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Defining the functional status of host-associated microbial ecosystems has proven challenging
owing to the vast number of predicted genes within the microbiome and relatively poor
understanding of community dynamics and community–host interaction. Metabolomic approaches,
in which a large number of small molecule metabolites can be defined in a biological sample, offer a
promising avenue to ‘fingerprint’ microbiota functional status. Here, we examined the effects of the
human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an
optimized ultra performance liquid chromatography–mass spectrometry-based method. Differences
between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific
aspects of the microbiota’s metabolomic contribution, consistent with distinct microbial composi-
tions. Comparison of microbiota composition and metabolome of mice humanized with different
human donors revealed that the vast majority of metabolomic features observed in donor samples
are produced in the corresponding HUM mice, and individual-specific features suggest ‘persona-
lized’ aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet
resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue
for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using
a defined model microbiota consisting of one or two species, we show that simplified com-
munities can drive major changes in the host metabolomic profile. Our results demonstrate that
metabolomics constitutes a powerful avenue for functional characterization of the intestinal
microbiota and its interaction with the host.
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Introduction

The metabolic capacity of the human body is a
product of resident microbial communities integrated
with human cells. This view has generated an
increasing interest in defining the effect of the
resident microbiota on the set of small molecule
metabolites associated with a host. A frontier in
intestinal microbiota studies is to extend our under-
standing of host-resident microbes beyond microbial
species or genes, to link microbial community

structures with microbial functions that could impact
human health. Metabolomics has emerged as a
technique that allows the functional status of host–
microbial integration to be defined in biological
fluids and tissues, such as urine, blood and feces.
Metabolites originate from a complex network of
chemical and biochemical pathways and offer a
chemical fingerprint of microbiota functional status.
Although confirming the identity of individual
small molecules is currently challenging, when
established, this information offers insight into the
chemical messengers that mediate microbe–microbe
and microbe–host interactions. Ultra performance
liquid chromatography (UPLC) coupled with high-
resolution mass spectrometry (MS) allows reprodu-
cible measurements of a wide range of metabolites in
a complex sample.
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Mice provide an experimentally tractable model
to investigate how resident microbial communities
impact small molecule metabolites present in host
biofluids. Comparisons of conventional mice that
harbor a complex microbiota with germ-free (GF)
mice that lack a microbiota have established the
profound microbial impact on host metabolomic
profile (Claus et al., 2008; Swann et al., 2011a).
Manipulation of microbiota composition via oral
antibiotic treatment, cohousing mice with different
microbiotas, and creation of simplified microbiotas
in ex-GF (gnotobiotic) mice (Yap et al., 2008) have
illustrated the dynamic nature of microbial host
metabolomic integration to influence metabolomic
signatures (Goodwin et al., 1994). Additional experi-
mental manipulation of external factors known to
modify the gut microbiota (for example, dietary
change and probiotic treatment) constitute important
first steps toward elucidating the mechanisms that
drive alterations in microbe-dependent metabolomic
phenotypes (Marchesi et al., 2007; Holmes et al.,
2008; Kessner et al., 2008; Wikoff et al., 2009).

Although the distal gut microbiota of mice and
humans harbor the same bacterial phyla, 85% of
genera and microbial species found in mice are not
seen in humans (Ley et al., 2005). HUM mice (ex-GF
mice colonized with a human microbiota) are
emerging as a powerful model for studying human-
relevant microbes in a controlled experimental
setting (Mallett et al., 1987; Bowey et al., 2003). Here
we use HUM mice as a model for studying metabo-
lomic changes within urine and feces. To define
microbe-related signatures in the urine and feces of
this mouse model, we have optimized a nontargeted
metabolomics UPLC-MS method. We have applied
this method to samples from HUM and conventional
mice, demonstrating that the mice harboring the
human microbiota express a set of metabolites
distinct from that of their mouse microbiota-harbor-
ing counterparts. We have established a significant
overlap in microbe-dependent metabolomes of mice
humanized with different donor samples. Coloniza-
tion of GF mice with one or two microbial species
shows that simple models of the microbiota can drive
major changes in host metabolomic profile, although
distinct from the impact exerted by a complex
microbiota. Our results demonstrate that the applica-
tion of metabolomic analysis to HUM mice constitu-
tes a powerful approach for characterization of
intestinal microbiota functional status.

