spite of there being no significant differences in the richness or diversity of the microbial
communities associated with high b-glucosidase activities compared with the communities
associated with low b-glucosidase communities, several analyses of variance clearly show that
the communities of these two groups differ. The separation of these groups is partially driven by the
differential abundances of members of the Chitinophagaceae family. It may be observed that
functional differences in otherwise similar soil aggregates can be largely attributed to differences in
resource availability, rather than to the presence or absence of particular taxonomic groups.
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Introduction

The composition of soil microbial biomass is
overwhelmingly diverse, up to 107 different species
in a gram of soil (Gans et al., 2005), and these
remarkable assemblages mediate a vast number of
ecosystem processes associated with nutrient
cycling, C dynamics and soil health. Contemporary
high-throughput sequencing techniques are rapidly
increasing our knowledge of what organisms live in
soil, and their phylogenetic diversity. However,
directly linking this information, essentially
‘census’ data, with actual ecosystem processes is
needed in order to understand how interacting
microbial communities evolve and function
(Morales and Holben, 2011). For natural microbial
communities, we do not yet know the relationship
between diversity and function, because it has not
been analyzed at an appropriate spatial scale.
Until recently, identifying such structure–function
linkages in soil has been hindered by the amount
of biomass needed for experiments; the high-
throughput sequencing of soil metagenomes has

been done on quantities of soil too large to consider
as a defined habitat for a deconvolvable microbial
community.

Unlike more well-mixed or constrained habitats,
such as termite guts or microbial mats, the
3-dimensional nature of soil, presenting chemical
and physical heterogeneities and barriers, makes it
difficult to assign the microbes, reported in a
metagenome, to particular ecological roles. Addi-
tionally, microbial census data, such as 16S
sequences, are analyzed in the context of existing
sequence databases, and soils are notoriously
home to a wealth of uncultured or unclassified
microorganisms (Dokic et al., 2010). Shotgun meta-
genomes seek to provide greater genetic information
to yield functional inferences, but their usefulness is
often hampered by the challenges associated with
(1) de novo assembly of short read sequence data
from a complex assemblage, (2) the availability of
too few appropriate reference genomes to which
metagenome fragments can be aligned and (3) poor
accuracy of binning of the sequenced fragments
into appropriate groups or potential operational
taxonomic units (OTUs) that reflect species within
the assemblage (Wooley et al., 2010).

Further confusing our ability to understand the
microbial communities in natural systems, such as
soil, is the fact that what the community is doing is
likely far more complex than which species are
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present, based on the likely presence of functional
redundancies within the community and metabolic
versatility within single species. Unfortunately,
classical soil enzyme assays, though simple to
conduct, reveal the potential function of a sample,
not the actual expressed function in situ. Efforts to
study the in situ activities in the soil by directly
analyzing mRNAs have proven difficult, given the
ephemeral nature of mRNA and the abundance of
nucleases in soil (Cai et al., 2006; Pietramellara
et al., 2009). Additionally, both enzyme assays and
the mRNA analyses are limited; most enzyme assays
will probably be reflective of multiple genes and
organisms, and mRNA analyses are dependent on a
priori sequence knowledge (Bailey et al., 2010;
McGrath et al., 2010; Wang et al., 2011). Finally,
both analyses have traditionally been conducted
on relatively large sample sizes, compared with
the scale at which microorganisms interact as a
community, the latter of which would better able
researchers to draw correlations (that is, (Kumaresan
et al., 2011)) between the community structure and
function.

The main objective of our research was to link
microbial community structure to a measured func-
tion in a natural soil, at a scale approaching a
defined habitat. We used b-glucosidase activity as a
target function; it is a likely rate-limiting step in
cellulose decomposition (van Zyl et al., 2010),
and we have successfully analyzed this enzyme
sequentially with measurements of total soil ATP as
a surrogate for microbial biomass (Bailey et al.,
2012). These biochemical assays were performed on
individual soil aggregates, naturally occurring
‘clumps’ of soil less than a millimeter in diameter,
to constrain the microbial community to a scale
more representative of a community capable of
interacting. These aggregates were then grouped
according to enzyme activity level and the DNA
extracted; combining similarly active aggregates was
necessary to recover sufficient DNA for pyrosequen-
cing. In these grouped samples, we observed that
although the diversities of the microbial commu-
nities were similar, there were statistically signifi-
cant differences in community structure between
the high and low b-glucosidase activity aggregate
groups.

