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Abstract

Identity by descent (IBD) inference is the task of computationally detecting genomic segments that are shared between
individuals by means of common familial descent. Accurate IBD detection plays an important role in various genomic
studies, ranging from mapping disease genes to exploring ancient population histories. The majority of recent work in the
field has focused on improving the accuracy of inference, targeting shorter genomic segments that originate from a more
ancient common ancestor. The accuracy of these methods, however, is achieved at the expense of high computational cost,
resulting in a prohibitively long running time when applied to large cohorts. To enable the study of large cohorts, we
introduce SpeeDB, a method that facilitates fast IBD detection in large unphased genotype data sets. Given a target
individual and a database of individuals that potentially share IBD segments with the target, SpeeDB applies an efficient
opposite-homozygous filter, which excludes chromosomal segments from the database that are highly unlikely to be IBD
with the corresponding segments from the target individual. The remaining segments can then be evaluated by any IBD
detection method of choice. When examining simulated individuals sharing 4 cM IBD regions, SpeeDB filtered out 99.5% of
genomic regions from consideration while retaining 99% of the true IBD segments. Applying the SpeeDB filter prior to
detecting IBD in simulated fourth cousins resulted in an overall running time that was 10,000x faster than inferring IBD
without the filter and retained 99% of the true IBD segments in the output.
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Introduction

Identity by descent (IBD) is a fundamental concept in genetics,

pertaining to the genetic similarities among individuals who co-

inherited an allele from a common ancestor. While genomic

sequence variants, such as single-nucleotide variations, insertions,

deletions, and copy-number variations, are constantly being

introduced with every generation, genomic IBD segments have a

high probability of being identical due to the relatively low de-

novo mutation rates [1,2]. We call a sequence of alleles IBD if the

alleles have been inherited from a common ancestor without

recombination events. Because relatively few recombination events

occur in each generation (roughly one per chromosome), the two

likely-related individuals co-inherit a genomic segment decreases

rapidly with every generation, while IBD segments typically stretch

to significant lengths. Specifically, in the case of two relatives that

share a relative g generations ago, a genomic segment that

originated from the common ancestors needs to be transmitted

over 2g meioses, which corresponds to a probability of 21{2g.

Once transmitted, assuming recombinations follow a Poisson

process [3], the expected length of the shared segment is
100

2g
centimorgans (cM).

Single-nucleotide polymorphisms (SNPs) are commonly used to

determine whether genomic regions are IBD. Opposite homozy-

gous loci [4] are positions where two individuals are homozygous

for different alleles. Within co-inherited regions, two genotyped

individuals will not exhibit opposite homozygous loci, except in

case of genotyping errors or mutations that arose more recently

than the common ancestor. This simple observation can be the

basis of an effective IBD filter, as we demonstrate in this article.

Many biological applications are based on our ability to

determine whether or not two individuals inherited a genomic

region from a single ancestor [5,6]. Researchers exploring ancient

population histories rely on the ability to trace population origin

and admixture dynamics through the accurate detection of shared

segments [4]. Studies that map disease genes rely heavily on the

ability to find genomic regions shared by cases. For example, in

association studies, one must control for spontaneous sharing,

while enriched sharing near a particular locus can be indicative of

a disease association gene [7].

Extensive previous work has focused on IBD inference, aiming

at increasingly longer time-scales, ranging from recent familial

relatedness, up to several tens of generation to the most recent

common ancestor.

PLINK [6] analyzes pairs of individuals using a simple three-

state model HMM. The states in the model correspond to the

amount of shared IBD per position given the observed genotypes

of two individuals. BEAGLE [8] uses a factorial HMM to phase

the individuals’ genotypes and then determines shared haplotypes

between individuals. Unlike Plink, the BEAGLE model incorpo-

rates complex linkage-disequilibrium (LD) patterns by constructing

a compact set of states and constrained transition probability

matrix that are equivalent to a variable-length Markov model.

More explicit modeling of the inheritance vector, capturing the

relationship between individuals, is described in earlier work that
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incorporated LD via a first-order Markov model at the level of the

founders [5]. This explicit modeling of both relationship and LD is

shown to significantly improve performance. In the work by

Moltke et al., a Markov Chain Monte Carlo (MCMC) approach

for IBD inference is presented whereby segments of chromosomes

are iteratively partitioned into sets of identical descent [9]. The

above methods present a tradeoff between accuracy and running

time, where more complex methods require longer running time

for the analysis. More importantly, the complexity of the analysis

in all these methods is quadratic in the number of individuals, as

every pair of individuals is evaluated. GERMLINE [10] reduces

the time complexity of IBD inference at the cost of lower accuracy.

The key idea is to perform the analysis on phased data; by

employing hash tables with segments taken from the phased data,

the method efficiently identifies seeds of segments that potentially

represent IBD segments shared between individuals. Henn et al.