Materials and methods

Mice
GF Swiss-Webster (SW) and C57BL/6J and conven-
tional (RF, Taconic Inc., Cambridge city, IN, USA)
SW mice were maintained as previously described
(Sonnenburg et al., 2010). Humanization was
performed using human fecal samples obtained
from healthy anonymous donors. Frozen feces were

thawed by dilution in an equal volume of pre-
reduced phosphate-buffered saline in anerobic con-
ditions and 0.2 ml non-settling material was gavaged
into GF-recipient mice. Mice were fed standard diet
(Purina LabDiet 5K67) or polysaccharide-deficient
diet (Bio-Serv, Frenchtown, NJ, USA; Sonnenburg
et al., 2010). GF mice were mono- or bi-associated
using oral gavage with 108 colony-forming units of
Bacteroides thetaiotaomicron (Bt) VPI-5482 and/or
Bifidobacterium longum (Bl) NCC2705. Bacteria were
cultured under anerobic conditions at 37 1C in
tryptone-yeast extract-glucose medium (Sonnenburg
et al., 2010) or Reinforced Clostridial Medium
(Becton Dickinson and Company, Sparks, MD,
USA). All experiments were done according to the
A-PLAC, the Stanford IACUC. Urine and fecal
samples were collected and placed in a freezer at
� 70 1C within 30 min of collection until analysis.

Urine sample preparation
Twenty microlitres of urine sample was mixed with
40ml of 10 mM ammonium formate. Five microlitres
of the mixture was used in the reverse-phase liquid
chromatography (RPLC)-electrospray ionization
(ESI) analysis. When reverse-phase analysis was
completed, samples were decapped, 10 mL aliquots
of remaining samples were transferred into another
set of high-performance liquid chromatography vials
and resuspended with 30mL acetonitrile for hydro-
philic interaction chromatography (HILIC)-ESI ana-
lysis, using 10ml per injection.

Fecal sample preparation
Five hundred microlitres of 1:1 methanol: acidified
water (0.1% formic acid) was added to 10–30 mg of
feces. Tubes were vortexed at 4 1C for 15 min. After
vortexing, the tube was placed in a 4 1C centrifuge at
500� g for 15 min. The supernatant was pipetted
into a new tube, with care to minimize disruption of
the pellet. The resulting fecal water samples were
extracted by using solid-phase OASIS extraction
cartridges (Waters, Mifford, MA, USA). Metabolites
were eluted with 500 ml methanol, dried in a
speedvac and resuspended in 100 ml of initial mobile
phase composition corresponding to the two differ-
ent chromatography methods below. Five micro-
litres of the 100 ml sample was used in the analysis.

RPLC conditions
Chromatographic separation was performed on a
150-mm� 2.1-mm Kinetex 1.7 mm C18 column
(Phenomenex, Torrance, CA, USA) using a ACQUITY
Ultra Performance Liquid Chromatography system
(Waters). The flow rate was 0.25 ml min�1. Column
was held at 40 1C. Solvent A was 10 mM ammonium
formate in water and solvent B was 10 mM ammo-
nium formate in methanol. The gradient started at
5% B and linearly increased to 10% B at 14 min;
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then linearly increased to 100% B at 22 min; and
held at 100% B for 5 min. The column was equilibra-
ted at 5% B for 3 min before starting the run. First
1.3 min of mobile phase flow were diverted from the
ion source into the waste.

HILIC conditions
Chromatographic separation was performed using
the 150-mm� 2.1-mm Cogent Diamond Hydride,
4mm 100 A HILIC column (MicroSolv, Eatontown,
NJ, USA). Column temperature was 40 1C. The flow
rate was 0.4 ml min� 1. Solvent A was 10% acetoni-
trile with 15 mM ammonium formate and solvent B
was 90% acetonitrile with 15 mM ammonium for-
mate. The gradient started at 100% B for 1 min,
followed by a linear decrease to 30% B over 14 min,
a hold at 30% B for 1 min, and a 0.6 ml min� 1 hold at
100% B for 1 min. The column was equilibrated at
100% B for 5 min before starting the run.