Materials and methods

Soils
Soil was collected from a grassland field at the
United States Department of Agriculture Conserva-
tion Field, near Pullman, Washington (fine-silty,
mixed, superactive, mesic Pachic Ultic Haploxe-
roll). Macroaggregates ranging in size from 841 to
1000 mm diameter were collected by dry-sieving
as described elsewhere (Bailey et al., 2012).
Nuclease-free gloves were worn while the soil
was gently crumbled over a pair of stacked sieves

(841 mm and 1000 mm), and 450 field-moist aggre-
gates (13% w/w) were collected using sterile,
fine-point tweezers. Mass was determined for each
macroaggregate on a AX105DR Delta Range micro-
balance (Mettler-Toledo, Greifensee, Switzerland),
and the macroaggregate was then transferred to a
well in a 96-well plate. Aggregate-free wells were
randomly distributed on each plate as controls.

Biochemical assays
b-Glucosidase (EC: 3.2.1.21) and ATP were analyzed
sequentially on each aggregate (Bailey et al., 2012).
Briefly, the b-glucosidase assay (modified from
(Saiya-Cork et al., 2002)) was scaled down to
125 ml: 100 ml of acetate buffer (50 mM, pH 5.0) was
added to each macroaggregate and the plate agitated.
Twenty-five microliters of 4-methylumbelliferyl
b-D-glucopyranoside (200mM) was added to each well,
and the plates incubated at 22 1C in the dark for 1 h.
The plates were then centrifuged (10 000� g) for 2 min,
the supernatant transferred into a fresh 96-well plate,
and 5ml NaOH (1.0 M) added to stop the reaction.
Methylumbelliferone fluorescence was measured
immediately, using a Wallac Victor 2 1420 Multilabel
Counter (PerkinElmer, Waltham, MA, USA). The
pellets from this procedure were kept on ice for the
ATP assay.

ATP was assayed with the BacTiter kit (Promega
Inc, Madison, WI, USA). Soil pellets were resus-
pended in 100 ml EDTA (20 mM, pH 7.5) and
sonicated for 15 min (Branson Ultrasonics Corp,
Danbury, CT, USA). The plate was centrifuged
(10 000� g) for 2 min, and 100 ml of supernatant
transferred into a fresh 96-well plate. In a darkened
room, 5ml of MgCl2 (0.4 M) and 100 ml ATP assay
reagent were added, the plates shaken gently
for 5 min, and luminescence wasmeasured on
the Wallac Victor 2 1420 Multilabel Counter. In
preparation for DNA extraction, the plates were then
centrifuged, the supernatant removed and the
pellets frozen at � 80 1C.

Grouping of aggregates and DNA extraction
In order to collect enough DNA for 16S pyrosequen-
cing, individual aggregates had to be pooled.
The aggregates were sorted by b-glucosidase activity,
and aggregates with b-glucosidase activities within 1
s.d. of the mean b-glucosidase activity for the whole
set were discarded. The remaining aggregates were
randomly sorted into five groups of ‘high activity’
aggregates (HAP) and seven groups of ‘low activity’
aggregates (LAP). The total ATP measured in each
aggregate was used as a surrogate for biomass to
adjust the groups, such that each group had
approximately the same total ATP content. Thus,
the final groups were composed of 8–10 aggregates
for the low activity class, and 5 groups of 11
aggregates for the high activity class (Table 1). Each
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group, whether in the high or low activity class, had
approximately the same total ATP content (69 fmol).

DNA was extracted from the aggregates using the
PowerSoil DNA Isolation Kit (MoBio Laboratories,
Carlsbad, CA, USA). The selected aggregates
of a group were resuspended in equal portions of
the PowerSoil buffer for a single reaction. The soil-
lysis buffer suspension was then returned to the
reaction tube and the kit protocol followed for soil
DNA isolation.