[4] infer IBD from unphased genotype data by comparing SNPs of

two individuals and identifying opposite homozygous SNPs. A

region is inferred as a half IBD if (i) two individuals do not have

opposite homozygous SNPs, (ii) the region is no shorter than 5 cM,

and (iii) at least one of these two individuals has more than 400

homozygous genotyped SNPs in this region. The work addresses

genotyping errors by heuristically allowing one opposite homozy-

gous SNPs assuming a region is at least 3 cM and it has at least

300 SNPs. While the method is highly efficient, in practice, it can

be applied for cases where the expected IBD segments are longer

than 7 cM, or otherwise the method exhibits low sensitivity. IBD-

Groupon [11] constructs an HMM model to detect IBD segments

shared by multiple individuals. Although this method is able to

detect group-wise IBD segments among hundreds of individuals

sampled over thousands of SNPs, it relies on pairwise IBD

inference using BEAGLE. PARENTE [12] detects related pairs of

individuals accurately and rapidly from unphased genotyping data

using an embedded likelihood ratio test. Similar to many other

previous work, this method examines every pair of individuals.

As studies grow to include large cohorts and meta-analyses

include many diverse data sets, the accuracy of IBD inference

methods becomes extremely important. However, the running

time of these accurate IBD inference methods makes them

computationally infeasible to apply on very large data sets. Here,

we describe an efficient and accurate filtering method for IBD

detection which we named SpeeDB. Given a query unphased

genotyped individual and a database of unphased genotyped

individuals, SpeeDB rapidly screens out genomic regions in the

database that are unlikely to be IBD with the query, and returns

the remainder of genomic regions. These regions can be passed

onto traditional IBD inference methods such as PARENTE [12],

fastIBD [13], or GERMLINE. Our method is designed so as to

readily translate into an indexing scheme that can be used for

searching for IBD segments within a large database of individuals.

Along with the developed fast query approach, our method thus

provides a practical infrastructure for large-scale IBD detection.

IBD inference methods developed so far have focused on

applications where the analysis is performed once on a collected

cohort. With the exponential increase in GWAS studies, meta-

analysis further gained momentum, merging samples from several

studies in an attempt to leverage the large data sets to increase the

statistical power. We developed SpeeDB, in part, to streamline

such analyses and provide a continuous solution to the problem of

IBD inference. We chose to architect our method so as to allow the

continuous addition of samples to an on-going study; newly

sampled individuals are queried against a growing database of

samples for shared ancestry.

Methods

IBD inference is commonly applied on a set of individuals.

Toward the goal of identifying IBD between all pairs of individuals

in a cohort, we focus on a first step of identifying potential IBD

between a single individual and members of a cohort (see Fig. 1).

For the description of our method, we borrow the terms query and

index from the database nomenclature to refer to the given

individual (the query individual), and the other members of the

cohort (the indexed individuals).

We first assume that individuals are measured with no

genotyping errors at the sampled markers. The above assumption

will be relaxed in the next section. Our method relies on the

observation that given no genotyping error, two related individuals

should have at least one allele in common, resulting in no opposite

homozygous SNP sites along the co-inherited segment. Converse-

ly, when opposite homozygous SNPs are observed, under the

assumption of no genotyping errors, two individual cannot be

related in the corresponding site. Note that, we do not account for

the rare event of de novo mutation for ease of discussion. It follows

that given the set of homozygous minor allele sites in the query

individual, indexed individuals can be scanned along these

markers; indexed individuals exhibiting homozygous major allele

calls at any of these positions can be discarded from further

consideration around that particular marker location.

Our method consists of two steps: indexing and query

processing. First, during the indexing step, individuals’ genotypes

are scanned and transferred so as to allow efficient query. In this

step, for every marker i[M of the m~jMj biallelic markers, we

generate a set of indexed individuals h
(0)
i , in which every element is

Figure 1. Overview of SpeeDB and its downstream application.
(A) SpeeDB identifies a set of candidate genomic segments (blue) of
individuals in a database and the corresponding genomic segments of a
query individual (red) that may be IBD. (B) Candidate segments from the
database and the corresponding regions in the query will be sent to an
accurate IBD detection tool (such as PARENTE [12]) for inference. Thus,
SpeeDB greatly reduces the time necessary to infer IBD on large data
sets by reducing the total amount of data on which inference must be
applied.
doi:10.1371/journal.pone.0092713.g001
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an indexed individual that is homozygous in the major allele.

Given a database with n individuals sampled over m biallelic

markers, this step takes O(nm) time. The computation is

performed once, and the resulting sets are stored on disk. During

the query phase, given a query individual, we use a sliding window

w along the corresponding query genome. The set of markers

located within a window w are denoted by Mw5M. The sliding

window process is parameterized by the window size parwindow

and step size parstep. As we slide the window along the genome, we

narrow our search to specific markers where the query individual

has homozygous minor alleles, denoted as Mq,(2)
w 5Mw. For every

such position, we examine all selected markers within the current

window; we identify all individuals that do not appear in any h
(0)
i

sets, for any i[Mq,(2)
w where the query individual q is homozygous

minor within the region indicated by the window w. These

individuals potentially share IBD segments with the query

individual, within regions that harbor the examined window. As

such, the size of the window parwindow constitutes a lower bound

for the potential IBD segment length. As one end of the IBD

segment can potentially lie within ½a{parstep, a�, and the other lies

within ½azparwindow, azparwindowzparstep�, we report

½a{parstep, azparwindowzparstep� as the candidate segment.