MS conditions
MS was performed on the Exactive (Thermo Fisher,
Waltham, MA, USA) orbitrap mass spectrometer
operated in positive and negative electrospray mode
and controlled by Xcalibur 2.1 software. The scan
range was from 70 to 800 m/z, at 50 000 full width
at half maximum resolution. For positive mode
(ESIþ ), we used the following conditions: sheath
gas flow rate 40 (arbitrary units), auxilary gas
flow rate 8 (arbitrary units), sweep gas flow rate 1
(arbitrary units), spray voltage 3.5 kV, capillary
temperature 275 1C, capillary voltage � 60 V, tube
lens voltage � 100 V and skimmer voltage � 20 V.
For negative electrospray mode (ESI� ), the follow-
ing conditions were used: sheath gas flow rate 30
(arbitrary units), auxiliary gas flow rate 4 (arbitrary
units), sweep gas flow rate 1 (arbitrary units), spray
voltage 3.5 kV, capillary temperature 275 1C, capil-
lary voltage � 60 V, tube lens voltage � 100 V and
skimmer voltage � 21 V.

Data analysis
Profile mode raw data from the individual analyses
were converted to centroid mode mzXML files with
msconvert and subjected to nonlinear data align-
ment by xcms (Smith et al., 2006; Kessner et al.,
2008). Intensity data files were imported into the
web-based program MetaboAnalyst for statistical
univariate and multivariate analysis (http://
www.metaboanalyst.ca). Unbiased metabolite iden-
tification was determined using METLIN database
using a maximum error of 3 p.p.m., empirical
formulas (Smith et al., 2005). When possible,
compound identity validations were performed by
analyzing pure compounds (Supplementary Figure
S8). Tryptamine, indoxyl glucuronide, creatine,
creatinine and 5-hydroxyindole were obtained from
Sigma-Aldrich (St Louis, MO, USA). Features that

vary significantly between the two sample sets were
evaluated by univariate statistical analysis, and
significance was defined as 410-fold change with
P-valueo0.01.

Detection of indole-3-lactic acid production by liquid
chromatography-tandem mass spectrometry
Overnight culture of Bl NCC2705 was grown in
Reinforced Clostridial Medium supplemented with
0.1% L-tryptophan (Sigma-Aldrich). Two hundred
microlitres of culture before and after growth were
collected, centrifuged (2700� g, 10 min) and fil-
tered. Four volumes of cold methanol were added
and protein precipitate was removed by centrifuga-
tion. Supernatants were dried in a speedvac and
reconstituted in 250 ml of acetonitrile:water (10:90).
Ten microlitres of each samples were used for the
analysis. Chromatographic separation was per-
formed on a 150-mm� 2.1-mm Zorbac 5mm C18
column using Agilent liquid chromatography (LC)
pump/autosampler system (Agilent, Santa Clara,
CA, USA). The flow rate was 0.2 ml min�1. Solvent
A was 0.1% formic acid in water and solvent B was
0.1% formic acid in acetonitrile. The gradient started
at 5% B, then linearly increased to 95% B at 25 min
and held at 95% B for 5 min. The column was
equilibrated at 5% B for 5 min before starting the run.
MS was performed on the LTQ orbitrapXL (Thermo
Fisher) mass spectrometer operatedin positive elec-
trospray mode (full scan/CID,m/z¼ 206.2). The scan
range was from 120 to 1000 Da. Standards of try-
ptophan and indole-3-lactic acid were used in the
analysis (Sigma-Aldrich).

16S ribosomal RNA sequencing
After fecal DNA isolation (MoBio fecal DNA kit,
Carlsbad, CA, USA), 626 bp amplicons (including a
unique 12 bp Golay barcode) spanning V3–V5 region
of bacterial 16S ribosomal RNA (rRNA) were
generated using barcoded forward primer (338F,
906R). Samples were sent for pyrosequencing to
Duke ISGP using the Roche 454 titanium platform
(Indianapolls, IN, USA). Post processing of pyrose-
quencing data was done using QIIME (Caporaso
et al., 2010). As a first step, data from the sequencing
and the metadata were combined to demultiplex the
barcoded reads, and quality filtering was done using
the default parameters in QIIME. Sequences were
grouped into operational taxonomic units at 97%
sequence similarity using uclust. Taxonomy was
assigned using RDP (Ribosomal Database Project)
classifier against GreenGenes database, sequences
were aligned and a phylogenetic tree was built from
reference sequences using FastTree. An operational
taxonomic unit table showing counts of each
operational taxonomic unit in each sample was
produced. Beta diversity was determined using
unweighted UniFrac (Lozupone et al., 2006) and is
represented as principal co-ordinate plots.
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Results