Pyrosequencing
The V4 region of the 16S rRNA gene was amplified
and sequenced at the Research and Testing Labora-
tory (Lubbock, TX, USA). Purified DNA from the 12
grouped samples was barcoded and amplified using
primers 515F (50-GTGCCAGCMGCCGCGGTAA-30)
and 806R (50-GGACTACVSGGGTATCTAAT-30), and
sequenced from the 50 end of the amplicon (from the
barcoded 515F primer) using Roche 454 FLX
Titanium reagents (Branford, CT, USA). The
sequence data were processed and OTUs identified
using mothur v.1.23 (Schloss et al., 2009). Briefly,

sequences with ambiguous bases or homopolymers
greater than 8 bases were excluded, as were
sequences that did not align to the V4 region of the
Silva 16S rDNA reference alignment ((Pruesse et al.,
2007); http://www.arb-silva.de/), or that were iden-
tified as chimeric by UCHIME (http://drive5.com/
uchime/). The remaining sequences were aligned to
the Silva 16S rDNA reference alignment, assigned
to OTUs at X97% identity (with furthest neighbor
linkage), and taxonomy assigned using the Ribosomal
Database Project reference taxonomy ((Cole et al.,
2009); http://rdp.cme.msu.edu/index.jsp). After pro-
cessing the data for quality, the 12 grouped samples
each contained between 33 and 739 sequences with a
median length of 222 nucleotides. Randomly subsam-
pling 350 sequences from each grouped sample
eliminated two of the low activity samples, and the
remaining five low-activity and five high-activity
samples were retained for analysis.

Statistical analyses
Alpha and beta diversities: within each activity-
level group, we quantified alpha and beta diversities

Table 1 Sorting of aggregates into groups for DNA extraction

Low activity aggregate groups

LAP1 LAP2 LAP3 LAP4 LAP5 LAP6 LAP7

b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP

32.2 7.2 27.9 7.3 8.4 7.8 22.8 8.0 32.4 6.7 35.4 4.7 22.6 7.3
23.8 7.5 29.7 9.0 27.7 5.0 26.3 4.7 19.4 6.5 26.4 5.4 3.6 9.9
35.6 8.5 26.5 8.2 22.7 6.5 27.6 5.2 22.1 4.0 36.7 5.6 24.0 4.4
16.1 4.7 23.5 6.2 8.4 4.2 25.5 6.0 28.2 5.6 30.2 6.6 5.5 9.3
27.8 6.2 26.7 4.8 32.4 7.0 23.7 7.8 35.6 7.7 5.6 9.3 24.8 6.5
19.4 8.8 26.2 6.7 36.9 7.0 16.0 5.8 24.1 7.9 18.5 6.7 28.8 5.1
28.0 4.4 37.9 7.2 22.9 7.8 34.1 7.4 29.8 5.1 3.4 8.1 35.5 8.7
31.4 6.9 26.7 7.2 28.6 7.9 5.8 8.9 21.7 6.3 29.1 7.0 29.3 6.2
35.2 7.7 8.0 8.3 7.4 9.3 15.9 7.4 18.5 6.8 5.1 9.3
28.4 7.6 31.4 5.8 28.5 6.1 24.5 5.9 3.3 5.7 34.9 5.7

Total ATP 69.5 70.7 68.6 67.3 62.3 68.6 57.4

High activity aggregate groups

HAP1 HAP2 HAP3 HAP4 HAP5

b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP b-Gluc ATP

150.2 6.4 128.3 4.5 144.4 7.3 132.2 5.0 123.3 4.8
164.7 5.4 125.3 5.2 144.1 4.9 113.8 5.1 117.2 6.5
171.0 5.2 122.7 7.5 124.1 6.5 147.3 7.0 119.9 6.6
120.6 7.3 120.9 6.3 112.4 6.6 187.8 9.0 111.7 6.8
139.3 8.4 127.7 6.2 117.3 4.7 147.4 5.9 140.4 6.2
116.7 6.3 151.8 5.8 118.3 8.6 132.4 6.7 142.6 8.6
126.9 5.7 203.6 8.0 134.7 4.8 174.0 4.3 120.0 6.9
138.0 6.5 137.8 7.4 115.1 4.0 179.8 7.3 119.9 7.0
118.8 7.6 231.8 6.2 123.7 7.8 292.6 7.2 119.5 5.1
173.6 5.1 143.2 6.2 127.3 5.0 138.8 5.3 132.1 5.1
114.1 5.6 118.9 6.2 167.0 7.5 165.8 7.6 122.1 6.3