Intersecting candidate segments produced by subsequent windows

analysis are merged, producing the final reported set of candidate

regions. When examining a window, the set h
(0)
i is visited exactly

once for all i where the query individual is homozygous in the

minor allele, hence the expected computation of a query

processing is
P

i[M
q,(2)
w
jh(0)

i j. Let pi be the minor allele frequency

(MAF) at marker i. Given the expected set size of h
(0)
i can be

estimated as (1{pi)
2|n and that the probability of the query

individual exhibiting homozygous minor at marker i (where i[Mw)

is p2
i , the expected number of operations is given byP

i[Mw
p2

i |(1{pi)
2|n. Once a window has been examined,

the analysis advances to the next examined window w0, by parstep

cM. Rather than performing all of the above calculations from

scratch for each window, we reuse many of the calculations in the

previous window when we slide to the next one by eliminating the

impact of Mq,(2)
w \M

q,(2)
w0 and add the impact of M

q,(2)
w0 \Mq,(2)

w . This

process is repeated for the entire genome. The process is shown

Fig. 2, illustrating how the IBD segment, marked in red, is targeted

for detection.

To further increase the efficiency by which we prune the

candidate list, a second filter is applied focusing on positions where

the query individual is homozygous in the major allele can be

derived. Using this second filter, one can eliminate segments

corresponding to indexed individual that is homozygous in the

minor allele. An indexing phase, similar to the one described

above, is performed for this second filter prior to query. A second

set h
(2)
i is computed for every marker i, containing indexed

individuals that are homozygous in the minor allele at this marker.

We refer to the first and second described filters as the Major Filter

and the Minor Filter throughout the text, respectively. The output

Figure 2. Sliding window along a chromosome. When processing a query genome, we consider a window with size parwindow cM in each step,
where parwindow is less than the target IBD block length L. The indexed individuals that do not exhibit opposite homozygous SNPs with respect to the
query in this window define the set of candidate individuals that may be IBD with the query around this window. In the subsequent iteration, the
window moves along the chromosome by parstep.
doi:10.1371/journal.pone.0092713.g002

Table 1. The probability of the observed genotypes Go
i given

the true underlying genotype Gr
i .

True genotype Prf g Observed genotype Prf j g

2 p2
i

2 (1{h)2

1 2h(1{h)

0 h2

1 2pi(1{pi) 2 h(1{h)

1 h2z(1{h)2

0 h(1{h)

0 (1{pi)
2 2 h2

1 2h(1{h)

0 (1{h)2

Given the true genotype at a marker Gr
i , the conditional probability of

observing an genotype Go
i can be written as a function of the error rate h.

doi:10.1371/journal.pone.0092713.t001

Table 2. Running time.

Time (sec)

SpeeDB 0.1

SpeeDB+PARENTE 2.2

PARENTE 427.0

GERMLINE 2,206.9

fastIBD 4,267.0

SpeeDB’s running time is shown in comparison to the running times of IBD
detection methods PARENTE, GERMLINE, and fastIBD. SpeeDB+PARENTE
denotes the total time for using SpeeDB followed by running PARENTE only on
the candidate segments output by SpeeDB. Calculations based on analyzing
6,400 pairs of individuals (one query vs. 6,400 indexed individuals for SpeeDB
and SpeeDB+PARENTE). SpeeDB was run with thresholds corresponding to 99%
sensitivity.
doi:10.1371/journal.pone.0092713.t002
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of SpeeDB are segments that pass both filters.

Tolerating Genotyping Errors
In the above section, we assumed that no genotyping errors are

present in our samples. The assumption significantly simplified

calculations; however, the reality is that every sample will have

many genotyping errors. Genotyping errors can introduce false-

positive IBD candidates, as well as falsely remove true IBD

segments from the candidates set. New false-positive segments may

be introduced in cases where opposite homozygous calls in either

the query or the indexed individuals have been disrupted by the

error. Alternatively, a true candidate may be falsely removed from

the list in cases where opposite homozygous calls were introduced

by errors. As our method’s main objective is to provide a filtering

process achieving sufficiently high sensitivity (i.e., a method that

does not eliminate true positives), we chose to optimize on the

latter. Namely, our method will only account for genotyping error

that might remove a true IBD candidate from the list.

Let h be the probability of a genotyping error occurring, defined

as the probability that an allele in the genotype call is incorrect.

We denote the minor allele count at position i as genotype Gi.