UPLC-MS reveals the effect of the gut microbiota on the
urine and fecal metabolomes of HUM mice
We have optimized a UPLC-MS-based method that
allows the examination of the metabolomic profile of
murine fecal and urine samples. Our goal was to
investigate the dynamics of small molecules produced
by a human gut microbiota using a HUM mouse
model. Urine and fecal samples were collected from
adult (8 weeks old; GF SW mice, n¼ 3), followed by
colonization of these mice using a fecal sample from
an adult human (‘humanization’, achieved by gavage
of GF mice with 200ml of frozen fecal sample
reconstituted 1:1 using pre-reduced phosphate-
buffered saline). Eight weeks after humanization,
urine and fecal samples were collected again (HUM
samples, n¼ 3). Throughout the experiment, mice
were maintained on a standard plant polysaccharide-
rich diet (RD) inside gnotobiotic isolators. An UPLC-
MS-based untargeted metabolomic approach con-
sisted of either of two types of chromatographic
conditions (RPLC or HILIC), and two ionization
conditions (ESI in positive mode, ESIþ ; or negative
mode, ESI� ), resulting in four possible combinations
of these conditions (see Figure 1a for a schematic
overview of the approach). The rationale behind
employing these different conditions is to detect as
many classes of small molecules (for example, hydro-
phobic, hydrophilic, negatively charged and posi-
tively charged) as possible.

MS was performed with a mass accuracy within
2 p.p.m. and metabolites were detected within the
mass range of 70–800 m/z. The resulting peak
intensity data matrix was filtered to eliminate
features obtained when column conditioning and
washing steps were performed (Supplementary
Figure S1). Features were obtained with the follow-
ing chromatography retention times: 1.5–20 min for
RPLC, or 1–17 min for HILIC. RPLC-ESIþ detected
the largest number of features in urine, and RPLC-
ESI� detected the largest number of features in the
fecal samples (Figure 1b). Despite urine having
generally a larger number of features than feces,
the number of significantly different features
between HUM and GF mice metabolomes was
higher in fecal samples than in urine, independent
of the chromatographic and ionization method
utilized (Figure 1c). Our analysis included the
identification of clusters of masses with same
retention time, which correspond to naturally
occurring isotopes, clusters, fragments or adducts
(for example, MþHþ , MþNaþ and MþKþ ) of the
same molecule. Although the number of possible
clusters or adducts varies in each method, an
example of the percentage of these features as a
percentage of total features is shown in Figure 1d.
Our analysis shows that these features do not affect
our estimate of the number of unique metabolic
features. The complete set of these features char-
acteristic for HUM or GF mice in each of the
methods can be found in Supplementary Table S1.
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Fecal and urine metabolome from HUM mice is distinct
from conventional mice
The intestinal microbiota of HUM mice reconstitutes
many compositional aspects of the human microbiota
and is distinct from that of a mouse (Ley et al., 2005;
Turnbaugh et al., 2009b), but the extent to which
these communities functionally differ remains under-
explored. We assessed the fecal and urinary metabo-
lome of mice harboring a native (murine) versus
human-derived microbiota as a measure of commu-
nity functionality. Fecal and urine samples from
HUM, conventional and GF SW mice (n¼ 3 mice
sampled/colonization state) were analyzed using
the optimized RPLC-ESIþ -based method. Principal
component analysis of metabolomic profiles reveal
colonization-specific clustering for both fecal and
urine samples (Figures 2a and b). Colonization-
specific clustering was observed using all four
chromatographic and ionization conditions described
in Figure 1 in both fecal and urine samples,
consistent with the differences between coloniza-
tion states being independent of the method of data
generation. The differentiation between coloniza-
tion states was also observed by hierarchical
clustering performed using the intensities of the
detected features in each sample (Figure 2c for fecal
metabolomes and Figure 2d for urine metabolomes).