Total ATP 69.5 69.5 67.7 70.3 69.8

b-Gluc, b-glucosidase in mM methylumbelliferone h� 1; ATP is fmole.
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using the ‘numbers equivalents’ framework
(Jost, 2007); alpha diversity measures the diversity
of a given community and beta diversity measures
how variable composition is among communities.
Within this framework the parameter q defines the
‘diversity order,’ which determines the degree to
which rare or abundant OTUs are emphasized in
the calculation of alpha and beta diversities. As q
increases from 0 to 2, increasing weight is placed on
abundant OTUs. When q¼ 1, equal weights are
given to rare and abundant OTUs (Jost, 2007). We
use this framework to evaluate how between-
activity-level differences in alpha and beta diversity
change as abundant OTUs are increasingly empha-
sized. Following Jost (2007), alpha diversity for a
single assemblage is calculated as:

qDak ¼
XS

i¼1

p
q
ik

 !1=ð1� qÞ

Where p
q
i is the relative abundance of the ith OTU in

assemblage k, which contains S OTUs. To compare
alpha diversity between-activity-level groups, we
calculated the mean and s.e.of alpha diversity.
Calculation of the mean is described below. For a
group with N assemblages, s.e. was found as the
s.d. across all N values of qDak divided by the square
root of N.

To calculate beta diversity for each activity-level
group, we used Whittaker’s multiplicative formula,
where beta diversity (qDb) is regional (that is,
gamma) diversity (qDg) divided by mean alpha
diversity (qDa). Prior to analysis, all assemblages
were rarefied to contain 350 sequences, such that all
assemblages have equal weight in the calculation of
mean alpha diversity. In turn, mean alpha diversity
was found as:

qDa¼
1

N

XN
k¼1

XS

i¼1

p
q
ik

 !1=ð1� qÞ

Where N is the number of assemblages (Jost( 2007)).
For each activity-level group, gamma diversity was
found as:

qDg¼
XStot

j¼1

P
q
j

 !1=ð1� qÞ

Where p
q
j is the relative abundance of the jth OTU

across all assemblages within a group, and Stot is the
total number of OTUs observed across all assem-
blages within a group. Because all communities
contained the same number of sequences, this
formulation of gamma diversity is identical to that
used in Jost (2007).

Greater variation in community composition will
be manifest in higher levels of beta diversity
(Anderson et al., 2011). The magnitude of beta
diversity within an activity-level group is related to
the number of OTU combinations that give rise to
the observed activity level. Lower beta diversity

suggests that community composition is more
constrained, such that there are fewer OTU combi-
nations that result in a given level of activity. By
comparing beta diversity between the activity-level
groups, we can infer whether a change in function is
associated with a change in the degree to which
community composition is constrained. Further, we
compare the difference in beta diversity across
diversity orders. Doing so allows us to evaluate
whether there is a between-group difference in the
degree of constraint and whether this ‘constraint
difference’ depends on the degree to which rare
versus abundant OTUs are emphasized. For exam-
ple, if beta diversity in the high-activity group drops
below the beta diversity in the low-activity group as
diversity order increases, it would provide two
inferences: (i) no difference in beta diversity at low
diversity orders suggests there is no difference in the
number of rare OTU combinations that give rise to
high versus low activity levels; and (ii) lower beta
diversity in the high activity group at high diversity
orders suggests there are fewer combinations of
abundant OTUs that result in high activity (and
more combinations of abundant OTUs that result in
low function).