Table 1 lists the probabilities for an observed minor allele count,

given the true underlying allele count.

Consider all the selected markers within a window. One can

accurately compute the probability of the observed opposite

homozygous SNPs between the query and an indexed individual

while accounting for genotyping errors. If the observed opposite

homozygous SNPs have a sufficiently high probability of being the

result of genotyping errors given the other evidence that support

the presence of an IBD segment, the filter should not screen the

corresponding segment.

However, the exact computation of this probability can be

relatively time-consuming, especially in the case of large data sets

and those with high SNP density. To reduce computation time, we

approximate the probability that the query has u false opposite

homozygous SNPs within the examined window with respect to

any indexed individual, denoted by f (u). Given this approximated

probability, we find the minimum value t that guarantees that the

probability of having more than t false opposite homozygous calls

is bounded by some pre-defined low probability. In the database

processing, we count the number of the observed opposite

homozygous SNPs in each indexed individual, and eliminate the

ones with more than t observed opposite homozygous SNPs, as

these individuals are deemed as likely to have true opposite

homozygous calls with the query.

Consider the Major Filter first. Given the query individual, we

are able to predict the probability of having a false opposite

homozygous call at a certain position with respect to an indexed

individual. By definition, an opposite homozygous SNP is

observed at a certain position if the following two statements are

Figure 3. Performance of SpeeDB for identifying 4 cM candidate IBD segments. (A) The speedup achieved as a function of sensitivity.
Speedup is measured as 1 divided by the fraction of the database retained after applying SpeeDB. Sensitivity is measured as the fraction of simulated
IBD segments that pass SpeeDB’s filters. (B) The running time for comparing one query to the entire database.
doi:10.1371/journal.pone.0092713.g003

Figure 4. Fraction of database retained as a function of
database size. The candidate fraction (the fraction of the database
retained after applying SpeeDB) is observed to be nearly independent
of database size at a given sensitivity level.
doi:10.1371/journal.pone.0092713.g004
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both true: (i) the marker was selected during marker filter

construction, and (ii) the indexed individual has an observed

major allele count of 2 at the same marker. Let G
q,o
i and Gt,o

i

correspond to the observed minor allele count at position i for the

query individual q and an indexed individual t, respectively.

Similarly, let G
q,r
i and Gt,r

i correspond to the true underlying

minor allele count at position i for the query individual q and the

indexed individual t, respectively. The above two statements can

be represented as (i) G
q,o
i ~2 and (ii) Gt,o

i ~0. However, the

underlying true minor allele count of the query could be either 0,

1, or 2, regardless of the observed homozygous minor allele

measurement. The true genotype of an indexed individual could

be different from the observation as well. These three cases are

discussed below.

Figure 5. The performance of SpeeDB at various simulated error rates. Queries for the WTCCC data set were simulated with various error
rates h and the speedup observed remained within an order of magnitude even for high error rates.
doi:10.1371/journal.pone.0092713.g005

Figure 6. The influence of parameter parstep. SpeeDB was applied on the WTCCC data set with various step sizes. While lower step sizes results in
higher accuracy, it comes at the cost of more computational time.
doi:10.1371/journal.pone.0092713.g006
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In the first case, the query truly has two copies of the minor

allele, i.e., G
q,r
i ~2. In this case, the genomic segment of the

indexed individual should not be filtered out if it has at least one

copy of minor allele. The probability of an indexed individual

having a false opposite homozygous SNP in a selected marker

where the query is truly homozygous minor is given by

X
x[f1,2g

PrfGq,r
i ~2,Gt,r

i ~xjGt,o
i ~0,G

q,o
i ~2g: ð1Þ

In the second case, the query is heterozygous, namely, G
q,r
i ~1.

In this case, all the opposite homozygous SNPs at this marker will

falsely generate a rejection. The probability for the event is given

by

X
x[f0,1,2g

PrfGq,r
i ~1,Gt,r

i ~xjGt,o
i ~0,G

q,o
i ~2g: ð2Þ

Finally, in the last case, the query has two copies of major allele

(i.e., G
q,r
i ~0). The genomic segments of indexed individuals with

at least one copy of major allele should not be removed from

candidate list. The probability for this event is given by

X
x[f0,1g

PrfGq,r
i ~0,Gt,r

i ~xjGt,o
i ~0,G

q,o
i ~2g: ð3Þ

Summing up Eq. (1)-(3) gives us the probability of having a false

opposite homozygous SNP between an indexed individual and the

query in a certain marker position, conditioned on the fact that the

marker meets the filter selection criteria. Assuming the query

genotypes are independent, for any given marker i, the probably of

having a false opposite homozygous call due to genotyping error is

given by the following summation:

pw,i~
X

y[f0,1,2g

X
x[x(y)

PrfGq,r
i ~y,Gt,r

i ~xjGt,o
i ~0,G

q,o
i ~2g ð4Þ

where,

x(y)~

f0,1g, y~0

f0,1,2g, y~1

f1,2g, y~2

8><
>: ð5Þ

The conditional probabilities of the observed genotypes given the

true underlying genotypes are given in Table 1. Substituting these

probabilities into Eq. (4) formulates pw,i as a function of the

genotyping error rate h and the minor allele frequency p.