Ninety-nine of 821 analyzed features differentiated
the fecal metabolomes of HUM and conventional
mice; 45 of 2081 features differentiated the urine
metabolomes of these two groups (n¼ 3 per group;
410-fold difference in abundance and P-valueo0.01,
t-test). These data show that HUM mice derived from
a human donor sample have a collection of
metabolites in urine and feces that is distinct from
those generated by this group of conventional mice.

The HUM microbiota alters levels of identifiable
metabolites
A major hurdle in metabolomic studies is confirming
the chemical identity of detected m/z values. This
challenge is due to deficiencies in pure chemical
standards and a paucity of database entries related to
microbial metabolites and their host-conjugated
counterparts (for example, glucuronidated). We used
an unbiased metabolite identification approach on
the features associated with HUM mouse samples
(10-fold relative to GF samples, Po0.01, t-test).
Empirical formulas were assigned to a subset of
features with a maximum error of 3 p.p.m. using the
METLIN database (Smith et al., 2005). When an
unambiguous assignment was possible and the
candidate metabolite was available, the pure
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metabolite standard was obtained and analyzed
under the identical chromatographic and ionization
conditions. The resulting spectra were compared
against the experimental spectra for compound
verification. The resulting verified identification data
are listed in Supplementary Table S2.

Metabolites resulting from the transformation of the
aromatic amino-acid tryptophan into tryptamine and
indole derivatives are consistent with previous meta-
bolic activities assigned to the gut microbiota (Martin
et al., 2008; Wikoff et al., 2009). Elevated level of fecal
tryptamine (m/z 161.0654, ESIþ ) and urinary
indoxyl glucuronide (m/z 310.0930, ESIþ ) were
detected in HUM mice and confirmed using purified
standards (Figure 3). The urine of HUM mice was also
enriched for a feature with a m/z 134.0598 (ESIþ ),
confirmed as 5-hydroxyindole, a known urinary
marker of the intestinal microbiota (Supplementary
Table S2; Meyer and Hostetter, 2012).

As the gut microbial community consumes non-
digestible plant-derived dietary polysaccharides (for
example, dietary fiber), high levels of features that
correspond to these carbohydrates in the feces are
clear markers of the absence of gut microbial
community in GF mice. Using HILIC-ESI� , a peak
assigned to a trisaccharide (for example, raffinose or
maltotriose, m/z 502.1846, ESI� ), likely a compo-
nent of the diet consumed by the mice, was present
in GF fecal samples but absent in the HUM feces
(Figure 3). Another marker of the microbiota is
creatine and its cyclic derivative creatinine, as they
are eliminated from the host by the action of
intestinal microbiota (Wyss and Kaddurah-Daouk,
2000). Fecal levels of creatinine (m/z 114.066,
ESIþ ) and creatine (m/z 132.076, ESIþ ) were

elevated in the GF mice relative to HUM mice
(Figure 3), consistent with previous studies showing
an increase of these molecules in biofluids of
antibiotic-treated mice (Romick-Rosendale et al.,
2009; Swann et al., 2011a). These results indicate
that although the available databases used for the
identification of metabolite masses are incomplete
and accurate mass is not sufficient to distinguish
isomeric metabolites, it is still possible to identify
metabolomic features consistent with microbiota
colonization state in these highly complex environ-
ments. The data also suggests a large amount of
novelty in the yet-to-be-described small molecules
associated with the gut microbiota.

Dietary impact on the metabolome of HUM mice
mirrors community compositional changes
We assessed the effect of a dietary change on the
C57BL/6J HUM mouse metabolome using a custom
diet. HUM mice (n¼ 3) were fed RD. After collection
of feces and urine, the diet was switched to one
devoid of fermentable polysaccharides (polysacchar-
ide-deficient diet; PDD), and fecal and urine
samples were collected after 4 weeks. The microbial
community membership for the two diet conditions
was determined by 454 pyrosequencing of the
variable region V3–V5 of bacterial 16S rRNA genes
present in fecal DNA. A total of 14 306 sequencing
reads were obtained from the six fecal samples
(2384 ± 329 sequences per sample) and analyzed
using QIIME (Caporaso et al., 2010). UniFrac-based
principal co-ordinate analysis plot shows that
the presence or absence of polysaccharides in the
diet produced a significant and reproducible effect