Compositional dissimilarity within groups: the
above described approach provides a single beta
diversity value for each activity-level group at each
diversity order. This does not allow for significance
tests. To compare the level of beta diversity within
the low activity group to the beta diversity within
the high activity group, we calculated compositional
dissimilarity (1-overlap) for all community pairwise
comparisons within each activity level group. This
was done for the two extremes of the diversity order
spectrum (q¼ 0 and q¼ 2). To do so, we used
equation 23 in Jost (2007) as implemented in the R
function ‘sim.table’ in package ‘vegetarian’. For each
diversity order, the dissimilarities were compared
across groups using the homogeneity of group
dispersions test (Anderson, 2006) (R function
‘betadisper’ in package ‘vegan’, followed byanalysis
of variance.).

Community membership and structure compar-
ison: the microbial community membership and
structure of the high and low activity samples were
compared using analysis of molecular variance, as
implemented in mothur. Identification of differen-
tially represented OTUs was done with Metastats
(White et al., 2009). Non-metric multidimensional
scaling was performed in mothur (‘nmds’ com-
mand), using the Bray-Curtis distances between
samples, and the resulting ordination visualized in
MATLAB (MathWorks Inc., Natick, MA, USA).

Results

b-Glucosidase activity assay and binning
For each aggregate, analysis of b-glucosidase activity
was followed by an ATP assay as an estimate of
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microbial biomass. When the b-glucosidase and
ATP measurements were correlated, there was no
relationship in single aggregates (Figure 1; R2 was
0.0036). None of the aggregates assayed had
b-glucosidase activities below our fluorescence
detection; across all aggregates the mean b-glucosi-
dase activity was 74.6 mM methylumbelliferone h�1

per aggregate, and the s.d. was 36.2 mM methylum-
belliferone h� 1 per aggregate (see Supplementary
Figure 1). We used these data to identify the
aggregates with native b-glucosidase activities more
than 1 s.d. above or below the mean. By this
definition, of the 450 aggregates assayed, there were
68 aggregates that classified as ‘low activity,’ and 55
aggregates that classified as ‘high activity.’ To
produce enough material for DNA extraction and
molecular analysis, aggregates were then pooled,
such that each pool had approximately the same
combined ATP content, 69 fmol (s.d., 3.9 fmol;
Table 1).

The DNA from these high- and low-activity
pooled samples was extracted and the bacterial
communities profiled by sequencing the V4 region
of the 16S rRNA gene. The 12 pooled samples had
an average of 432 high-quality sequence reads
per sample, but were subsampled to 350 sequences
per sample, to avoid bias due to differences in
sequencing depth. This subsampling eliminated two
low-activity samples with the lowest number of
sequences (Table 2). From the 3500 sequences from
the remaining 10 samples, 706 OTUs defined at 97%
similarity were identified (see Materials and meth-
ods), with each sample containing on average
143 OTUs (±15). The ranked, relative abundance
of the 706 OTUs, show a typical pattern found in
microbial communities, with fewer than 10 OTUs
found in 41% relative abundance and a large
number of OTUs represented by only one or two
sequences (Figure 2).

Alpha and beta diversity of the two activity-level
groups
To examine the influence of changing the emphasis
from rare to abundant OTUs, we examined alpha
and beta diversity over a range of diversity
orders. Alpha diversity describes the diversity of
the community members within a single sample.
Across all diversity orders (see Methods), there
was no significant difference in alpha diversity
between the two activity-level groups (Figure 3a).
Beta diversity was used to describe the similarities
and differences in community structures found
within pools from the same activity group and also
between-activity-level groups. When the diversity
order was set to zero, that is, emphasizing rare
members, the two groups had effectively indistin-
guishable levels of beta diversity (Figure 3b), and
this was confirmed using the homogeneity of group
dispersions test (F1,8¼ 0.05, P¼ 0.8). With increasing
diversity order, that is, increasing emphasis on

abundant members, beta diversity declined in
both groups, and beta diversity of the high-activity
group dropped below that of the low-activity group
(Figure 3b). This difference was nonsignificant
per the homogeneity of group dispersions test
(F1,8¼ 1.75, P¼ 0.2).

Community structure of the activity-level groups
We examined the community structure of the
two activity-level groups to determine whether
there were differentially represented taxonomic
groups, which may account for their difference in
b-glucosidase activity. A nonparametric analysis
of variance on distances between the samples
calculated using Bray–Curtis revealed a significant
difference between the groups (Po1e-05); the
phylogeny-based method UniFrac gave a similar
result (unweighted P¼ 0.00710; weighted
Po0.00010), as did analyses using additional
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Figure 1 b-Glucosidase activities and ATP content in 450
macroaggregates.