The approximation of f (u) is specified below. We use a fixed

value for the minor allele frequency p to represent all markers and

compute pw by substituting this value into Eq. (4). Then, assuming

Table 3. The contributions of the Major Filter and the Minor
Filter to the overall performance.

Speedup

Sensitivity Both filters Major Filter only Minor Filter only

99% 54.3x 10.4x 9.3x

98% 74.6x 13.7x 10.9x

95% 113.2x 18.6x 17.4x

Each filter has approximately the same pruning power and using both together
results in the best performance.
doi:10.1371/journal.pone.0092713.t003

Figure 7. Performance vs. marker density. Markers were sub-sampled from the HapMap data set to varying degrees and speedup was measured
with at a 99% sensitivity level. The densities corresponding to specific data sets used in other experiments are labeled.
doi:10.1371/journal.pone.0092713.g007
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v markers are selected in the current window, we estimate the

probability that an indexed individual has u genotyping-error-

induced false opposite homozygous SNPs by f (u)~
v

u

� �

(pw)u:(1{pw)v{u. Thus, to account for t erroneous opposite

homozygous SNPs, the probability that a genomic segment of an

indexed individual being IBD with the query and will not pass the

filter due to genotyping errors is estimated to be 1{
Pt

u~0 f (u).

To bound it by a pre-defined threshold pth, we find the minimum

value of t that guarantees that

1{
Xt

u~0

v

u

� �
(pw)u:(1{pw)v{u

ƒpth: ð6Þ

The value t is positively correlated with the marker count v and

is negatively correlated with the minor allele frequency p. We

conservatively set the fixed minor allele frequency p to be its

minimum value observed in the window. By doing so, the filter

maximizes tolerance with respect to false opposite homozygous

SNPs.

When considering the Minor Filter, G
q,o
i ~0 and Gt,o

i ~2 are

considered as the opposite homozygous SNPs. Following similar

argument as above, the conditional probability of having a false

opposite homozygous SNPs at a certain marker location given the

marker is selected for constructing the Minor Filter can be written as

follows

p�w,i~
X

y[f0,1,2g

X
x[x(y)

PrfGq,r
i ~y,Gt,r

i ~xjGt,o
i ~2,G

q,o
i ~0g ð7Þ

where x(y) is as same as Eq. (5).

Similar to the analysis of the Major Filter, assuming v� markers

are selected, we need to find the minimum t� to guarantee

1{
Xt�
u~0

v�

u

� �
(p�w)u(1{p�w)v�{u

ƒp�th ð8Þ

where, p�w is computed with a fixed p value. For this filter, we set

the fixed p value to be its maximum value to be conservative.

Improving Pruning Efficiency
As we perform that analysis on a dense set of bi-allelic

markers, high levels of linkage disequilibrium are expected

between neighboring SNPs. The non-random association

between alleles can in turn result in high concordance between

h representing neighboring positions. Indeed, our analysis

reveals that for neighboring markers present such high

concordance. We can thus select only a subset of the markers;

a single marker with set h can represent other markers with the

similar h’s which will otherwise add a non-significant pruning

power. Based on this observation, we use the following Jaccard

index criteria:

J(hi,hj)~
jhi\hj j
jhi|hj j

wgJ ð9Þ

where hi and hj represent indexed individual sets for markers i

and j, respectively. During the indexing phase, two markers with

a Jaccard index higher than gJ will be marked as representing

approximately the same set using a unique label. During the

query phase, when constructing the appropriate filter, only

markers with unique labels are selected. Thus, the markers that

will presumably add little pruning power are discarded.

Figure 8. Performance of SpeeDB for identifying candidate close relatives. Performance was measured on query individuals that were

simulated to have one IBD segment in size equal to
100

2:(dz1)
cM where d is the degree of cousin.

doi:10.1371/journal.pone.0092713.g008
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Results

Experimental Setup
To evaluate the performance of SpeeDB, we used data from

255 individuals from Asian populations of the HapMap Phase III

panel [14], and from 1,480 individuals from the 1958 Birth

Cohort of the Wellcome Trust Case Control Consortium

(WTCCC) [15]. Our analysis focused on the long arm of

chromosome one which contained 36,638 and 13,943 SNPs for

HapMap and WTCCC, respectively. We defined a set of indexed

individuals from each data set using the genotypes of all

individuals in the data set, which we call HapMap and WTCCC.