GF

HUM

Creatine
m/z=132.0768

Creatinine
m/z=114.0664

N
or

m
al

iz
ed

C
on

ce
nt

ra
tio

n

N
or

m
al

iz
ed

C
on

ce
nt

ra
tio

n

Tryptamine
m/z=161.0654

0.4

0.2

0.0

-0.2

-0.4

0.4

0.2

0.0

-0.2

-0.4

0.4

0.2

0.0

-0.2

-0.4

0.4

0.2

0.0

-0.2

-0.4

Trisaccharide
m/z=502.1846

0.4

0.2

0.0

-0.2

-0.4

Indoxyl Glucuronide
m/z=310.093

Figure 3 Humanized (HUM) microbiota-dependent changes in fecal metabolites. Normalized mean values in GF and HUM mice±s.d. of
three biological replicates are plotted for tryptamine, indoxyl glucuronide, a trisaccharide, creatine and creatinine.

Metabolomics of HUM and gnotobiotic mice
A Marcobal et al

1938

The ISME Journal



on microbial composition as the RD mice cluster
separately from the PDD mice (Figure 4a). Samples
from the PDD group cluster tightly, indicating
greater homogeneity within the bacterial profile
for this dietary condition compared with the more
complex RD. Although both dietary conditions
resulted in a dominance of Firmicutes and Bacter-
oidetes, the Bacilli (P¼ 0.017) and b-proteobacteria
(P¼ 0.02) were more highly represented in PDD mice
than the RD-fed mice (Supplementary Figure S2).

Next, we addressed the effect of diet on the
metabolomic profile of fecal and urine samples from
HUM mice fed RD or PDD. Multivariate statistical
analyses reveal that the fecal metabolomes of the
two different dietary conditions (RPLC-ESIþ ) are
highly distinguishable and mirror the compositional
differences that we observe between samples
(Figure 4b, Supplementary Table S3). The urine
samples also showed a similar separation by diet
(Supplementary Figure S3). To determine whether
the separation between samples was due to unmo-
dified compounds present in the diet, fecal metabo-
lites from RD- and PDD-fed mice were compared
with extracts of the two different diets. This analysis

revealed that the contribution of compounds present
in the diet to the differences identified between the
two dietary groups is very low (7.1% of the features
in feces of RD-fed mice are present in RD; 6.3% of
the features in feces of PDD-fed mice are present in
PDD). Hierarchical clustering of the metabolomic
profiles from feces and diet illustrates that metabo-
lites from the diet contribute only a small portion of
the unique fecal metabolites associated with a
specific diet condition (Figure 4c). These data reveal
that diet-induced changes in microbial composition
are mirrored by changes in the microbiota-depen-
dent metabolome and suggest that metabolomics
can serve as an effective read-out of diet-induced
alterations in microbiota composition and function.

A simplified model microbiota drives major changes in
the metabolome of GF mice
We next introduced one or two species of bacteria
into GF SW mice to assess the impact of simplified
communities on the fecal and urine metabolome
compared with mice colonized with a complex
microbial community. GF SW mice were colonized
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with either Bt (n¼ 3) or with a mix of equal
concentration of Bt and Bl (n¼ 3). Ten days after
colonization, urine and fecal samples were collected
from both groups of mice. Relative bacterial densities
within fecal samples were determined for the
Bt/Bl group using differential plating (see Materials
and methods), revealing that Bt colonizes one
order of magnitude higher than Bl (90.2±7.7% of
Bt; 9.8±7.7% of Bl). The impact of these simplified
microbiotas on the host metabolome was determined
by analyzing fecal and urine samples by RPLC-ESIþ .
Metabolomic profiles of the gnotobiotic samples were
compared with those of GF mice (10-fold, Po0.01,
t-test) to identify the microbial signatures of mono
and bi-colonization (Supplementary Table S4). The
introduction of one or two microorganisms in the
intestine significantly shifts the urine and fecal
metabolomic profile of the host (Figure 5 for fecal
samples; Supplementary Figure S4 for urine samples).
Although the Bt mono- and Bt/Bl bi-associations
produced metabolomic profiles that are similar to
one another, features unique to the bi-colonized mice
indicate an impact of Bl, despite the fact that it
colonizes at one order of magnitude less than Bt. The
bi-association-induced changes in metabolomic pro-
file may be a result of multiple factors that are altered
upon different colonization states including changes
in community member abundance, interactions with
the host and altered gene expression of the microbes.
One feature corresponding to indolelactic acid (m/z
206.0739, ESIþ ) was detected in Bt/Bl fecal samples,
which was not present in the GF and Bt samples.
To verify that Bl is able to produce indolelactic
acid, we grew Bl in culture medium supplemented
with 0.1% tryptophan (a precursor of indole deriva-
tives). The production of indolelactic by Bl was
confirmed by UPLC-MS comparison with a purified
standard (Supplementary Figure S5). Together, these
data demonstrate that even a low level of colonization,
as seen with Bl, is sufficient to impact the fecal
metabolome.