Table 2 ATP and b-glucosidase measurements for the activity-
level groups and their pyrosequencing results

Sample
ID

Total
ATP

(fmol)

b-Glucosidase
activity
(median
mmol h�1)

Total
no. of

sequences

No. of
sequences
analyzed

No. of
OTUsa

HAP1 69.5 138 491 350 147
HAP2 69.5 128 739 350 129
HAP3 67.7 124 486 350 142
HAP4 70.3 147 358 350 147
HAP5 69.8 120 634 350 175
LAP1b 69.5 28 33 — ND
LAP2 70.7 27 495 350 144
LAP3 68.6 25 567 350 141
LAP4 67.3 24 369 350 153
LAP5 62.3 23 416 350 116
LAP6 68.6 28 366 350 136
LAP7b 57.4 24 231 — ND

Abbreviations: OTUs, operational taxonomic units, ND, not
determined.
aOTUs identified using furthest neighbor linkage clustering at
X97% identity.
bItalicized samples LAP1 and LAP7 were eliminated from further
study because they contained fewer than the minimum number of
sequences we used in our analyses.
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diversity metrics for community membership
and structure (see Supplementary Data Table 2).
This separation of the high and low activity groups
was significantly correlated with the b-glucosidase
activity (P¼ 0.000344), whereas there was no
significant correlation based on ATP content,
and only marginal correlation with the total mass
of the samples (see Supplementary Data Tables 1
and 3, and Figure 2).

The 15 most abundant OTUs account for 1470 of
the 3500 (42%) sequences analyzed; Figure 4 shows
the relative abundance of these 15 OTUs in the 10
samples, and lists their taxonomic assignments. Two
OTUs were identified as significantly differentially
abundant between the high and low activity groups:
OTU1 was identified as a member of the family
Chitinophagaceae and OTU3 was identified as a
member of the genus Gemmatimonas. Figure 5
shows the separation of the two activity-level groups
based on community structure, visualized in an
ordination plot with the differential abundance of
the Chitinophagaceae (OTU1; qo1e� 06) reflected
in the relative size of the data points. Not shown in
Figure 5 is OTU3, which was somewhat more
abundant in the low activity samples (q¼ 0.014).

Discussion

It has been known for some time, that the smaller the
sample of soil from which DNA is extracted, the
more variable the community profile between
samples (Ellingsoe and Johnsen, 2002). This was
perceived as a hindrance to a global understanding
of community structure for a soil, however, it also
suggested that heterogeneities in community com-
position may occur at fine spatial scales in soils.
The research discussed herein uses aggregates less
than 1 mm in diameter. One study has suggested that
there may be resource gradients operating at this
scale that may affect microbial community struc-
tures in soils, specifically, roots and residues
were measured to have zones of influence less than
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Figure 2 The rank abundance of the 706 OTUs identified,
plotted as a histogram (a) and the traditional Whittaker plot (b).
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diversity orders; alpha diversity is therefore not significantly
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even at diversity order 2.
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2–3 mm (Marschner et al., 2012). Thus, it is
conceivable that two irregularly shaped aggregates
less than 1 mm in diameter and separated by
macropores, could host distinct microbial commu-
nities, separated both physically and chemically.

In previous work, we have extracted and
sequenced DNA from individual aggregates (Bailey
et al., 2013), which depended on the use of whole-
genome amplification to provide sufficient DNA
for pyrosequencing. In the work presented herein,
we chose to isolate a very high number (450) of
individual aggregates and used the biomass-

normalized distribution of b-glucosidase activity to
identify small groups of aggregates with signifi-
cantly low or significantly high activity, which
when pooled would provide sufficient biomass for
direct extraction and sequencing of DNA.