We generated two additional data sets, HapMap.lowD and

HapMap.1M, from HapMap by using all HapMap individuals

but downsampling the markers used. HapMap.lowD was sampled to

have the same marker density as WTCCC, and HapMap.1M was

sampled to have a marker density corresponding to 1 million

markers across the entire genome. We also combined the data

from 14,318 individuals across all of the disease and control

cohorts of the WTCCC study into a data set which we call

WTCCC.largeSet. Since haplotypes were necessary for our simula-

tions, we used only trio-based phased data from HapMap and we

phased the WTCCC data using HAPI-UR [16].

For each data set, we simulated query individuals that each

contained one shared 4 cM IBD segment (except where otherwise

specified) with exactly one haplotype of one individual in the data

set. To do this, for each query, we first created two composite

haplotypes using the original haplotypes from the data sets in such

a way to break up any latent IBD segments that may exist between

individuals in the data set in a way that is similar to the approaches

taken in previous work [12,13]. Specifically, we first partitioned

the genome into a series of 0.2 cM segments. Each segment of a

composite haplotype was made by copying alleles from a randomly

selected original haplotype as illustrated in Fig. S1A. Next, we

simulated a 4 cM IBD segment between the query individual and

a random indexed individual at a random location by copying one

of the haplotypes of the indexed individuals over one of the

haplotypes of the query individual in the segment boundaries (see

Fig. S1B). Finally, we introduced errors in the query individual’s

haplotypes with an error rate h. For each experiment, we

generated a set of 10,000 queries.

Except where otherwise noted, the filter parameters were set as

follows: h~0:005 [12]; the window size parwindow = 3.5 cM and

the step size parstep = 0.5 cM (appropriate for identifying 4 cM

IBD segments); and the Jaccard index parameter gJ = 0.9. All

experiments were performed on an AMD Opteron 6172

Processor.

Experimental Results
We performed a number of simulations to demonstrate the

efficiency and performance of SpeeDB on various data sets. To

measure efficiency, we report the average running time for filtering a

database based on a given query. To measure performance, we

report the sensitivity as the fraction of IBD segments that pass

SpeeDB’s filters and the speedup resulting from filtering out large

portions of the database. The speedup is calculated as 1/(candidate

fraction) where the candidate fraction is defined as the fraction of the

database that passes the filters, where the database size is defined

as the genetic length times the number of individuals in the

database. That is, the candidate fraction represents the fraction of

database that SpeeDB determines may have IBD segments with

the query, which will then be passed on to a downstream accurate

IBD detection method.

In the HapMap data set, SpeeDB was able to reduce the total

amount of work required for downstream IBD detection by 99.5%

while retaining 99% of the true IBD segments in the output and

only took 3.2 ms per query to run. This effectively means that IBD

can be detected 200 times faster while only reducing sensitivity by

at most 1%.

We applied SpeeDB in conjunction with a state-of-the-art IBD

inference method PARENTE and theoretically estimated the total

running time necessary to run SpeeDB and then run PARENTE

on the portion of the data that passed SpeeDB’s filtering. Our

results in Table 2 show that SpeeDB’s running time is negligible

compared to PARENTE, and that running PARENTE on the

output of SpeeDB requires significantly less time than running

PARENTE on the entire data set. We also compared the

conjunction of SpeeDB and PARENTE’s running time to

GERMLINE and fastIBD; the results are shown in the same

table. Note that, SpeeDB and PARENTE are designed to operate

on unphased genotype data. While GERMLINE can also run on

unphased data, its accuracy in this mode is significantly lower,

making it impractical to use on large data sets. We therefore ran

GERMLINE on phased data, which consequently requires a

phasing pipeline to be run prior to IBD inference. The running

time in Table 2 includes this overhead.

The results of running SpeeDB on each data set are shown in

Fig. 3. SpeeDB’s performance, measured by the speedup achieved

by using the filter (assuming negligible filter running time) while

retaining a particular sensitivity level, are shown in Fig. 3A. Each

performance curve was generated by varying the error tolerance

thresholds pth and p�th in Eq. (6) and Eq. (8). Because we had two

thresholds to vary, we could not describe the performance of

SpeeDB with a single ROC curve. Instead, it could be described

with many potentially-overlapping ROC curves, each produced by

fixing one threshold to a particular value and varying the other

(see Fig. S2). For clarity, each performance curve in Fig. 3 shows

the Pareto frontier (i.e. the leftmost points) of all the ROC curves

generated for each data set. Because we show this frontier, there

are a few bumps in the curves resulting in where the individual

ROC curves intersect (see Fig. S2 to view the individual ROC

curves for the HapMap data set shown here). It is interesting to note

that the vast majority of the results with pth=p�th~ 2.5 to 5 fall on

or very close to the Pareto frontier in all the data sets evaluated.

The results in Fig. 3A show that SpeeDB filters out a large

fraction of the database while maintaining a high level of

sensitivity. For example, for the HapMap data set, it can attain a

99% sensitivity level while increasing the speed of IBD detection

200-fold by filtering out the 99.5% of the database as possible IBD

locations. This figure also shows that SpeeDB performs better with

higher marker density. We first observed that SpeeDB performs

much better on HapMap compared to the WTCCC data sets and

we also noted HapMap has higher marker density than the

WTCCC data sets, so we suspected that this may be the reason.