To determine whether colonization with a simpli-
fied microbiota drives similar changes in the metabo-
lomic profiles as colonization with a complete human
microbiota, metabolites associated with humanization
were compared with those associated with the Bt and
Bt/Bl colonization states (that is, metabolites not
present in GF). No features were identified that were
commonly present in HUM mice and either the mono-
or bi-colonized mice. However, two metabolites
showed a decrease in prevalence relative to GF in all
three colonization states (Figure 5). These data
indicate that the metabolome of one and two member
model microbiotas do not reconstitute the metabolo-
mic complexity of a HUM microbiota (Supplementary
Figure S6); however, these simple microbiotas can
model some aspects of a complete microbiota, such as
depletion of certain compounds. The extent to which
additional other species within simplified microbiotas
can represent metabolomic features of a complex
community requires further investigation.

Humanization of mice reconstitutes gut microbial
diversity and human fecal metabolomic profile
We wished to test whether the gut microbial
communities in human feces retain their composi-
tion when transferred to GF mice, and whether
aspects of metabolomic individuality of each human
can be mirrored in the HUM animals. We collected
feces from three healthy human donors: two males
and one female. Four weeks following humanization
of GF SW mice (n¼ 4–8 per donor), fecal samples
were collected from each mouse and submitted
for 16S rRNA-based microbial community enumera-
tion by pyrosequencing. Unweighted UniFrac-
based principal co-ordinate analysis plots of the
16S rRNA microbial composition data show that the
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microbiota of HUM mice clusters with the corre-
sponding human fecal inoculum (Figure 6a). These
data reveal that individual-specific differences in
gut microbial communities can be faithfully recon-
stituted in GF mice by humanization using human
feces.

Although a small portion of the detected features
are specific to either human or mouse samples, most
of the compounds are independent of the source of
the feces (RPLC-ESIþ , Figure 6b), suggesting that
much of the microbiota functional status is recalci-
trant to modification by the host species. Moreover,
comparison of metabolites common to mice and
human from the three different sets of samples
(donor 1-, 2- or 3-derived) revealed a high degree
of overlap in the metabolomes of these groups,
and a low percentage of donor-specific features
(Figure 6c). These findings support the idea that
many functional attributes are shared between
microbiotas that differ compositionally (Turnbaugh
et al., 2009a). Conversely, some of the features that
differentiate donor 3 HUM mouse fecal metabolome
from those of donor 1 and donor 2 were also
detected in the human fecal sample of donor 3,
and absent in the other human samples (Figure 6d
and Supplementary Figure S7). Therefore, some
individualized aspects of the human gut microbio-
ta’s metabolomic activity can be reconstructed
within HUM mice.