The inclusion of ATP in our analyses was an
attempt to account for the patchy distribution of soil
microorganisms (Pallud et al., 2004), and observed
at micron scales in rhizosphere systems (Dandurand
et al., 1997). The ATP content would identify
aggregates with little or no biomass and that then
would be expected to contain minimal b-glucosi-
dase activities; no aggregates in our study fell into
such a class. We were also seeking to identify the
opposite condition; aggregates with very high ATP
contents (and hence high microbial population size)
and consequently high b-glucosidase activities
because of being very densely populated, which
did not occur. Given that the high activity aggregates
have Bfivefold (on average) greater b-glucosidase
activities than the low activity aggregates and
the aggregates were normalized for active biomass
size, our observations suggest that there may be a
selection pressure to expand the b-glucosidase
competent microorganisms in certain aggregates.
This pressure may have been the presence of
particular cellulosic substrates derived from organic
residues and roots. Residue-C may be incorporated
by microbial biomass more than C derived from
roots (Marschner et al., 2012), suggesting that
colocation of microbes with solid substrate within
a niche is important to C dynamics, in contrast to
microbial assimilation of root-C, which may occur as
soluble or diffusible compounds.
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Figure 4 Heatmap of the relative abundance of the 15 most abundant OTUs. Significantly differentially represented OTUs are indicated
with an arrow.
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Figure 5 Non-metric multidimensional scaling (NMDS) ordina-
tion of the community structures calculated with Bray–Curtis
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low-activity (red) samples are scaled to reflect the abundance of
the significantly differentially represented OTU1 (qo1e—06),
identified as a member of the family Chitinophagaceae. The
differential abundance of OTU3 (q¼0.014) is not shown; this
OTU was somewhat more abundant in the low activity samples.

Community structure and function in aggregates
VL Bailey et al

2050

The ISME Journal



The pyrosequencing yielded a total of just 5185
sequences, which may reflect the low biomass
present in the aggregate groups, as well as the
challenges associated with extracting high quality
DNA from soil. However, we routinely include
archived DNA samples from whole soil as well as
purified genomic DNA from bacterial isolates as
controls, and randomize the samples in the plates
sent for sequencing. These control samples
(four each of the whole soil and genomic DNA) also
yielded relatively low numbers of sequences (data
not shown), but analysis of the taxa present was
consistent among the samples and with the expected
results; thus these controls served to mitigate
concerns regarding poor DNA quality from our high-
and low-activity aggregate groups as the cause of
low sequence yield. Furthermore, upon classifying
the pooled sample sequences into 706 total OTUs
and assigning each to an appropriate taxon, we
observed that the most abundant detected phyla
were typical of most soils, including Bacteroidetes,
Gemmatomonadetes, Verrucomicrobia, Actinobac-
teria and Proteobacteria.

Among the OTUs in our high- and low-activity
samples, and at the scale interrogated, we found no
link between activity level and alpha diversity
regardless of diversity order, suggesting that in this
system, function is unrelated to the number of rare
species and is unrelated to the number of dominant
species. We also found no significant relationship
between activity level and beta diversity irrespective
of diversity order. Although no significant
differences were observed, as diversity order
increased, high-activity beta diversity did drop
below beta diversity of the low-activity group. This
trend suggests that, compared with low activity,
there may be fewer combinations of abundant OTUs
that result in high activity. To clarify whether the
trend is biologically meaningful, it would be useful
to increase statistical power by using a larger
number of samples per activity-level group. The
evidence at hand, however, suggests that in our
study system there is no relationship between
bacterial diversity and ecosystem function, regard-
less of how bacterial diversity is quantified; expec-
tations are that reducing the scale of a study should
enhance our ability to detect linkages between the
structure and function (Naeem et al., 2012). We did
observe separation of our activity groups, however,
the drivers of separation were more subtle than
community membership.