To confirm that marker density was a major contributing factor to

better performance, we downsampled markers in HapMap to

create HapMap.lowD to have the same the marker density as seen

in WTCCC; 22,695 markers were removed randomly in this

process. We then observed that the performance of HapMap.lowD

is very similar to the performance of WTCCC and WTCCC.largeSet,

indicating that marker density is a key factor affecting perfor-

mance. Despite the lower density of WTCCC, SpeeDB still

achieves a 54.3x speedup at 99% sensitivity on the WTCCC data

set.

The efficiency of SpeeDB is illustrated in Fig. 3B and Table 2.

These results show that SpeeDB only requires a few milliseconds

to analyze each query.
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To examine the scalability of SpeeDB, we created smaller

databases by using subsets of individuals in the original databases.

We observed that querying HapMap requires more time than

querying WTCCC with the same number of individuals. We

attributed it to the difference in marker density of these two

databases. To illustrate this point, we used the HapMap.lowD data

set. As shown in Fig. 3B, the running time for querying

HapMap.lowD and WTCCC is almost identical. We also show that

the running time is linear to the database size, implying that this

tool can be utilized on even larger data sets. Its applicability to the

large WTCCC data set with 14,318 individuals is demonstrated in

Fig. S3. Assuming the marker density is as same as WTCCC, it is

estimated that querying a database with 1 million individuals for

IBD on the long arm of chromosome 1 takes roughly 4 seconds;

assuming the marker density of HapMap, the estimated time is

roughly 12 seconds.

The scalability of SpeeDB in terms of pruning power is

demonstrated in Fig. 4. Again, we created smaller databases by

using subsets of individuals in WTCCC, and applied SpeeDB on

these databases. Fig. 4 shows the candidate fraction as a function

of database size at three sensitivity levels. For 99% sensitivity, the

candidate fraction appears to be independent of database size,

implying that the applicability of SpeeDB on large databases is

promising.

We also investigated how often SpeeDB’s output contains the

entire true IBD segment such that no part of the true IBD segment

lies outside of the candidate regions. To do this, we computed the

performance with the more stringent requirement that an IBD

segment must be entirely covered by candidate regions to be

considered correct, otherwise the part of the candidate region that

overlaps the IBD segment are considered incorrect. In our

experiments, we found that in the vast majority of cases, SpeeDB’s

output correctly captures the entire true IBD region. For example,

in the HapMap and WTCCC data sets, when SpeeDB identifies

99% of all markers in IBD (overall sensitivity), SpeeDB detects

98.76% and 98.65% of all IBD segments to be fully covered by

candidate regions, respectively.

Discussion

In order to examine SpeeDB’s resistance to noise in the

genotyping process, we ran several experiments varying the rate of

simulated genotyping errors while fixing the modeled error rate

h~0:005 (therefore, we used the same pth and p�th). The results of

this experiment are shown in Fig. 5 which demonstrates SpeeDB’s

robustness to genotyping errors. At the 99% sensitivity level, when

varying the error rate from h~0:0025 (a realistic error rate for

modern genotyping arrays) to h~0:01, the speedup achieved

remains within an order of magnitude, between 25x and 84x.

The choice of step size also influences the performance of

SpeeDB; a larger step size results less computation but reduced

effectiveness. This is because at a particular window, SpeeDB

reports on the potential IBD status the window itself plus the

parstep cM flanking both sides of the window. Because parwindow

was set to the injected IBD segment size minus parstep, increasing

the step size reduces the expected number of markers that will be

used to perform filtering, resulting in reduced effectiveness.

However, a larger step size means fewer windows will be visited

overall, resulting in fewer computations. We ran SpeeDB with

various step sizes in order to measure its accuracy as a function of

step size and the results are shown in Fig. 6. With the step size

increasing from 0.25 cM to 0.5 cM to 1 cM, the running time per

query decreases from to 7.6 ms to 5.9 ms to 5.5 ms, but the

speedup observed at 99% sensitivity decreases from 55.1x to 54.3x

to 40.2x.

SpeeDB is composed of two filters. When the minor allele

frequency is very low, we noticed that the Major Filter is very

sensitive to the genotyping errors. With this observation, we

eliminated low MAF (pv0:2) markers from this filter. Table 3

shows that each filter by itself has comparable pruning power,

however the combination of the two yields significantly higher

performance. Additionally, the running time on these two filters

are roughly equal.