Discussion

Sequencing-focused techniques have been used
extensively to characterize the species and gene
content of gut microbial communities associated
with health or a variety of diseases (Qin et al., 2010;
Arumugam et al., 2011; Huttenhower et al., 2012).
It is apparent that common functional attributes
are found in divergently composed communities
and conversely, distinct functional traits can be
expressed by similarly composed microbiotas
(Turnbaugh et al., 2009a; Nicholson et al., 2012).
Therefore, characterization of microbiota function
may be more illuminating to the status of host–
microbial interaction than the microbial species or
gene content. Coupled to the importance of attaining
the functional state of a specific microbiota under
specific conditions are additional challenges span-
ning from data generation (for example, technical) to
interpretation and integration of new types of
function-focused data sets. Metabolomics offers a
rapid method of defining hundreds to thousands of
small molecules associated with a sample; the
resulting spectrum of masses offers a chemical
‘fingerprint’ of microbiota function that is informa-
tive even in the absence of definitive compound
assignments. Grouping of different samples/commu-
nities based on metabolomic profile, quantifying the
extent of functional change over time or based on
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different treatments, and characterizing the chemical
complexity associated with different communities
are all possible in the absence of knowing the
compound to which each feature corresponds. A
growing number of examples illustrate that the
metabolites derived from this diverse microbial
community can have a direct role in human health
and disease, indicating that this universe of small
molecules not only serves as an excellent proxy for
functional state, but also provides a window into the
compounds that are mediating microbe–microbe and
microbe–host interaction (Nicholson et al., 2012).

The investigation of microbiota function is met
with two related challenges. First, the sensitivity of
microbiota adaptation to environmental variables
(for example, diet) necessitates the need for a highly
controlled experimental platform to generate repro-
ducible, interpretable data, such as a mouse model.
Second, the desire to study human-relevant
microbes, which differ from those that are found in
the native mouse microbiota (Ley et al., 2005), is not
immediately compatible with standard mouse mod-
els. The transplantation of human gut microbiota
into GF mice represents a human-relevant experi-
mental model for pursuing microbiota functionality
and its impact on host biology in healthy and
diseased states (Goodman et al., 2011).

Here we present a study that applies an optimized
metabolomics method on urine and fecal samples
derived from mice that have been colonized with a
human microbiota to permit the study of human-
relevant microbes in a controlled experimental
setting. Using this method, we demonstrate that
the vast majority of metabolomic features that we
detected in human feces are reconstituted in HUM
mice. These data establish that mice harboring a
human gut microbiota are a valid model for
reconstructing human microbiota functionality in
an experimental setting. Furthermore, the overlap in
metabolomic features associated with three groups
of HUM mice, each colonized with a different donor
microbiota, is consistent with the implied func-
tional conservation in divergently composed human
gut communities (Turnbaugh et al., 2009a). Despite
the common functional attributes, our study and
others show that dietary modifications of the
microbiota are a significant factor in shaping the
metabolomic features associated with feces and
urine (Legido-Quigley et al., 2010). The set of diet-
induced metabolites provides an example of how
the ability of complex external factors to interact
with and influence the functionality of human gut
microbes can be chemically quantified, a first step in
unraveling the dynamics of microbiota function and
its impact on the host.

Although humanization of GF mice provides an
attractive model of how the human microbiota
interacts with a host, the microbiota in this model
remains a highly complex system that is resistant to
mechanistic and hypothesis-based experimentation.
The possibility of evaluating more simplified,

defined communities on the host metabolomic
profile is a promising avenue to gain mechanistic
insights. Simplified and defined model systems
have been used extensively to study functional
properties of common gut residents in vivo
(Sonnenburg et al., 2006; Samuel et al., 2007;
Marco et al., 2010; Rey et al., 2010; Faith et al.,
2011). Our use of one- and two-member model
communities indicates that there are aspects of the
host metabolome that are conserved between these
simplified ecosystems and an entire human micro-
biota, specifically the common depletion of meta-
bolites that are present in GF mice. An important
remaining question is at what point of constructing a
defined microbiota is the functionality associated
with a complex HUM community sufficiently
approximated. Although the answer will vary based
on the scientific question being addressed, it is
likely that metabolomic profiling will be an impor-
tant component of assessing the functional capacity
of simplified communities for comparison with that
of a complete human microbiota.

Our results set the stage for discovery and elucida-
tion of small molecule-mediated interactions between
human-associated microbes and the host. Our detec-
tion of individual-specific metabolomic features
suggests that personalized HUM mice could be used
in a variety of applications relevant to human health,
ranging from biomarker discovery to characterization
and categorization of community response to micro-
biota-targeted treatments. In addition, the experimen-
tal approach that we have implemented to investigate
the gut microbiota functional status should be
straightforward to apply to microbial communities
associated with other body habitats.
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