Our statistical analyses of the bacterial commu-
nity present in the high- and low-activity groups
revealed that there were differences in the bacterial
community structures. Of particular note was the
differential abundance of an OTU (OTU1) identified
as a member of the family Chitinophagaceae,
which was more abundant in the high activity
samples. The Chitinophagaceae are members of
the phyla Bacteroidetes, which are ubiquitous in
soil (Lauber et al., 2009). Currently, two species from

the Chitinophagaceae have complete genomic
information available: Chitinophaga pinensis and
Niastella koreensis, both sequenced as part of the
Genomic Encyclopedia of Bacteria and Archaea
program (http://img.jgi.doe.gov/cgi-bin/geba/main.-
cgi; (Wu et al., 2009)). These species are both aerobic
organisms isolated from soil samples, and encode
several proteins predicted to have b-glucosidase
activity (EC: 3.2.1.21). It is possible that cellulytic
organisms are latent in aggregates that lack the
appropriate substrate or resources for cellulytic
activities, but that the presence of substrate or
resources allows the members to flourish. This
would explain the observation that the differential
abundance of OTU1, not its absolute presence
or absence, drives the separation of our two groups
of aggregates. This hypothesis is also consistent with
our observation that b-glucosidase activity had no
correlation with total ATP in an aggregate.

There has been evidence that the microbial
communities located on the surface of aggregates
differ from those in the interior (Ranjard et al., 2000;
Mummey and Stahl, 2004), however. the approaches
used to determine this relied on surface washing
and DNA extraction from aggregate size fractions,
rather than an approach using individual aggregates.
To examine the soil microbial communities at the
pore scale, 13C-labeled substrates were added to soils
at various matric potentials, and the incorporation
of the label to phospholipid fatty acids was then
assessed (Ruamps et al., 2011). This was the first
clear evidence that there is a variation in microbial
community structure at the pore-scale and that it is
not entirely random; again, however, this study
analyzed the fatty acid profile of aggregate size
fractions, rather than individuals (Ruamps et al.,
2011). While significantly advancing our under-
standing of microbial community structure at the
pore scale, these researchers remained unable to
deconvolve the contributions of microbial commu-
nity structure and soil physical structure to C
metabolism in soils. Our findings of substantial
community overlap in very small groups of aggre-
gates sorted by activities, suggests that a third factor
may contribute, and that the presence of resources
that permit enhanced activities may be important
as well.

It is suggested that fungi are crucial to the
development of soil pore structure and the self-
organization of microbial communities in soils
(Crawford et al., 2012) and in soil C dynamics
(Bailey et al., 2002). However, given our constraints
on the DNA yield from the aggregate groups, and the
knowledge that fungi are not uniquely associated
with the enzyme assayed herein, b-glucosidase, we
pyrosequenced only 16S rRNA genes, which does
not capture fungal sequences. Assay of the fungal
community would be informative, particularly in a
study of aggregates of broader size ranges, as fungi
and bacteria may preferentially dominate different
size classes of aggregates, with bacterial biomass
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dominating in aggregates less than 2 mm, and fungal
biomass predominantly associated with aggregates
greater than 2 mm (Jiang et al., 2011). It has also been
suggested experimentally that bacterial diversity is
more significant than fungal diversity in the silt and
clay particulate fractions (compared with coarse
sands 4250 mm) (Poll et al., 2003), such as those that
compose the macroaggregates in this study. Never-
theless, accounting for the fungal community and
their possible contribution to target soil processes
will be an integral part of future studies.

The sheer diversity and abundance of microorgan-
isms suggests that significant functional redundancy
occurs in soils (Girvan et al., 2005). Biochemical
functionality has been shown to return to a pre
disturbance state before community structure does
likewise (Berga et al., 2012), and in many studies,
community structure never returns to the original
state. This begs questions as to the scale at which
functional redundancy is active. The observations
herein, would suggest that the immediate local
condition, that is, the availability of substrate
and resources, is exploited by organisms that are
present, but that the function assayed, b-glucosidase
activity, was predominantly expressed by a specific
taxonomic group.

Conclusions

In spite of there being no significant differences
in the richness or diversity of the microbial
communities associated with high b-glucosidase
activities, compared with the communities asso-
ciated with low b-glucosidase activities, several
analyses of variance clearly show that the commu-
nities of these two groups differ. The separation of
these groups is partially driven by the differential
abundances of members of the Chitinophagaceae
family. Interestingly, this separation is based on
differential abundances, not presence or absence of
the OTUs, suggesting that either closely related
strains that are not differentiable via 16S sequencing
are functionally different, or that the presence of
appropriate substrates in the high activity macro-
aggregates enhances the abundance and activity of
competent organisms, which may be present but not
stimulated in the low activity macroaggregates.
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