We introduced an optimization technique in the Methods

section to ignore markers that provide little pruning power for a

given query. Intuitively, when most of the indexed individuals

have the same genotypes at two markers, using both markers for

filtering provides little additional filtering benefit over using just

one of them. Therefore, we applied the Jaccard index criteria to

label groups of markers with genotypes that are similar to one

another so that only one SNP from each group is used during

filtering calculations. For HapMap, which had 36,638 markers, this

resulted in 9,831 and 12,997 distinct labels for the Major Filter and

the Minor Filter, respectively. For WTCCC, which had 13,943

markers, this resulted in 5,500 and 8,366 distinct labels for the

Major Filter and the Minor Filter, respectively. This optimization

reduces the considerable number of selected homozygous markers

in filters. As a result, the running time for processing a query is

reduced by half at the expense of higher candidate size. By using

the optimization technique, the candidate fractions at the

sensitivity of 99% and 98% are 20.1% and 11.1% higher than

not using it. This technique was used in all experiments to expedite

the computation; however using it remains optional as the

difference in candidate size could be important in larger data sets.

Marker density has a strong effect on the performance of

SpeeDB. We further explored their correlation by uniformly sub-

sampling the markers in HapMap to various marker densities. The

results shown in Fig. 7 are measured at a 99% sensitivity level. We

observe that the speedup achieved by SpeeDB increases super-

linearly with marker density, implying that SpeeDB can provide

better pruning power if applied to data sets with high marker

density. This promising result implies SpeeDB’s increasing

relevance as researchers transition to using whole-genome

sequencing instead of genotyping arrays.

To investigate the utility of SpeeDB on identifying IBD between

close relatives, which is important in hereditary disease studies, we

simulated cousins of four different degrees based on the data in

WTCCC. For each experiment, 10,000 queries were generated

with each query simulated as a d{th cousin of an indexed

individual by injecting one IBD segment with length L~
100

2:(dz1)
cM. parstep was set to 0.5 cM; parwindow was set to the injected

IBD segment size minus parstep, round up to closet half cM. The

results on fourth to seventh cousins are presented in Fig. 8. Our

results show that SpeeDB offers a very high pruning power when it

is applied to detect close relatives, compared to the performance

for detecting distant relatives sharing a 4 cM IBD segment. In

particular, for fourth cousins as an example, SpeeDB achieves a

10,000x speedup with 99% sensitivity. Due to the fact that the

number of selected homozygous markers within a window depends

strongly on the window size, SpeeDB gradually loses its pruning

power for more distant relatives. Nevertheless, even for seventh

cousins, SpeeDB achieves a 867x speedup at a 99% sensitivity

level.

SpeeDB is designed to provide a list of regions for each pair to

downstream analysis methods. The algorithms used in GERM-

LINE, PARENTE, and fastIBD are amenable to using these
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regions to narrow the portion of the genome analyzed for each

pair of individuals because they consider only local genomic

information for IBD inference. This is on contrast to methods that

consider the entire chromosome for each pair as is done with

traditional HMM methods. The next version of PARENTE is

being implemented to allow these regions to be specified and the

implementations of GERMLINE and fastIBD can be modified in

order to take these regions as input.

As variants detected through NGS data become increasingly

available, the requirement for scalable analysis methods becomes

clearer, and tools such as SpeeDB become an essential enabler for

such large-scale studies. In particular, assuming millions of variants

per samples and tens of millions unique variants across all

individuals stored [17], we can extrapolate on the expected

performance. For instance, when analyzing a database of 100,000

individuals, assuming 40 million genome-wide variants, and

roughly 10% of them are non-reference in a query individual, if

we index all the variants, the analysis would take a few hours. In

reality, a large portion of variants have very low frequencies

(ƒ0:5%). Because hardly any sample is homozygous minor at

these markers, these data have almost no contribution to the

pruning process. We can easily eliminate them from our analysis

without sacrificing the performance. By doing so, we are able to

improve pruning efficiency markedly.

Conclusion

As studies grow to include larger cohorts, state-of-the-art IBD

detection algorithms become computationally infeasible. To

enable impending disease mapping studies of increasingly large

cohorts, a scalable infrastructure is required. This infrastructure

must be able to further support the ongoing nature of such studies

by providing the ability to incorporate newly collected samples.

We implemented SpeeDB to provide a practical and scalable

infrastructure for such large-scale studies. Our method can be

applied on unphased genotype data sets, tolerating genotyping

error. We demonstrated the superior performance of SpeeDB on

simulated individuals from Asian populations of the HapMap

Phase III panel and the 1958 Birth Cohort of the WTCCC. As

shown by our experiments, SpeeDB significantly reduced the

examined candidate list by 200-fold for the case of 4cM IBD

regions, further reducing the candidate set by 4 orders of

magnitude for the common case of more recent common

ancestors. The source code for SpeeDB is publicly and freely

available at http://speedb.stanford.edu.

Supporting Information

Figure S1 The construction of composite haplotypes.

(TIF)

Figure S2 Varying two error tolerance thresholds th

and p�th results in a series of ROC curves.

(TIF)

Figure S3 Performance of SpeeDB for identifying 4 cM
candidate IBD segments in WTCCC.largeSet.

(TIF)
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